期刊在线咨询服务,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

期刊咨询 杂志订阅 购物车(0)

网络规划与优化模板(10篇)

时间:2023-06-30 15:45:34

网络规划与优化

网络规划与优化例1

【关键词】网络 传输 微格化

1 微格化规划内容

1.1 一般地区网络架构分析

1.1.1 全业务传输基础网络架构

全业务传输基础网络的三层结构:骨干层、汇聚层与接入层。光纤传输网和城域数据网在汇聚层以下的物理分离,汇聚层以上的波道区分。

1.1.2 全业务基础网络主要问题

(1)部分机房利用原有基站建设,存在着面积小、楼层高、租期短等诸多问题,给全业务基础网络安全与稳定带来隐患。

(2)机房选址条件限制,未完全达到非常理想覆盖和接入效果,造成部分机房覆盖范围过大,接入距离过远等问题,影响接入质量。

(3)因基础网络阶段性建设和业务发展不均衡性,存在较多的跨区接入业务,影响资源的合理利用率。

(4)部分主配光交采用双节点归属两个汇聚机房,近端满远端不能用。

(5)部分主配光交下挂多个辅配光交,主配光交成端满或辅配层落地纤芯少。

(6)因没有更进一步的底层收敛,所有业务都成端到主辅配光交,导致成端利用率高。

(7)因阶段性建设和业务发展不均衡性影响,跨区接入较多,导致早期的主干纤芯利用率高。

1.2 微格规划架构

1.2.1 传统传输基础网络架构向微格化传输基础网络架构转型

全业务基础网络规划的最小区块单元,也是用户业务需求的来源,是网络基础资源需求测算的依据。微格在规划区域内无缝覆盖,承载有多元信息,包含多种业务形态。

1.2.2 微格划分

根据业务形态不同,微格划分为7种:住宅小区、农居点、商务楼宇、政企楼宇、学校、聚类市场、开发区、待建空地。一般每一个业态类型区域划分为一个微格。

1.2.3 微格业务测算

(1)微格纤芯测算:考虑微格内用户数为σ,补偿系数为C;终期渗透率为S;分光比;分光器利用率为F;上行纤芯收敛比r;得出所需的主干光缆独享纤芯数量A。

(2)引入层光交:在各个微格内设置引入层光分配点进行接入光缆收敛:政企商务楼、沿街商铺考虑采用光纤分配箱,驻地网小区及农居点考虑采用小区光交。

(3) 主辅配光交:根据接入半径、纤芯容量、光交成端等条件因素限定设定主辅配光交覆盖范围x,y。综合考虑管道、业务需求等因素设定主配光交G的位置和容量。

(4)汇聚机房:根据用户密度、接入覆盖面积、运营维护成本、机房安全、管道资源等条件限定因素设定汇聚机房覆盖范围及汇聚机房位置。

(5)微格场景类型纤芯计算方式:住宅小区、农居点、综合市场A=S*σ*C/(64*F);政企类重要用户A=12*r;一般企事业网店A=6*r;学校大于1万人A=24*r;学校小于1万人A=12*r;大型商务楼宇A=24*r;中型商务楼宇A=12*r;小型商务楼宇A=6*r。

1.2.4 规划基本步骤

对全网的汇聚接入机房、主辅配层光交、光缆和管道等传输基础网络资源进行排查和梳理,以及区域内所有业态数据的排摸。构建微格平台,以微格信息数据为基础,从底层向上层推导。以微格用户数据、密集程度等为基础,划分微格类型。确定主辅配层光交覆盖范围、接入容量、数量,以及所需的上联主配层光缆芯纤数量。确定全业务汇聚区覆盖范围和全业务汇聚接入机房位置、数量,从而达到全面无缝隙覆盖。

1.2.5 平衡优化

平衡优化对全业务跨区域接入的情况,应通过割接、优化调整主辅配光交以及用户上联光缆到各自归属全业务接入区和规划主辅配光交节点内,提高业务接入反应能力。

制定基础资源预警原则,包含光交成端、主干纤芯、管道资源。

(1)光交成端:对光交成端占用率超过70%的光交,采用新设、扩容光交,释放主干纤芯的方式优化。

(2)主干纤芯:针对主干纤芯占用率超过70%的光交,采用新设、扩容光交,新放主干纤芯的方式优化。

(3)管道资源:对管孔占用率超80%的管道进行梳理,对同一路由的小芯数光缆,可以由光交放出大芯数光缆,在合适位置做接头,将小芯数光缆割至此接头,将剩余光缆拆除,由此对这些光缆进行收敛,从而腾出部分管孔资源。

2 总结

2.1 对全地区进行微格化划分

首次以用户数据、密集程度等为基础,划分7种微格类型:住宅小区、商务楼宇、开发区、专业商业街、聚类市场、学校、待建区域。

2.2 明确业务归属区域

合理布局全业务汇聚区、主辅配层光交区、引入层光配区,划分业务归属。汇聚层规划主要以覆盖距离及人口密度为主要制约因素,主辅配层规划主要以接入半径及纤芯容量为主要制约因素。引入层光配主要以收敛多个微格区业务为主,缩短接入距离降低主干管道利用率。

2.3 传输基础网络平衡优化,提升网络接入质量。

网络规划与优化例2

中图分类号:TN711文献标识码: A 文章编号:

一、概述

CDMA它是在扩频通信技术上发展起来的一种崭新而成熟的无线通信技术。CDMA技术的原理是基于扩频技术,即将需传送的具有一定信号带宽信息数据,用一个带宽远大于信号带宽的高速伪随机码进行调制,使原数据信号的带宽被扩展,再经载波调制并发送出去。接收端使用完全相同的伪随机码,与接收的带宽信号作相关处理,把宽带信号换成原信息数据的窄带信号即解扩,以实现信息通信。

随着科学技术不断发展,业务水平的不断提高,通信网络也随着不断的发展和完善。自从2008年10月,中国电信成功收购中国联通的CDMA技术,CDMA通信网络进入新的发展时期。并且随着业务量和用户的增加,需要不断提升网络能力和网络覆盖,通过科学的网络优化和网络规划创造出精品的网络,从而保持企业的竞争力。

二、CDMA规划、优化当前存在的问题

当前,C网规划、优化存在的问题表现在以下几个方面:

其一,CDMA的知识储备比较匮乏。尽管我们标准体系、设备制造都具备了较强的竞争能力,但是在网络规划和优化等技术领域还显得比较落后。在这一方面无论是高层次的理论研究和优质的应用工具的研究,还是实际的工程建设和日常维护队伍以及网络的质量评估体系都相对薄弱。

其二,由于我们的移动通信网络一直是一个高发展阶段,所以人们始终重视的是设备的引进和网络的扩容,注重发展更多的用户,而对网络优化和系统评估的人才培养和技术研究重视不够,以至于过分依赖设备制造商来保证网络的质量。这样做带来的后果将会是,当所谓的“交钥匙工程”结束后,如果网络再出现严重的质量问题,我们很难给出准确的评估,找出解决问题的办法。此时再去依靠设备厂商,我们将会付出较高的费用。

其三,从以往的情况来看,在我们已经为网络规划和优化付出很大代价的同时,我们还没有形成一套完整的网络规划、优化和质量评估体系。这使得整体网络的评估和监控以及评比无章可寻,各自为战。

三、CDMA无线网络规划的重点与难点

网络规划需要进行站址的选择、勘测工作,实际工作中要求实地勘测每一个在搜索圈内可能的候选站址。勘查工程师既要考虑网络性能的要求,又必须考虑建设基站的困难。在设计工作中,基站选址甚为重要,需要具有战略的眼光和思路。如果能够在网络建设之前,充分利用规划软件在综合考虑各种影响因素的前提下,进行较为深入的分析,就能够给出一个较为科学的设计。

在城市地区,建网初期站址选择相对较为容易,主要是解决无线覆盖的问题,但在网络不断扩容的过程中,特别是已具有相当规模的今天,大中城市中的基站数目已经越来越多,站间距越来越小,一般在600M以下。覆盖问题一般只存在与市区的地下室与部分大中型建筑物内,目前已经不是主要矛盾。随着网络规模的增大,网络容量的继续发展受限于CDMA网络的自干扰问题,一般来说,网络中的所有基站均需要严格控制其服务区覆盖范围,任何的偏差均可能导致干扰。如果设计结果未能满足设计目标要求,就可以使用调整天线方向、下倾角或高度,改变天线类型、甚至调整站点位置等措施来尽量预先避免干扰等问题的发生。

在农村地区,可以通过合理的选站,尽可能让少量的基站覆盖更大的范围,吸收更多的用户和话务量,来提升网络资源利用率和农村网络建设投资收益比。但由于无线电波传播环境的复杂性,加上地形地物的影响,加速了基站无线电波的衰减速度,规划人员往往很难通过一些简单的判断来预测基站建起来以后的覆盖效果,则另外还需要在规划软件中进行验证,根据实际数据对设计方案进行修正和优化,在对部分站点位置作调整、同时寻找新的候选站点的基础上重复进行系统仿真,直到满足系统设计目标的要求。

确定所有的站点位置和站点数目后,需要确定系统参数,完成最终的网络设计和基站参数配置工作,来保证网络的良好运行。设计结果以文件及图纸的形式体现。

基站参数配置信息应包括以下内容:

(1)天线结构类型和配置:天线数、天线类型和尺寸、水平和垂直的射束宽度、方位角、水平间隔、机械下倾角、天线中点高度等。

(2)GPS天线特性:GPS天线类型、同轴电缆类型、估算的电缆长度和损耗、天线高度等。

(3)草图部分应该用图解释出大部分上述的位置信息和其他相关数据,包括周围建筑物高度、设备配置和安装位置、天面布置及具体安装位置。

(4)基站设备配置:载波数量、发射和接收频率、电缆类型和长度、天线类型和型号。

(5)每一个扇区分配一个可以使用的PN码。

四、CDMA无线网络优化的重点与难点

在网络建设过程中,网络规划也有一些考虑不到的问题,这就需要在建网后对网络进行优化。网络优化是指在网络设备运行正常、配置基本满足话务分布需求的前提下,通过数据采集、数据分析、拨打测试和路测,结合用户群的动态变化,无线环境的变化,发现网络中存在的隐性故障和问题,找出影响网络质量的原因,并通过技术、工程手段进行频率/PN、参数、覆盖、网络配置及网络路由的调整,使网络质量保持较高的水平,提高网络资源的利用率,以创造最大的经济效益,提高用户的满意度。

目前,无线网络优化的主要内容包括:

(1)基站隐性故障检查;路测及CQT测试。

(2)公路、铁路主干道的覆盖优化。

(3)无线参数调整。

(4)天线倾角、方向、挂高、位置调整,天线型号的更换。

(5)基站信道、配置调整,站型的更改。

(6)微蜂窝设备、直放站的增设。

(7)室内覆盖系统的设置。

(8)进行上述工作相关的频率计划/PN码规划,无线参数的修改。

(9)基站传输方式的调整。

无线网络优化包括对影响网络性能的多种参数的调整,在CDMA网络众多的性能参数中,接入失败率、掉话率、误帧率和软切换比率是我们最关心的,这些参数基本客观地反映了网络的性能。根据网络优化软件的分析结果对网络的配置参数进行调整,从而达到网络的最优化。网络优化过程分为单站优化、小区优化、系统优化三步。单站优化的目的是确定单站的覆盖区域,更软切换是否正常工作,是在基站安装完毕后进行的,它包括:

(1)基站设备的调试,包括基站初始数据的加载、基站设备发射参数的测试和设备基础性能参数测试等。

(2)环境噪声测试,目的是为了解基站周围环境的电磁干扰情况,并消除干扰源。

(3)基站工作验证,在环境噪声测试和基站测试进行完毕后,在基站正式开通之前,应对该基站进行必要的工作验证。验证工作主要包括以下内容:固定-移动呼叫、移动-固定呼叫、移动-移动呼叫、扇区与PN偏置指数的对应关系、接收信号强度、信噪比以及本基站扇区与临近基站扇区间的切换。

小区优化是为了确定在多个基站工作的情况下,软切换区域是否合理,基站的无线参数设计是否可行、邻区列表是否合理等。

系统优化是确保整个系统的质量。

好的网络优化不仅能改善网络的性能和服务质量,还能增加系统共的容量,因此加强网络优化,可以有效提高网络的运行效率。

五、结束语

CDMA网络规划和优化是技术密集型的工作,除了需要大量高素质人才之外,还需要有效的规划、优化工具。而CDMA网络的建设运营过程就是一个持续不断重复进行的规划、设计、建设、优化的过程,规划是依据市场目标来评估需要的资源,设计是把规划了的资源使用具体化,建设是把设计内容实体化,优化则是解决和修正所建网络实际状态与期望目标之间的差异。解决好这些重点问题就可以更好地完善无线网络,不断地提高网络质量和服务水平,为市场发展提供强有力的网络支撑。

参考文献:

网络规划与优化例3

LTE网络代表着4G时代的到来,如何构建一张高质量的LTE网络成为业界共同关注的话题,尤其是在用户对4G服务质量要求日益提升的情况下,所以,作为一名移动网络工作人员,要想实现移动网络运营健康、良好发展的目标,做好LTE网规网优工作意义重大。但由于LTE网络对系统内外干扰具有高度敏感性,这就加大了网规网优的难度,下文针对这一问题做了详细论述,内容如下:

一、LTE网络

关于LTE网络可从两大方面了解:一方面,优越性。LTE网络在兼容3G通信的同时还可以改进4G通信。该网络规划时,大部分采用的是单层结构,此结构由NodeB去构成组织,有利于简化网络,加快数据传输,实现系统低延时功能;另一方面,局限性。随着移动用户的不断增加,传统LTE网络结构已经不能满足用户需求,不能保证移动网络的发展需求。是因为此网络结构具有同频组网的特性,运行过程中不仅影响系统内网络,而且会增加网络负荷,使得网络性能严重受限。由于网络结构里面存在很多高站,尤其是人流量比较大的地方,容易干扰信号,不利于SINR的提升。所以,针对这一局限性,提出基于仿真LTE网规网优的策略。

二、仿真的LTE网络结构规划

网络结构规划作为网络建设的第一步,对于网络建设成本、网络质量及后期扩容等都有直接影响。做好LTE网络结构规划应遵循这两大原则,第一,科学规划。建立在准确的网络需求分析上,从覆盖目标、社会环境、业务质量、容量目标等多方面入手,经综合分析后,合理规划网络结构;第二,精心设计,在设计过程中必须与周边环境协调,避免后期用户投诉带来的负面影响。另外,还要考虑承载网和光纤网络对LTE网络的承载能力,确保LTE基站设备的放置与承载网和光纤网的能力相匹配。为此,提出嵌入LTE网络结构规划与优化方案,通过组间合理的LTE网络实现其优越性能。详细如下图1:

具w是将Atoll仿真工具引入到网络规划中,利用高精度数字地图、ACP智能优化功能和Cross Wave三维射线跟踪模型,保证LTE网络规划仿真的准确性和合理性。其中ACP能够提高在网络覆盖和容量方面的质量,降低网络结构规划中站点选择的难度。Cross Wave是Atoll中一个可选的高级传播模型,它支持所有无线技术,主要模拟垂直衍射、水平面的导向传播和山脉区域的反射传播这三种现象。总之,在仿真LTE网络结构规划中,有必要将仿真规划工具应用到具体方案中,达到保证网络连续覆盖的目的,还有在对LTE网络结构进行设计时,可采用模块化的规划设计方法,便于后期网络调试和进一步扩展。详细流程如下图2所示:

三、优化解决方案

LTE网络优化,其目的是提高用户业务感知速率。在保证覆盖连续的前提下,最大限度控制系统内的同频干扰,平衡覆盖区域,提高移动网络性能。目前LTE网络采用的是同频组网,小区之间的干扰比较严重,且LTE的下载速率与下行的信噪比成直线关系存在,所以,在对LTE网络进行优化时,可通过获取比较高的中高端SINR比例,来提升下载速率。网络正常运行过程中,结构规划决定着SINR,而SINR又直接影响着网路性能。可见,做好LTE网络结构规划与优化是提升网络性能的关键。具体策略是:以基站的高度、方向角和下倾角为重点,利用ACP智能预测及仿真,控制SINR的性能指标,控制基站之间的重叠覆盖范围。研究过程中得出:高站仿真SINR变化趋势图,如下图3。

由图可知:基站数在不断增加时,RSRP大于-90dBm比例呈递增趋势,而SINR大于0比例呈下降趋势。另外,站点增加的高度与RSRP和SINR呈正比例存在,高度越大,其变化就越大。最终得出:高站与网络指标之间有直接的影响,只有合理控制高站数量,才不会出现网络后期扩容不利影响。优化方案中,另一大问题是:近站仿真。建议利用AtollACP智能功能进行方案优化,调整高方位角和下倾角,并对预测覆盖空洞部分进行补盲处理,确保网络结构合理。案例分析:某城市在进行4G网络建设时,需要对原有LTE网络进行扩容,选择最佳LTE基站,实现优化网络结构规划的目的。优化过程中对主城区的4个站点进行优化、调整,最终得到的仿真LTE网络结构模型如下表1:

通过优化调整后,主城区内主体覆盖基本能保证在-90dBm以上,能够达到覆盖要求及标准。另外,在对系统整体架构进行优化时,可采用分组交换的形式,严格把握Qos机制的设计,做到因地制宜利用各类资源,根据特定场景选择最合适的设备形态来进行针对性覆盖,这样能够有效保证LTE网络结构实现高质量业务服务,而且对系统后期扩容也有一定的积极作用。由此可见,科学合理的网络规划和精心设计是LTE网络建设的关键,除此之外,还需要相关工作人员以科学的态度、严谨的作风保证后期大量且细致的工作,能够在网络建设、维护、等各个环节中不断努力,完成仿真的LTE网络结构规划,构建一个可以满足用户需求不断增长的、高质量、高品质的LTE网络,提升网络性能,推动LTE网络更好的发展。

结束语:综上所述,LTE网络结构规划与优化是一个系统性工程,由早期的规划、设计到最后的建设、维护和优化等环节,相关工作人员务必要重视每一个环节,这样才能打造一张满足运营商业务发展需要的精品网络,才能给用户带来良好体验的精品网络。LTE网络结构对未来LTE网络性能有着决定性作用,此外,还需要对影响LTE网络运行的相关因素进行定量分析,帮助网规网优工作顺利开展。此外,笔者希望更多有关人士参与到基于仿真的LTE网络结构规划与优化解决方案研究当中来,促进LTE网络建设工作优质、高效地开展,为提升社会信息化总体水平奠定良好的基础。

参 考 文 献

网络规划与优化例4

0 引言

 

近年来,移动通信技术的发展异常迅速,移动通信在日常生活中的地位显著提高,从20年前大款用来谈生意的大哥大,到10年前城市里开始普及的方便通讯用具,再到现在不论城镇乡村大批中青年甚至老年人都已经离不开的万能信息平台,移动通信已经成为人们工作和生活中不可缺少的重要部分,中国庞大用户群的潜力已经几乎挖掘完毕,而围绕着这些用户,运营商之间的竞争也越来越激烈。随着移动通信标准的更新和移动通信网络的大规模建设,提高移动通信网络质量和性能成为移动运营商增强竞争力的杀手锏,如何高效且经济地满足用户对移动通信网络建设和维护的需求,已经成为三大运营商急需重视的问题,移动通信网络规划与优化的工作变得更加炙手可热。“无线通信网络优化与优化”这门课程的设立,正是为了响应通信领域对具备移动通信专业技术人才的需求。

 

无线通信网络规划是根据蜂窝移动通信网络的特性以及需求,设定相应的工程参数和无线资源参数,并在满足一定信号覆盖、系统容量和业务质量要求的前提下,使网络的工程成本降到最低。移动通信网络优化是通过对现已运行的移动通信网络进行业务数据分析、测试数据采集、参数分析、硬件检查等手段,找出影响无线网络质量的原因,并且通过参数的修改、网络结构的调整、设备配置的调整和采取某些技术手段,确保系统高质量地运行,使现有网络资源获得最佳效益,以最经济的投入获得最大的收益。

 

而无线通信网络规划与优化这门课程主要是为了培训移动通信规划与优化工程人员而设立的,是一门涵盖知识面广且相当复杂的专业课;并且需要将理论与工程实践相结合:首先从移动通信网络的基本原理开始,然后引导学生了解和熟悉网络规划与优化的基本流程,使学生们从理论上掌握网络规划与优化的步骤与目标,在此之外再尽量从工程的角度,结合案例分析,引导学生运用所学的方法与理论去解决实际网络运行中出现的各种故障问题,并提出相应的解决方案。我院从数年前就开始开设此门课程,也与企业进行过一些培养合作,在教学过程中遇到过许多问题,并针对这些问题做了一些改进。从学生的成绩、毕业生及用人单位的反馈来看,取得了一定的成果。

 

1 问题归纳

 

在移动通信理论知识的学习和网络规划与优化案例的分析过程中,教师和学生会遇到各种各样的问题,其中很多问题存在着普遍性。下面将对这些普遍存在的问题进行归纳,为后续教学方法的研究奠定基础。

 

1.1 课程知识面覆盖内容太广

 

无线通信网络规划与优化课程具有较强的专业性,涉及到的理论知识多而细,且较为复杂。学生首先需要掌握无线通信网络的架构和组成、天线原理和结构、电波传播模型、频率分配、干扰控制等等,然后才能对网络规划与优化的具体步骤进行学习。在理论学习中学生会遭遇铺天盖地的知识点、缩写词、概念、公式等内容,对学生来说难免枯燥,也给教学带来了许多困难。

 

对于本课程来说,长篇大论地教授理论知识似乎不可避免,这样往往会让学生产生对立情绪,教学效果堪忧。理想情况下,先重点讲解移动通信网络的理论基础,然后一步步介绍实际的网络规划和优化操作,会帮助学生打好坚实的基础,在学习系统的理论知识之后再进行实践,可以更顺利掌握网络规划与优化的技术。然而实际情况下,如此多的内容需要在有限的课时内完成,比如我校该门课程的学时数仅为32学时,理论知识学习时间有限,还要留出足够的时间来讲解案例和实际操作,这样教师不得不把大量内容以“填鸭”的方式灌输给学生,容易使学生失去学习该课程的兴趣和动力。

 

1.2 课程内容更新速度太快

 

移动通信技术是近年来发展最快的技术之一,不仅仅是3G、4G的技术在飞速发展完善,5G技术也已经提上日程。移动通信技术课程教材的建设往往跟不上技术的发展,这就要求我们根据当前通信网络的实际发展情况以及网络规划与优化实际操作的改变来修改教学内容。旧的通信技术逐渐被淘汰或改进,新的无线传输思想和概念不断出现,并应用到新的系统中。在教学中需要使学生对现有移动通信系统及未来的发展方向有较为系统和全面的认识,从而对网络规划与优化操作的变化能够从原理上进行理解和掌握,因此我们的教学内容必须及时更新,适应技术的发展,否则难以使学生学以致用,也势必影响学生的学习兴趣,从而影响教学质量。

 

但如果不断更新教材,对教师来说是比较沉重的负担,因为每次更新教材教师都需要花较多的时间去阅读和掌握,然后再重新编写教案和讲稿等等。另外,受限于教材的编写和出版周期,即使经常更新教材,也需要我们在教学中不断自行修改和补充,这也进一步增加了教学的内容和难度。

 

1.3 授课对象对移动通信基础知识的掌握有所不足

 

在过去与网络规划与优化相关的教学论文中,经常会提到这门课程由于应用性极强且涉及大网络做背景,需求一定的实验和实践操作,才能理论与实践相结合,获得较好的教学效果。而我们由于与企业进行合作,课程的对象不仅仅是本科生,也面向企业员工。过去的文献指出,对一般高校学生来说,存在着理论和实践脱节的问题:学校受限于资金和场地等原因难以提供相应的实验和实践环境,多采用传统的课堂讲授的方式,学生能接受的只有与网络优化相关的一些原理性的方法、流程和算法知识,如果面临实际的网络操作就无从下手。针对这些问题,过去的文章中提出了一些有效改革手段,类似的手段我们也有所采用。

 

另一方面,据我们所知,企业员工也存在着理论和实践脱节问题,只不过和高校学生处于完全相反的方向。从我们对合作企业的了解来看,实际从事网络规划与优化工作的员工中有相当一部分并没有系统学习过移动通信网络的基础课程。这些课程对学生的专业基础知识需求较高,要求熟练掌握信号与系统、通信原理的基本知识,还要能用一定的电磁波、微波理论基础来分析电磁波传播特性。此外,相对有线传输方式,无线信号传输需要从时域和频域的不同方面分析和理解信道、信号的特性。无线信号传输过程中存在很多不确定因素,采用的数学模型更加复杂,这样就会有较为繁琐的数学公式推导,要求学生有足够的数学功底。学生必须先打好上述的这些基础,再去学习通信技术的一系列基础知识,才能达到对移动通信完全彻底的掌握。许多员工原本并没有这方面的专业知识,或是对专业知识掌握不牢,主要是从实践中学习网络规划与优化的步骤、要点等,往往知其然而不知其所以然,导致事倍功半。对于这样的人员来说,如果从头开始对移动通信网络的基础知识进行系统的补充,则需要消耗较多的时间和精力进行专门培训,比较难以实现。

 

2 无线通信网络规划与优化课程教学的几点思考

 

基于上述归纳的问题,本文针对无线通信网络规划与优化教学提出几点改进意见。

 

2.1 明确授课目的,改变授课重点

 

本课程的目的有两个方面:一是,为企业预培养合格的网络规划与优化人才;二是,为企业员工补充必要的无线通信基础知识。这两个方面看似有所区别,实际上存在着完全相同的核心。

 

作为企业,必定会对新员工进行实际工作内容的培训,以及让老员工带领新员工尽快熟悉操作。因此对高校来说,在教学过程中做到让学生在较大程度上掌握对网络规划与优化的实际操作过程并不是必需的,但如果让学生通过本科课程牢牢掌握无线通信基础知识和网络规划与优化原理,这样的学生能够轻易理解每一个操作步骤的意义,因此可以预见能够在企业顺利完成培训。另一方面,对企业员工开课的目的是给他们补充移动通信网络的专业基础知识,而实际操作对他们来说也早已熟悉。因此,与着重加强实验、实践教学环节的常见教学改革方向相反,我们做出对基础理论教学环节进行着重加强的决定。

 

但这并不意味着放弃在实验、实践方面的教学,毕竟本课程注重的是实用性,并且单纯的理论教学会让学生感觉本课程是一门生涩枯燥毫无用处的课程。为了对这方面进行兼顾,我们选择将日常网络规划与优化工作中遇到的一些的实例进行拆分,把拆分后的适当部分加入到相应的理论知识点中作为例题,这样既可以让学生对实际操作有一定的了解,避免理论脱离实际;又可以为理论教学添加必要的缓冲和总结,避免枯燥的理论教学。而这种做法的难点在于对实例的选择和拆分有比较高的要求,需要花费较多的精力去解决,但好处在一劳永逸:一旦完成这方面的例题准备,哪怕通信技术再更新,也只需要在同一层次和方向上找类似的实例进行同样的拆分。在此之外,我们也会请企业教师进行数个课时的授课,主要是在讲解网络规划与优化的流程之后带给学生更多实例,这些实例的复杂程度比理论教学中遇到的更高。

 

2.2 对教学内容进行精简和改动

 

由于本课程覆盖范围太大,知识点太多,且授课时间有限,需要对教学内容进行精简和改动,这样可以充分利用授课时间,以传授更多实用信息。

 

首先,尽可能避免把上课时间浪费在教授过时的或者已经学习过的知识上。例如,在目前的课程内容中一般会安排天线原理、电波传播模型等章节作为基础知识进行教授,然而这些章节的知识点在微波与天线以及通信原理等前期课程中都有所涉及。因此,授课时要注意避免知识上的重复,对已经学习过的内容只需要进行简单回顾即可,着重强调各章节之间的联系,把教学重点放在学生比较不熟悉的领域,例如覆盖、容量等等。

 

然后,减少对掌握网络规划与优化具体操作来说没有实际帮助的教学内容。例如公式推导过程,作为本科教材,经常会习惯性地将从已知公式推导得出新公式的过程放进课程中。这样对学生来说固然容易加深理解,但对以实际应用作为目的的本课程来说其实意义不大。本课程的公式多且复杂,一一讲解其来历会占用太多时间,作为学生也很难全程都集中精力听讲,更何况很多公式都是从经验公式推导而来,并没有太多的理论意义。此外,根据对企业员工的调研,大多数此类公式只需要掌握其意义和用法即可,而且一些在本科期间学习过这方面课程的员工早已忘记公式的来历,但并不影响他们的工作。

 

2.3 承前启后,兼顾不同的移动通信系统

 

目前运营商所服务的移动通信网络是从2G到4G同时存在的,并且已经开始考虑5G网络,因此我们的教学不仅需要兼顾历代通信系统,还需要对它们之间的联系进行承前启后的分析讲解。不同世代的移动通信系统之间有着非常多的异同,一一讲解需要太多的时间,但因为课时的关系,我们需要在重点考虑网络规划与优化的层面上适当选择相关的知识点进行详细讲解,对其余内容只能一笔带过。

 

移动通信系统的发展实质是移动通信向更快数据传输、更好服务的不断发展。历代的移动通信技术都离不开蜂窝网络的基本架构,虽然技术细节存在很多不同,但网络规划和优化就是针对构成蜂窝网络架构的每一个节点进行的,在这方面可以说是万变不离其宗。因此我们把蜂窝网络、天线选择、频率分配、覆盖和干扰分析等学习任一代移动通信技术都不可缺少的基础内容在前半部分的课程中进行讲解,然后在讲解技术方案和通信标准这些存在代差的内容时,才对各代移动通信系统加以区分。把重心放在对于经典移动通信系统的介绍,通过对不同系统的学习去更好地理解它们之间的异同,从而更进一步地体会不同系统对于系统容量,位置更新方式,鉴权方式,越区切换策略,信道的分配和使用等方面的处理,并且,更重要的,网络规划和优化方面的异同。

 

3 结束语

 

网络规划与优化例5

TD-SCDMA是由我国自行提出并主导完成、被国际认可的第三代移动通信系统标准。发展TD-SCDMA对于提高我国通信业自主创新能力、推动创新型国家建设具有重大意义。随着3G时代的到来,我国运营商机遇与挑战并存。运营商如何结合自身的特点,采用创新的工作模式,开展工程网络建设、网络规划优化、网络运营,做好网络支撑,充分发挥TD-SCDMA的技术优势,提高客户感知,保持公司持续的竞争力,是亟待研究的课题。

1 TD-SCDMA网络建设

TD-SCDMA网络建设是一个系统工程,涉及面广、投资大、周期长。如何通过有效的工程项目管理,保障网络的快速建设与部署,构建精品移动通信网络,成为运营企业关注的问题。我国目前TD商用网建设和运营刚刚开始,在TD建设与组网方面正处于探索阶段。如何构建一个性能优良,业务丰富,质量上乘的通信网络是决定其生存和后续发展的决定性因素之一。可以考虑从GSM系统建设中汲取和借鉴有价值的方法和思路,结合TD-SCDMA本身的技术特点和网络建设的要求,从项目管理模式、管理内容、资源配置、建网思路等方面深入思考,探索出适合TD-SCDMA网络初期建设的思路。

1.1 工程项目管理

科学合理的工程项目管理是快速建设高品质TD-SCDMA网络的保障。立足于2G网络建设、优化和运营中积累的工作经验,从概念、原理上与GSM系统区别开来,高效地完成工程建设任务,建设TD精品网络。TD-SCDMA网络建设项目管理包括:

(1)科学的工程管理体系

以项目管理流程为核心,以工程质量管理、服务外包管理、文档信息管理、维修备件管理为依托的管理体系,保证项目顺利实施。在实际操作中,采用现场联动机制,开展经验交流活动,将优秀经验及时总结,及时分享,充分吸取及借鉴2G网络建设经验和优化经验,极大地推进了项目的建设进度和网络质量。具体措施包括:

建立专职支撑工程项目组,成立TD网络建设办公室。

分阶段工作目标管理。针对TD网络建设的新特点,结合各地区的建设现状,项目组形成“以簇顺序为核心,安排整体建设、统筹资源”的总体工作思路,并制定出分阶段的工作目标。

合理的资源配置管理。TD建设规模大、工期紧,需要调配大量的人力、物力资源,合理统筹资源是TD项目建设的有力保障。支撑项目组应在充分预估风险的前提下,对每道工序所需要的资源进行精准分析。

专业的技术工作团队。专业的队伍,合理的组织结构是保障项目完成的关键。网络规划组、工程实施组、网络维护组、测试优化组和设备物流组建设项目经理。

精细有效的项目控制。以里程碑为纲,逐层分解落实;制定总体预警与风险应对计划;定期召开项目例会,及时解决问题。

(2)因地制宜的建网思路

在TD-SCDMA建网的思路上,应该因地制宜,充分考虑具体的场景。由于TD技术特点,基站需要成片开通、优化。为确保项目的进度和网络质量,项目组应制定以“簇”为单位进行工程建设部署的“片区簇”模式和“网中网”的建网思路,在保证总体进度的前提下,对具备开通条件的基站做到建好一个开通一个,边建设边优化,以保障建设完毕的网络经过短时间全网优化即可商用,大幅度缩短工期。

(3)全面的技术解决方案

在TD网络建设过程中,针对普遍场景提出了不同的组网方案,同时开展广泛的课题合作,针对各类特殊场景提出独到的解决方案,涵盖网络建设中遇到的各种场景。

(4)快速的工程实施

TD与2G共站址,解决站址困难,快速建网,以节约投资成本与运营成本。

(5)创新的工程改进和工程管理模式

根据工程实际情况,坚持不断创新的精神,持续进行多方面的工程机械设备改进,便于工程实施,有效加快了建网进程。在工程施工方面积累经验,为合理统筹安排建设资源,合理安排工序,项目组根据TD工程特点,提出创新的“平行流水”的工程建设方式。

1.2 TD-SCDMA网络规划

TD-SCDMA规划包括网络规划和业务规划,网络规划又包括覆盖规划、容量规划、承载规划、局房规划等,其中覆盖、容量、业务是密不可分,相互影响、相互制约的。对于移动公司而言,TD网络不是孤立的,是依托于现有2G大网上的一个局部网络,应该将2G/3G统一规划、建设、维护和运营。

TD-SCDMA网络规划与GSM遵循着基本相同的流程。通过无线网络规划和优化的各个环节的比较,在分析GSM网络规划特点的同时,不难发现许多可供TD-SCDMA吸收和学习的经验。TD二期网络建设遵循的总体原则为:2G/3G协同发展,室内外相互兼顾,一次规划,分期建设,认真实施。

(1)总体规划原则

应该根据市场预测、设备状况、投资能力和盈利前景的差异,选择不同的建设策略。总体规划原则为:

统一规划:在规划中从全局的角度来着眼,把满足未来2~3年的业务发展作为系统目标进行规划设计,网络架构和基站布局尽量呈现相对稳定的格局;

分布实施:根据各个地区的差异,分期、分阶段、分区域地部署网络;

快速部署:根据市场竞争的需要,谁抢得先机谁就占主动;

规模发展:在局部区域形成竞争能力,网络覆盖效果较好,网络持续扩容能力较强。

许多网络问题在网络规划阶段造成的,高水平的无线网络规划为后期网络优化和维护奠定良好的基础。无线网络规划的主要思路为:建立全程全网的规划体系,确保网络质量;充分利用2G现有站址资源,加快建网进程;室内外协同规划,综合考虑;促进产品与周边环境和谐,注重环境保护;对特殊场景进行重点研究,提升现网性能;高性能的网优工具,助力精品网络建设。

(2)TD-SCDMA无线网络规划流程

TD-SCDMA网络应根据不同区域的重要程度,采用分步实施的规划和建设方式。网络规划遵从先覆盖后容量、先重点后连续、网络容量及质量先重点地区后一般地区的原则,分期规划和建设。在服从无线网络规划的总体原则情况下,TD-SCDMA无线网络规划结合自身特征,主要包括六个阶段:网络发展规划、网络调研、网络规模估算、预仿真、站址勘查和详细规划。根据具体场景考虑实施室内特殊覆盖,应该采用合适的比例,体现出室内外平衡设计的思路。TD-SCDMA无线网络规划的过程如图1所示。

TD-SCDMA在中国的发展,不仅受到技术的影响,还受到产业链、产业政策、市场需求、网络现状等多方面的影响。TD-SCDMA无线网络规划需要在实际的网络建设和运营中不断加以总结和完善。考虑到TD-SCDMA网络规划灵活的特点,在建网初期可以重点考虑覆盖因素,后期可通过增加频点和补盲站点的方法增加系统容量。

1.3 TD-SCDMA网络的工程建设

TD-SCDMA网络建设应遵循网络规划的原则下,在保证网络质量的前提下,充分利用现有各种资源和设施,包括室内分布系统、站址、机房、铁塔、天馈线系统、防护设备、传输设备、电源设备等,以便节省网络投资,加快建设进度。

(1)GSM/TD共站址,提高共站比例

充分利用现有的2G站址、室内分布等资源,尽最大可能共站址建设,努力提高共站比,解决站址选择难题,保障工程顺利实施。

建议在对2G室内分布系统改造时,兼顾WLAN的需求,建设三网合一的融合网络。

借助TD网络建设时国家政策及地方政府的支持,在原先GSM网无法进入的区域新建TD基站,在后期GSM网络扩容时也会使用到新建设的TD基站站址资源,即所谓“反向共站”。

(2)施工经验的积累

根据TD设备、天馈线部分等施工特点,制定科学的施工方案。TD施工过程中应注意经验的积累,包括天馈安装,GPS安装,天面和机房资源,电源和传输资源,重新评估铁塔负荷和风荷,采用美化天线等。

2 TD-SCDMA网络优化

TD-SCDMA无线网络优化是网络建设中一个非常重要的过程,需要在实际的网络建设和运营中不断加以总结和完善,在不断发现和解决问题的过程中不断探索积累经验。

2.1 借鉴GSM优化经验

与网络规划相似,在网络优化的原则和流程上,许多宝贵的GSM优化经验是可资TD-SCDMA网优工作参考和学习的。同时必须看到,运用不同的无线技术,在不同的网络环境下很多具体问题都有着不同的侧重点和优化策略,可以对2G/3G协同规划、总体优化的策略进行探索。

2.2 规范化的网优管理

实施TD-SCDMA网络优化维护工作的规范化管理,提高网优维护工作的效率,提升网络资源运行效率和质量,加强对优化工作的日常管理和考核。TD网优管理的主要内容包括:加强网络优化工作的日常管理;细化网优日常考核指标,提升优化工作效果;加强管理,细化对第三方优化服务公司考核。

2.3 TD-SCDMA网络优化步骤和流程

建网初期一般采用循序渐进的办法,分为几个阶段:

单站验证:对新开基站进行单站验证,检查基站发射功率,覆盖是否符合规划要求,基站参数设置是否合理,避免单站问题带入簇优化中;

分簇优化:进行分簇方式进行有效优化,及时跟踪;

片区优化:在簇优化完成的基础上,将几个簇联合在一起优化,重点考核簇边界切换等情况;

全网优化:全网优化在片区优化基础上完成,考核各个片区间的切换及参数的统一性。

TD-SCDMA无线网络优化的流程如图2所示。

2.4 TD-SCDMA网络优化内容

TD-SCDMA网络优化内容主要包括:天线调整,通过调整天线控制基站覆盖范围,减少干扰和导频污染;修改基站邻集,使切换合理,减少切换掉话;修改基站扰码,减少码字干扰;对覆盖盲区就规划方面提供建议;解决室内覆盖基站和室外基站邻区问题;参数优化,让接入、切换等参数最优化;采用“线-点-线”的优化实施办法,有效保证了建网进度和网络质量。

3 TD-SCDMA与GSM双网运营

对于中国移动而言,TD-SCDMA的建设和运营对中移动而言是新网络、新思路、新挑战,其中涉及双网运营策略、融合组网问题。针对TD-SCDMA与GSM双网运营,移动公司提出“新机制、新标准、新测量”解决方案。旨在将TD-SCDMA的建设和运营纳入到全业务运营的重要组成部分考虑,2G/3G协同运营、共同发展,系统性考虑和探索发展路线,积极面对即将到来的挑战。

3.1 TD-SCDMA与GSM双模组网原则

TD-SCDMA与GSM双模组网原则为:

(1)利用TD-SCDMA与GSM进行双模组网,充分发挥TD-SCDMA在数据业务方面的优势;

(2)在热点地区采用HSDPA进行覆盖,进一步增强数据业务的支持能力,引导高端用户使用数据卡,提升高端用户忠诚度,进一步提高用户的粘性;

(3)定制推广双模手机;

(4)2G与3G共组核心网、业务网和支撑系统等,实现2G业务向3G业务平滑迁移,提升用户体验。2G/3G互操作问题重点应该放在终端侧解决问题,包括各种切换、重选优化算法的制定。网络侧则重点考虑在以互通信令支撑系统、同步系统、计费、网管系统一体化问题。

3.2 2G/3G互操作策略

在现有2G网络上建设TD-SCDMA需要考虑的问题:

(1)影响最小。尽量减少对目前已经成熟稳定的2G系统的影响,避免2G升级工作。

(2)质量最好。为3G用户获得更好更优质的服务提供良好保障,同时利用2G网络拓展3G覆盖,保持3G用户的语音业务连续性。

(3)切换最少。减少切换次数,降低系统处理负担,保持业务的稳定性系统间的互操作策略。

(4)针对语音业务。TD-SCDMA覆盖边缘,支持TD-SCDMA到GSM的切换,不必支持反向切换。

(5)针对数据业务。通过支持TD-SCDMA到GSM小区重选,实现TD-SCDMA到GSM/GPRS间的数据业务切换;话务热点地区利用TD-HSDPA组网,提高数据业务承载能力。

4 TD-SCDMA软课题研究

TD-SCDMA网络的建设和运营对运营商而言是新生事物,无经验可以借鉴。移动公司只有集中优势资源,全力投入,在3G时代保持持续领先的优势,摸索和创新运营理念和工作模式,才能适应全业务运营的形势。目前TD-SCDMA面临很多机会和挑战,许多问题对运营商、厂商而言,尚处于探索阶段。

(1)成立TD无线研究小组

建议省移动公司成立专门的TD无线研究小组,集中技术骨干,形成强大有效的合力,针对TD网络、规划、优化、关键技术、演进方向和2G/3G互操作方面等专题展开研究,承担软课题方面的研究,提升支撑网络和业务开展的能力和水平。

(2)软课题研究方向

在TD网络建设和运营过程中,进行相关软课题的研究,涉及2G/3G互操作、TD组网方案、工程实施、HSDPA技术测试、MBMS业务部署等多个领域。课题研究和现网测试可为网络建设积累宝贵经验,对未来TD网络发展提供指导和建议。

【作者简介】

李 军:工学博士,现任职于中国移动通信集团河南有限公司网络管理中心,工程师,主要研究方向为下一代移动通信关键技术,已发表专著1本、学术论文三十余篇。

中兴通讯独家承建乌克兰WiMAX项目

网络规划与优化例6

3G网络优化重在干扰控制

2G时代,网络优化一般遵循先覆盖、后容量,先室外、后室内的模式,但是这已然无法适应3G网络的技术要求,而随着TD-SCDMA试验网的大规模建设及未来3G的平稳启动,3G网络优化成为会上众专家的关注焦点。

信息产业部电信研究院规划设计所无线通信研究部刘认为,3G网络优化与GSM网络优化的差异首先在于3G需要放号之前的开局优化。此外,由于3G业务的多样性,服务质量的多样化,也对网络优化提出了更高的要求。

中国移动研究院无线通信技术研究所丁海煜谈到3G网络优化的特点时表示,由于3G采取了同频组网的方式,干扰控制成为3G优化的核心。比如,由于业务调配要有不同的方式,必须综合考虑信道资源、功率资源和干扰资源。而由于3G同时支持软切换/接力切换和硬切换,网络容量和覆盖之间的不确定性也在加大。

中国移动设计院公司无线通信研究所研究总监周胜,在代表设计院总工程师张同须发言时进一步表示,对于未来移动网络的优化来说,已经无法简单通过频率规划规避干扰,必须结合大量RF优化以及码字、功率等参数优化才能完成。此外,3G部署使得双网协同、多网协同成为运营商必须考虑的问题。这意味着运营商需要在一定条件下对现有网络资源进行利用,此外,还必须进行双网互操作规划及相关参数规划。

端到端优化成必然趋势

随着移动宽带化、宽带多媒体化的趋势不断加速,除网络和用户规模不断扩大外,移动

通信网络的规划和优化还面临着数据业务引入带来的各种挑战,如使用时间延长、业务种类丰富、个性化要求高、市场需求变化快等。

中国联通研究设计院副总工程师马红兵则表示,随着多业务的开展,基于网络及网元性能的网络质量KPI指标与基于用户体验的网路质量之间的差距正在越来越大,关注端到端性能的优化和评测成为必然趋势。

周胜在发言中认为,随着移动通信服务由网络中心向用户中心转移,网络优化必须要考虑终端软硬件性能对用户感知和网络性能的影响。他说,中国移动在网络运营中就曾遭遇用户因终端硬件问题投诉运营商的情况。他表示对于运营商来说,单一链路的优化没有意义,运营商更希望得到多种业务和多种终端的端到端网络整体性能的提高。

对此,马红兵认为,首先,运营商应从关注网络性能和设备性能转向关注业务性能,应从被动型优化转向主动型优化;其次,应建立基于全程全网的规划、优化、维护系统,以解决目前规划与优化相互脱节的问题;再次,应建立规划、优化、运维、市场、业务多维一体的综合网络规划优化平台,以为用户提供端到端的质量保障;最后,应建立基于用户感知的规划、优化、维护指标体系。

室内覆盖关注资源利用

良好的室内覆盖,是提高服务等级、发展客户的关键。专家预测,未来3G业务中将有

90%的数据业务发生在室内。为此,本次大会特设“中国式”室内覆盖及相关话题的尖峰论坛,为众专家以及与现场观众之间的交流搭建平台。

网络规划与优化例7

挑战1:3G网络优化如何有效解决室内覆盖、干扰控制、资源管理等方面的挑战?

马红兵:关于室内覆盖,根据国内业务预测和国外运营经验,3G成熟期将有70%的业务分布在室内,同时室内用户期望达到与固网接入相比较的传输速率,然而高频段3G信号相对2G很难提供对于室内的有效覆盖,所以要降低3G室内覆盖网络优化的难度,应从几方面考虑:第一,对于室内覆盖同样要做到一步规划,区分场景分步实施。网络建设初期应做好室内业务预测,对密集城区、热点区域和特殊场景的室内覆盖应通过室内分布系统解决,避免通过室外宏站覆盖室内;第二,室内与室外的业务量和业务类型存在很大差异,网络详细规划和后期优化对于系统参数设置和资源管理参数应与室外有所区别;第三,室内覆盖的特点决定了其切换的频繁性,切换的合理规划非常重要,在利用隔断合理规避干扰的同时,做好电梯、门口等特殊区域的覆盖规划。

在干扰控制方面,CDMA的特点决定了干扰的降低意味着业务量和用户数的增加以及用户体验的提升,但相对GSM,干扰控制又是一个很大的难题。总体考虑以下几方面:第一,干扰和覆盖控制是3G网优的核心问题,同样是业务网规需考虑的重要问题,如规划期重视规划工具的使用,尽量在规划期解决部分优化问题;第二,WCDMA比GSM更侧重RF优化,其次才是参数优化,如严格控制导频污染和软切换区域等;第三,避免使用干放、直放站等有源设备,避免底噪的抬升;第四,大量使用多天线、小功率的覆盖方法,避免信号外泄,部分地方使用定向天线,对于高楼使用独立载波。

关于资源管理,3G系统由于技术和业务的特点,必须依赖复杂的资源管理算法提供质量保证,但也无疑增大了网优复杂度。因此,应做好业务量及业务分布预测,利用资源管理算法合理配置网络资源,如建筑物内室内话务在建筑各部分、各时间段的峰均比较大,充分利用资源的关键,是网络设计时最好有大一点的资源池。同时应当注意管理算法的复杂度,实际效果并不是越灵活越好。

周胜:3G网规网优需要结合起来解决室内覆盖、干扰控制、资源管理等问题,而不是简单依靠规划来解决。在室内覆盖优化中主要面对的问题是,在频率高于2G网络的情况下,信号衰减较快,很多原有室内分布系统需要改造。个人建议在不增加很大工作量和投入的情况下,室内优化中可以加大模测;对于干扰问题,前期我们的仿真研究已经获得了CCSA等标准组织的认可,并与很多公司和机构达成一致,优化过程应当注意这些研究中发现的问题,对频率使用和分配、码字使用、工程实施中天线的摆放等方面进行优化;资源管理是一个很复杂的问题,而且在移动通信系统中资源概念很宽泛,优化过程中要特别注意对无线资源、天面资源的合理应用,个人认为未来无线资源管理将是未来网络优化性能提升的难度和重点。

魏敏:3G网络优化过程中,根据建筑内话务构成、建筑结构、建筑外无线环境以及具体的工程可实施性等因素,进行优化模拟、分析和优化方案设计;支持对“宏基站+远端射频模块(RRU)”方案进行优化分析,通过对天线进行合理布放、调整切换参数、修改频点等方式,解决室内覆盖、干扰控制、资源管理等挑战。

罗湘原:一般说任何网络新建时都不可能短期内做好室内深度覆盖。但考虑网络流量,3G初期建设也许是先室内后室外。业界针对3G室内优化开发了专门的室内分布系统和泄漏电缆等设备,同时3G室内网优也加大力度,很多公司开发了室内测试软件用于室内覆盖质量的评估和优化,如日讯的NTASPocket无线网络手持测试系统。此外,3G网络中负载和灵敏度分析都需要干扰控制,它直接影响到网络容量,因此在预规划的干扰余量设置就开始。目前,第三方网优可提供扫频等业务协助运营商发现并定位带外干扰或非法频率的使用情况,业界的部分厂家的评估软件开发了相应的扫频功能模块。无线资源管理目前比较成熟的是功率控制,负载控制和切换管理等,业界也对信道分配管理,接入控制,分组调度等其他方式正在做进一步研究。

挑战2:目前国内网优工具是否达到端到端的优化目的?我国在建立“网络规划-网络运维-用户反馈-网络优化-网络规划”的闭环系统方面进展如何?

马红兵:目前还没有真正的基于端到端的性能优化工具,但是网优对于定位故障网元是有帮助的。根据我们的了解以及相关工程经验来看,网络运维-用户反馈-网络优化这个环节的做的比较好,但是作用到网络规划的环节似乎运转的不太好。原因有三个,首先,优化归运维部门管,规划归网建部门管,二者对工作的理解不太一致,建设中心重进度,网管中心重性能;其次,GSM网络由于制式的特点,运营商长期存在轻视规划、重视优化,重视频率调整、轻视RF优化的现象;最后,站点获取收到物业的影响很大,确实存在难度,同时2G室外型设备没有3G集成度高,增加了这种难度。

周胜:目前国内和国际商用网优工具都很难达到端到端优化目的,主要是因为这个过程涉及很多环节,非常复杂,从基础理论上讲还没有一个很好的突破,因此端到端的优化还需要进一步的摸索,比如国际上著名专家G.Gomez和R.Sanchez(西班牙专门从事网优Optimi公司)《端到端服务质量和用户体验质量:概念、架构以及性能优化》。在规划、运维、用户反馈、优化、规划的闭环系统方面,我觉得通过近年来我们的大力呼吁,规划和优化综合考虑逐步得到人们的认可,而在其他环节的结合度上还有所欠缺,目前我们一些研究工作也正在有针对性的展开。

魏敏:端到端优化注重最终用户使用数据业务时的真实体验,不仅考虑了无线网对于数据传输的影响,同时兼顾了由于终端和业务源本身而对数据业务造成的影响,实现多角度的分析和优化。百林通信目前正在开发端对端优化工具,将会在今年运用到网络优化中。“网络规划-网络运维-用户反馈-网络优化-网络规划”闭环系统,正在国内快速发展,尤其对于TD-SCDMA网络,百林通信正在使用该闭环系统,进行网络工程服务。

罗湘原:网优与网规是一个系统工程,不仅需要理论指导,同时也需大量实践经验。网优基本由前台测试、数据收集系统和后台数据处理系统构成,以及设备商开发的专用优化工具。同时,用户投诉系统与网优中心之间建立通信渠道,及时收集和反馈用户信息也十分重要。由于无线网络的复杂性,网络优化工具只能随着网络发展和用户的发展逐步完善。总体讲,目前的网优工具都在不断改进中,但国内部分厂家及运营商正在考虑建设综合的网规网优平台,形成自动化、智能化、高可用性的综合网规网优平台。

挑战3:2G网络还将在一定时期内处于主导地位,3G网优如何考虑与2G网络的双网并存、资源共享的协同工作?

马红兵:这个问题实际上是一个很重要的课题,相关因素很多,主要集中在以下三点:第一,主要是让3G配合2G,根据2G以及3G业务量及负荷的变化进行调整,3G短期可能是作为2G的性能增强的部分存在,解决频率紧张和传输速率慢的问题;第二,从承载业务上来看,两者应该做负载的分担;第三,站点和传输的共享应该是普遍使用的。业界一定要重视2G和3G的互操作带来的相关问题。

周胜:在2G/3G协同中,首先要确定需求,包括业务和用户的研究,明确之后需要确定双网发展策略,进而根据策略确定网优工作,因此关键不在于网优,而在于对需求的研究和策略的制定,只有这些明确了相关工作才可以真正达到共存和共享的结果。

魏敏:2G网络还将在一定时期内处于主导地位,这使3G网络与2G网络并存。对于双网并存、资源共享的协同工作,在网络规划时需要考虑,网络优化时更要考虑。目前百林通信的规划工具和优化工具已经实现对双网并存的规划和优化,比如对覆盖、容量进行共网规划,以及邻区关系的协同优化。

罗湘原:从成本来看,3G网络大部分资金将投入无线接入网部分,因此利用共址方式建设可减少3G对站址的需求。但3G网规较严格,从技术看是否所有的2G站址都可用还是一个问题。从网络建设最小投资和鼓励公平竞争的需要,站址共享非常必要。考虑到实际现状,我们对于站址共享建议从现实出发,区别对待,分步推进,如:新旧站区别对待,城郊站和农村站区别对待,室内室外区别对待等。

挑战4:网络IP化和扁平化已成趋势,同时,城市环境的变化、实际用户的发展以及业务的预测均在发生变化,网络优化应如何应对网络未来发展带来的变化?

马红兵:网络IP化和扁平化给网优的影响包括:RNC的功能逐渐软化,NODEB功能逐渐增强,4G时代,RNC不再存在;网络的IP化将为移动通信提供低廉的传输带宽,为FMC打下基础;IMS的引入,将为IP网络提供端到端的实时业务提供有力保障。以上变化会带来网络优化内容和手段的变化,优化的天平将向无线侧更加倾斜,急需基于IP和业务的端到端网络优化手段和工具的出现。而城市环境变化、实际用户发展及业务预测,均在发生变化,这给网优带来业务量和业务分布的变化,覆盖空洞以及网络负荷的忙闲不均衡。以上变化需要我们转变以往的根据投诉被动优化的思路,尽量提前预知相关变化进行主动优化,进行实时扩容和网络调整,使用户感受不到上述变化的影响。

周胜:网优应当向以用户为中心进行转变,同时结合IP化、异构网络协同等技术手段,提高用户体验,建议可参考《端到端服务质量和用户体验质量》。另外在用户发展和业务预测方面应当加大理论研究,特别是数据业务的话务模型研究。我们在这方面应该说走在行业前列,很早以前就开展了相关工作,而且申请了专利,在目前移动内部EDGE网络话务模型就使用了该模型并有较好的网优效果。

魏敏:通信技术一直在演进,但是网络瓶颈主要还是在覆盖、容量和质量方面。在随着通信技术的发展,数据业务将越来越普及,速度瓶颈也将出现。随着网络优化重要性的提高,网络优化的技术投入将增多。网络优化的算法将进一步完善,网络优化工程师的队伍也将更加成熟。

罗湘原:未来网络结构变化是网优新难点,在IP扁平化趋势日益明显的今天,网规网优需要考虑网络结构调整带来的变化,此外,经济发展带来的城市、道路和建筑物的急速变化加大了网优难度。未来的优化调整更强调精度,数据分析压力更大。无线资源管理参数方面,优化起到的作用会进一步加强。在前期网规中需加大力度,力求不将规划的偏差遗留到网优中,做到规划中有优化,优化中有规划,一切从实际通信环境出发。

挑战5:结合我国实际情况,如何降低3G工程网优和运维网优的成本?

马红兵:根据我们的工程经验,可考虑以下几方面:在网络建设前,充分考虑到网络建成后网络运维的网管需求,尽量在设备入网前提出,避免网优阶段进行被动升级;规划一次到位,减少站点调整的费用;尽量使用室外型设备,减少租金;高功率功放技术的使用,减低能源消耗;通过向用户发放简易型测试手机,自动上报网络的情况和问题;使用混合传输技术。

周胜:网优是技术密集型领域,同时也是紧密结合工程的领域,既需要非常好的理论基础,对各种技术都非常熟悉,同时还需要认真思考优化方法和思路,不断提高优化水平。目前网优还仅停留在劳动密集型,我国应当加大对网优相关内容的研究,同时提高网优信息化、集中化、标准化水平,这样才能从根本上降低3G和2G工程和运维网优成本。

魏敏:中国比较大,地形复杂,东部人口密度比较高,网络环境复杂,网优难度非常大。降低成本的关键,在于人力成本和技术成本。首先中国本土的网优软件和网优队伍已经比较成熟,采用本地网优软件和服务供应商如百林通信,可节约运营商和网优公司的采购成本;同时,本土公司的服务优势明显,可以节约服务周期,提高优化效率,相对降低网优成本;另外运营商也可与网优软件开发商合作开发,分享部分知识产权,提高技术水平,降低开发成本;网络运维也可外包给第三方,让专业团队服务,节约成本。

网络规划与优化例8

2TD-LTE网络概念

TD-LTE即TimeDivision-LongTermEvolution(分时长期演进),是由阿尔卡特朗讯、诺基亚西门子通信、大唐电信、华为技术、中兴通讯、中国移动等业者所共同开发的第四代(4G)移动通信技术与标准[1]。TD-LTE技术的设计目标如下:具备灵活的带宽配置,支持1.4MHz、3MHz、5MHz、10MHz、15MHz和20MHz;峰值速率(20MHz带宽)达到下行100Mbit/s,上行50Mbit/s;控制面时延小于100ms,用户面时延小于5ms;能为速度大于350km/h的用户提供100kbit/s的接入服务;支持增强型MBMS(E-MBMS);取消CS域,CS域业务在PS域实现,如VoIP;系统结构简单化,低成本建网。

3TD-LTE关键技术

3.1物理层技术

TD-LTE网络物理层技术中包括基本传输技术和多址技术、编码调制技术、MIMO技术以及帧结构等。LTE中传输技术采用OFDM调制技术,可以减轻由无线信道的多径时延扩展所产生的时间弥散性对系统造成的影响。在信道编码方面,LTE采用Turbo码,采用可以适应宏小区、微小区、热点等各种环境的MIMO技术。同时规定了2种子帧长度,即基本的子帧长度为0.5ms,当考虑与TD-SCDMA系统兼容时,采用0.675ms子帧长度。

3.2网络层技术

LTE和传统的3GPP接入网相比,减少了RNC节点,采用由NodeB构成的单层结构,有利于简化网络和减小时延,实现了低复杂度、低时延和低成本的要求,逐步趋近于典型的IP宽带网结构。

4TD-LTE网络规划

TD-LTE建网初期,主要布局在高数据流量区域,降低2G网络负荷,满足用户对高速率数据的需求。初始的网络布局,需同时考虑覆盖和容量,结合现网2G/3G数据流量站点分布,在充分利用现有2G/3G网络站点资源和配套资源的基础上,部分区域适当采用新建站点的形式,对于TD-LTE的无线规划将采取分片连续覆盖,以信号覆盖区域内的各项无线网络指标达到商用要求为目标。

4.1需求分析

在进行TD-LTE规划前,首先需要做的是需求分析,包括明确总体的建网策略、建网指标,并且需要同时满足当前用户的具体需求以及未来一定时期内的发展需要。需要收集的数据有现网GSM/TD-SCDMA基站信息、业务需求信息、三维电子地图等,只有在这些数据高准确性的提前下,才能确保后续TD-LTE无线网络规划的正确发展。

4.2网络规模估算

网络规模估算的目的是确定出相对比较具体的TD-LTE网络建设基本规模,这一步主要是通过覆盖估算和容量估算这2个维度来确定的。具体做法是根据当地的无线网络传播模型和现有的基站分布情况,确定不同区域内的小区覆盖半径和未来TD-LTE网络的覆盖状况,从而估算出满足既定覆盖要求的基站数量。容量估算是在分析一定时隙及配置条件的前提下,对TD-LTE网络可承载的系统容量进行分析和估算。通过网络规模估算,得出一个比较明确的方案和数据,以便后续规划任务的顺利开展和执行。

4.3站址规划

TD-LTE网络规划的第三阶段是站址规划阶段,该阶段主要是结合现网的站址资源和网络链路预算所建议的新建站点,完成网络站址的初步布局工作。在完成初步布局后,还需要结合现有资料或现场勘测来确定站点的可用性,对初步方案进行进一步修正,从而最终确定覆盖区域内可以使用的现网站点以及新建站点。在规划的过程中应当综合考虑站点周边地理无线环境以及工程可实施性条件等方面因素。

4.4网络仿真

网络仿真阶段需要设定详细的参数并且进行仿真试验,包括需要使用相应的TD-LTE仿真工具对规划方案进行测试,重点需要注意覆盖以及容量的仿真分析。具体而言,应当包括规划数据导入、传播预测、邻区规划、时隙和频率规划、用户和业务模型配置以及蒙特卡罗仿真。对于所得结果应当认真考虑是否满足要求,对于接近临界值的数据予以重点关注,确保网络实施后能够按照预期状况投入工作。此外,这一环节还包括各种详细参数的设定,包括天线高度、方向角、下倾角等小区基本参数、邻区规划参数、频率规划参数、PCI参数等。

4.5无线参数规划

TD-LTE无线网络参数配置规划包括邻区规划、频率规划和扰码(PCI)规划。

(1)邻区规划

TD-LTE的邻区规划是在综合考虑各小区的小区属性、覆盖范围、站间距、方位角等基础上进行的,其原理与3G网络的邻区规划原理基本相同。在与本网络进行合理邻区规划的同时,还需要特别注意与TD-SCDMA以及GSM等异系统网络间的邻区规划,避免出现因邻区设置不合理而引起的覆盖异常。

(2)频率规划

目前有同频和异频2种组网方式。在同频组网中,所有小区可以使用相同的频率,频谱利用率高,对各子信道之间的正交性有严格的要求,主要采用干扰随机化、干扰消除、干扰协调等方法避免频率干扰。异频组网中,相邻小区为了降低干扰,使用不同的频率,在频谱效率方面相对于同频要差,同时由于RRM算法实现简单,相对于同频组网其边缘速率要高。异频组网受限于频带资源,存在干扰控制与频带使用的平衡问题,需要进行合理的频率规划,确保网络干扰最小。

(3)PCI规划

LTE的物理小区标识PCI是用来方便终端对不同小区的无线信号进行区分。PCI在任何一个小区的覆盖区域是唯一的,且一个小区的相邻邻区不能有相同的PCI。基于实现简单、清晰、容易扩展的目标,目前采用的规划原则为:同一站点的PCI分配在同一个PCI组内,相邻站点的PCI在不同的PCI组内。对于存在室内覆盖场景的情况,规划时需要同时考虑是否分开规划。

5TD-LTE网络基础优化

5.1TD-LTE网络优化定义

TD-LTE无线网络优化主要是通过调整各类无线系统参数和无线网络工程设计参数,从而满足现有各类业务对各种无线网络指标的要求,尽可能提升用户业务感知。由于系统对无线网络的要求总是在不断地变化,优化调整过程往往是一个周期性的过程。根据网络建设所处阶段的不同,TD-LTE网络优化一般分为工程优化阶段和运维优化阶段。工程优化即开网优化,主要包括单站验证、簇优化、县市优化和全网优化;运维优化是指日常优化工作,是在网络运维期间的优化工作,主要工作是对投入运行的网络进行数据采集分析,找出影响网络质量的原因,使网络达到最佳的运行状态。TD-LTE网络优化目标主要有3个:最佳的系统覆盖、合理的切换带控制、最小的系统干扰。

5.2TD-LTE网络基础优化方法

TD-LTE网络优化方法主要有天馈优化、功率调整、邻区优化、小区PCI优化、重选、切换参数优化、特性算法应用等。这些方法相辅相成,缺一不可。

5.2.1天馈优化

天馈优化是TD-LTE基础优化的重点,主要通过现场调整天线的方向角、下倾角等天馈参数来改变干扰区域的各干扰信号强度,调整的原则是增强主覆盖扇区的电平,减弱其他扇区的电平,从而改变信号在该区域的分布状况,消除覆盖不合理、弱覆盖、越区覆盖、频繁切换等现象。

5.2.2功率调整

功率调整可以和天线调整配合使用,达到小区覆盖要求、切换关系符合预期、信号质量提升的目的。

5.2.3邻区优化

邻区优化使得站和站之间的重选、切换可以顺利进行。对全网邻区关系进行分析,对于邻区漏配、冗余小区进行调整,达到邻区关系最优化,提升切换成功率等网络指标。

5.2.4小区PCI优化

邻区之间的PCI规划不合理,会导致邻区之间的干扰抬升,影响用户感知,通过邻区之间的PCI优化调整,提升网络整体质量。

5.2.5重选、切换参数优化

通过调整重选参数,对用户的Idle态过程进行优化,保证用户重选和起呼过程,提升接入成功率;调整切换参数,保证用户业务的可连续性和用户感知。

5.2.6特性算法应用

在网络基础优化完成后,可以通过特性算法提升网络整体性能,如准入控制、负载控制、抗干扰的ICIC算法、降低干扰提升用户吞吐量的BF算法等。

网络规划与优化例9

中图分类号:TN915.81 文献标识码:A 文章编号:1006-1010(2013)-07-0049-04

1 研究背景

伴随着网络规模的日益膨胀,如何精细化地进行网络规划成为运营商越来越关注的问题。但是目前网络规划中还存在很多问题,主要表现如下:

(1)规划方案制定严重依赖人工经验:对人的依赖性过大,将导致过程标准不可控,无法全面有效衡量整个项目的过程质量;对人员素质的高要求以及人海战术的使用,势必导致网优人力资源的高成本。

(2)现有规划仿真技术主要侧重覆盖电平,未全面考虑网络性能:现有的网络规划仿真技术主要是基于对网络覆盖的评估,规划方案的制定主要侧重于解决网络的覆盖问题,未全面考虑干扰等网络性能。

(3)新站入网优化给网络带来较大的冲击和不稳定性,影响用户感知:伴随着对现网站点的长期优化和调整,各站点的天馈方案与无线参数设置均已接近网络的最优配置状态,当新站入网时,势必会对周边站点形成干扰。

那么,如何更加精确地进行基站规划?本文就此提出了网络结构的概念和计算方法,并通过精细规划仿真技术和网络结构理念的有机结合,建立了网络结构预优化体系。

2 网络结构预优化体系概述

网络结构预优化体系利用网络覆盖仿真技术,通过现场扫频测试、理论传播数学模型、网络统计数据,准确地呈现网络结构情况;同时基于仿真结果,对网络结构进行评估分析,对新站区域进行网络结构预优化,包括对区域周围站点进行天馈调整、天线挂高核查、功率设置优化等;提出网络结构建议,为规划及预优化提供合理方案,减少新站入网后的大规模优化给网络带来的影响。

网络结构预优化技术的特点如下:

(1)规划方案精细化

1)引入新的精细规划流程,新增网络结构评估与预优化;

2)将规划方案细化到小区和天线,减少工程优化工作量,降低新站对现网的影响。

(2)站点规划精确化

1)引入多维度的站点评估机制,科学评估规划站点的建设效果和优先级,实现站点精确规划;

2)开展网络问题关联分析,为投资决策提供科学依据。

(3)资源效益最大化

1)引入基于仿真的网络结构预优化体系,提高规划准确性、全面性和可靠性;

2)提供缓建、移址、待建站点建议,最大程度节约资源,实现良好的经济效益。

3 网络结构预优化体系评估标准

网络结构预优化体系中的两个重要部分是网络结构评估和干扰强度分析,这两个指标是网络结构预优化体系的评估标准。

3.1 网络结构评估

网络结构评估中,重点关注网络结构指数和重叠覆盖度两项指标,其定义及影响效果如下:

(1)网络结构指数

定义为电平比最强信号的小6dB的小区所有载频数(含最强小区):

(1)

其中,CarrierNum为载波数,代表网络结构指数;P(i)为小区电平,单位:dB;RxMax为最强小区电平,单位:dB。

指数用来评估某个区域网络结构的健康程度,它表示该区域强信号小区载频叠加的程度。网络结构指数越高,频率越难规划,潜在频率干扰风险越高,该指标在数值上表示由于网络结构问题而受到干扰的平均概率。

(2)重叠覆盖度

表征电平比最强信号的小12dB且大于-90dBm的小区数:

(2)

其中,CellNum为小区数,代表重叠覆盖度;P(i)为小区电平,单位:dB;RxMax为最强小区电平,单位:dB。

该指标反映了该区域有多少个强信号小区进行了重复的覆盖。利用重叠覆盖指数,找出需要控制覆盖的区域,该值越高表明该区域结构越复杂。

3.2 干扰强度评估

干扰强度评估中,重点关注基于覆盖的干扰评估和基于频率的干扰评估两项指标。小区级的干扰强度分析功能,通过参考每个栅格点上各小区的信号强度及载频数目,确认每个小区对周边小区的干扰范围,并将各小区对周边小区的干扰强度大小以图形化或表格导出呈现。

(1)基于覆盖的干扰评估

基于每个栅格点上各小区的信号强度,计算出网络中各小区对周边小区的干扰强度。基于覆盖的干扰强度计算分为干扰面积、干扰比例和干扰小区数三个方面的内容。其干扰小区判断条件为:

[P(i)≥RxMax-12]&&[P(i)>-90] (3)

其中,P(i)为小区电平,RxMax为最强小区电平,二者单位均为dB。

(2)基于频率的干扰评估

基于每个栅格点上各小区的信号强度,计算出网络中各小区对周边小区的干扰强度。基于频率的干扰强度计算分为干扰面积、干扰比例和干扰小区数三个方面的内容。其干扰小区判断条件同式(3)。

4 网络结构预优化体系案例分析

某区域附近存在G19期新加站点“YZ东方阁”,该站点主要为解决周边区域GSM900网络弱覆盖现象。本案例主要通过覆盖仿真的手段,从BCCH RxLev电平值和网络结构的角度,对初始规划方案的天馈设置进行预优化,通过对初始规划方案与天馈预优化方案进行对比分析,以确认各方案对该区域问题的解决程度。

参照现场仿真和初始设计方案,初始规划仿真效果如图1所示。

根据规划方案,初始规划的天线挂高为30m,方位角设置为0°/120°/240°,机械下倾角设置为4°/4°/4°,为提升网络覆盖性能,对规划方案天馈参数进行调整优化。各扇区初始规划方案与预优化方案天馈设置对比情况见表1。

天馈预优化后,仿真效果如图2所示。

天馈优化后,干扰强度仿真对比情况见表2。

通过覆盖仿真对比,加入初始规划方案后,覆盖性能和网络结构相比现网均有所改善。图中红圈内部分区域电平值由-85dBm左右提升至-75dBm左右,另有部分区域电平值无明显变化,依然为-85dBm左右,GSM900平均网络结构指数由18.38减少为9.54,平均重叠覆盖度由8.77减少为5.22;进行天馈参数预优化后,红圈所示区域电平值均由-85dBm左右提升至-70dBm左右,有效解决了问题区域的弱覆盖现象,区域内GSM900平均网络结构指数减少为7.08,平均重叠覆盖度减少为3.4。另外,通过对比初始规划方案和天馈预优化方案对周边形成的干扰强度可知,天馈预优化后,新加站对周边小区的干扰有所减弱。

从上述案例可以看出,规划方案与预优化方案对现网的覆盖电平和网络结构均有一定程度的改善,不过预优化方案的改善程度更为明显。预优化有效减少了工程优化工作量,提升了网络性能。

5 实际应用效果

在浙江省的GSM网络G19期站点规划中,通过引入网络结构预优化体系,提供GSM19期站点预优化建议,共优化方位角1664个小区,优化下倾角1672个小区;通过网络结构预优化,对于G19期项目中规划未达预期效果的,全省共缓建站点49个,建议移址站点161个;另外针对覆盖空洞区域提出待选规划站点430个。其中,在不考虑减少工程优化工作、投资去向更合理、站点移址提高问题解决率等隐性效益的情况下,仅缓建49个站点一项就可节约1060万元。

网络结构预优化体系在G19期工程中的应用,取得了良好的经济效益,有效减少了工程优化工作量,实现了站点精确规划。

6 结束语

网络结构预优化体系为网络提供缓建、移址、待建站点建议,最大程度节约了资源,取得了良好的经济效益,有效减少了工程优化工作量,降低了新站对现网的影响;同时,通过引入多维度的站点评估机制,对规划站点的建设效果和优先级进行科学评估,实现了站点精确规划。

网络规划与优化例10

其次,我们一起讨论TD―LTE自动选站问题,也是工程建设中关键一环。目前,2G/3G站址都是宝贵的站址资源,根据需求,从中选择符合要求的最优站点,也可以新增部分站点。我们的方案是通过采用智能局部搜索的最优化技术,自动运算获得优选站址和新增站址信息。优势在于省去了采集、校正和分析传播模型相关测试数据相关的工作量。另一方面,创新性地改变了现有基站的选址方式,使选址工作由手工操作转变成智能自动地完成。算法平衡了RSRP、RSRQ、S1NR等指标,获取全局最优方案,快速输出现存站点中,满足网络KPI情况下,可以使用的站点信息,体现出优化工作前移的思想,节约运营商在勘站、建站等方面的大量费用,为快速建设TD-LTE网络提供了重要的支撑工具。

第三点讨论的主题是TD―LTE网络容量仿真方法。在目前常用的TD―LTE无线网络数据业务网络规划仿真方法中,动态仿真方法需要海量的数据运算及硬件存储,实现复杂,运行效率低,对支撑平台要求高,实用性差。极少应用在网络规划仿真中。另一方面,基于快照的Monte-Carlo静态仿真不能够准确反映用户在TD-LTE网络下业务用户感知或者是满足一定业务QoS下的网络容量。为此,我们提出一种基于半动态仿真实现高精度TD―LTE网络数据业务的网络规划仿真方法。通过兼容Monte―Carlo仿真在空间上静止的特点与动态仿真在时间上“运动”(考虑前后TTI之间的相关性)的特点,彻底规避了动态仿真的庞大存储量和计算量问题。在TD―LTE数据业务网络规划仿真中将不同TTl在时间上关联起来,准确反映uE在一段时间内稳定的业务行为,输出较为符合实际网络的各类业务平均速率和符合实际网络的小区吞吐量。