期刊在线咨询服务,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

期刊咨询 杂志订阅 购物车(0)

有机化学的反应模板(10篇)

时间:2023-06-16 16:46:33

有机化学的反应

有机化学的反应例1

1.1亲核取代

分子间的烯丙基胺化是获得烯丙基胺类化合物最简单的方法之一.常使用烯丙基醇衍生物为原料进行分子间的胺化反应,得到相应的烯丙基胺类化合物,副产物是水.此方法虽具有环境友好、可持续、操作简单等优点,但使用烯丙基醇存在羟基的离去功能较差和需要耐水催化剂的问题.2012年,Trillo等报道了以三氯化铁为催化剂,烯丙醇和含氮亲核试剂在1,4-二氧六环中,25°C条件下反应24h,得到相应的产物3.

在有机合成中醚的C一0键断裂形成C一C键和C一x(杂原子)键的方法倍受人们青睐.与相应的卤化物相比醚具有稳定、绿色和廉价的特点,并且其广泛存在于天然产物和合成化合物中.2013年,Fan等报道了三氯化铁催化苄基甲基醚或(1-甲氧基乙基)苯与对甲苯磺酰胺的反应,发生C一0键的断裂和C一N键的形成,得到相应的产物6.

1.2亲电取代

吲哚是生物有机化合物和天然产物中重要的结构单元,并且吲哚衍生物在构建药物分子上越来越受化学家的关注.例如:镍催化下3-氰基吲哚与炔烃反应得到2-乙烯基吲哚化合物;钯催化吲哚与炔分子内加成反应得到相应的烯基化吲哚产物等.2012年,Yang等[报道以三氯化铁为催化齐lj,吲哚衍生物和醛在室温条件下反应3h可得到3-乙烯基吲哚类化合物,产率可以达到93C.

1.3Friedel-Crafts亲核取代反应

有机膦酸盐特别是乙烯基膦酸酉旨具有显著的生物活性,而且能够很好地构建杂环化合物和增加聚合物的阻燃性,因此受到广大化学工作者的重视.2013年,Pallikonda等报道了以三氯化铁为催化剂,磷酸盐(10)和芳烃在70C条件下反应3"12h,高收率地得到相应的y-芳基取代的乙烯基膦酸盐(12).

2加成反应

1.1亲核加成

以水为介质的有机化学反应,具有对环境友好的特点.自从Breslow?报道了以水为介质的Diels-Alder

反应以来,出现了越来越多的以水为溶剂的有机化学反应,在这个反应中,水溶齐lj比常用的有机溶剂更有利于反应的进行.2012年,ChakmbQrty等报道了以三氯化铁为催化剂,锌促进二氢呋喃或二氢吡喃烯丙基化反应,在水溶液中室温条件下反应2h,得到相应的烯丙基化产物15.

2.2[3+2]环加成反应

近年来,路易斯酸促进环丙烷衍生物的[3+2]环加成反应广泛用于有机反应.2012年,Wang等[23]发现三氯化铁可催化二甲基-2-烯基环丙烷-1,1-二羧酸二甲酯衍生物与异氰酸酉旨的反应,反应在室温条件下进行,得到相应的产物18.

3氧化还原反应

1.1氧化反应

酰胺是生物和化学中的一类重要化合物,它广泛存在于生物体内,是肽键的重要组成部分,并且也是有机化学中重要的基团.近年来,生物学家和化学家对它进行了广泛的研究.2012年,Das等?以FeCl3为催化剂,I-2,2,6,6-四甲基哌啶氧化物为氧化剂,在二氯乙烷中催化醇生成相应的酰胺,NH20H?HCl作为氮的来源,90C条件下反应,收率较高.

2012年,WU等[25]报道了以三氯化铁为催化齐lj,叔丁基过氧化氢(TBHP)为氧化齐lj,在吡啶溶液中催化氧化苄胺,80C条件下反应,得到相应的酰胺(22).

3.2还原反应

胺基(包括一级、二级、三级胺基)广泛存在于自然界中具有各种生理活性的天然产物中,如生物碱、激素、抗生素和蛋白质等,因此S安基的还原备受人们青睐.2012年,QU等[26]报道了以三氯化铁为催化剂,9-硼二环(3,3,1)壬烷(9-BBN)为还原剂,胺与4-甲基环己酮在四氢呋喃中,10C条件下反应,得到产物25和26.

烯烃还原反应是有机化学中重要的反应,并且烯烃在有机合成中的应用极其广泛.2012年,Lamani等[27]报道了在三氯化铁的催化下,选择性催化还原烯烃和炔烃,水合肼(NH2NH2?H20)作为氢源,室温条件下反应,获得了较高的产率.4环化反应

3.1Prins环化反应

近年来,联烯的环化反应作为有效合成环状化合物的方法得到了广泛的应用,同时,利用烯烃和炔烃作为底物的Prins环化反应巳成为合成杂环化合物的强大工具.2012年,Cheng等(8]报道了用三氯化铁催化P-横酰丙二烯或联烯醇与醛Prins环化,三甲基氯硅烷(TMSC1)存在的温和条件下,在二氯甲烷中反应,合成了3-氯甲基-1,2,5,6-四氢吡啶或3-氯甲基-5-1,6-二氢-2H-吡喃衍生物(31).

3.2分子内环化反应

含氮杂环化合物广泛存在于药物和天然产物中,是生物活性分子中最重要的结构单元.例如:喹啉及其衍生物广泛存在于天然产物、药物化学和材料化学中,并发挥了重要的作用.由于杂环化合物的重要性,发展新的、高效的、反应条件温和的合成方法仍然是一个活跃的研究领域.2012年,Wang等(9]报道了以三氯化铁为催化剂,室温条件下在二氯甲烷中,E保护的1-烯-3-醇(33)进行分子内烯丙基胺化反应,得到相应的2-或4-取代的1,2-二氢喹啉(32)和喹啉(34),产率可以达到96C.

1.3其他环化反应

茚广泛应用于生物分子、催化剂和材料中,它的合成方法引起了化学家的广泛关注.2012年,Liu等研究了以三氯化铁为催化剂,在硝基甲烷中N-苄基或N-烯丙基磺胺与芳基烯烃反应,形成具有非常高的区域选择性的多取代的茚(37).

2-吡啶酮以及它的四氢和桥联类似物广泛存在于天然化合物中,且广泛应用于化工、医疗和材料科学中.2-吡啶酮的衍生物可用于黄青霉菌株、卵孢白僵菌素以及相关的代谢物中.2012年,SengUpta等(1)报道了以三氯化铁为催化剂,乙酰苯胺和醛类化合物在二氯甲烷中,硫酸镁存在条件下室温反应8"12h,得到相应的1,2,3,4-四氢-2-吡啶酮(40和41).

近年来,一些研究小组报道了含氧族元素杂环的合成方法.由于氧族杂环的潜在生物活性和药理活性以及在新功能材料的应用,它丨I']还被广泛用于电催化化学、有机电极材料、半导体电极以及轻型电池中,因此它们的合成引起了化学家的极大兴趣.2013年,Stein等报道了以三氯化铁/二硒醚体系可催化2-硫族-3-炔基噻吩环化得到相应的产物44.

9,10-菲醌(PQ)被广泛用于合成染料、农药、防腐剂及金属络合物中.通常情况PQ进行2种类型的反应")与电子给体的双电子氧化还原反应;2)与活性亚甲基化合物的羟醛缩合反应.2012年,Rao等报道了三氯化铁催化PQ与酮类化合物在室温下反应24h,得到相应的产物47和48.

5多组分反应

1.1多米诺(Domino)反应

近年来多米诺反应巳经成为一个强大有效的合成有机化合物的方法.在2012年,Zhang等报道了以三氯化铁为催化齐lj的多米诺反应,芳胺、丙炔酸甲酯、芳族醛和吲哚在乙醇中,在室温下反应,高产率地得到相应的产物51.

1.2Bignelii反应

有机化学的反应例2

    2准对映体策略

    质量标签策略是质谱学研究气相反应途径和机理的传统手段,也是质谱学表征和研究反应中间体的常用手段.手性异构体化合物的分子量相同,因此直接质谱分析难以区分.Pfaltz课题组[21]将传统的质量标签策略发展成准对映体(quasienantiomers,QAS)标记策略,在远离反应位点的地方用同位素标记或差异较小的取代基标记手性异构体.准对映体标记让原本分子量相同的手性异构体有了质量差异,可在质谱分析中直接进行辨别,也可实现手性催化剂的筛选和反应立体选择性的评价[22].此外,该课题组[23]通过ESI-MS方法检测烯丙基酯动力学拆分反应中的活性中间体,而不是前体或产物的新方法来筛选不对称催化剂.这些技术和方法使得质谱学为不对称催化系统的对映选择性研究提供了关键的证据,甚至实现了手性催化剂的筛选.

    3质谱分析有机反应中间体的典型案例

    Metzger[24]、Eberlin[25]和本课题组[26]均发表过关于质谱学研究反应机理的综述,本文主要对最新研究进展进行小结.

    3.1以Pd为代表的过渡金属催化反应

    1994年,Canary等[27]首次运用ESI-MS方法研究Pd(0)催化的芳基硼酸与溴代吡啶偶联反应,为机理的研究提供了宝贵的证据,该工作为质谱表征反应活泼中间体以及反应机理的研究奠定了基础.本课题组[28,29]利用电喷雾质谱法研究了三氟甲基取代烯炔醇环异构化反应和炔基磷酰胺的分子内环化反应.轴手性产物的Suzuki偶联反应在不对称催化研究中具有重要的意义和创新性,对这一过程进行质谱学研究也具有很大的挑战性.此外,我们还采用ESI-MS/MS技术对手性双烯氯化钯催化的不对称Suzuki偶联反应进行了机理研究[30],根据Pd的同位素峰簇特征将反应相关的物种和其他物种按质荷比进行质量筛选,成功地捕获到了目标Suzuki反应各阶段的反应中间体.目前,Pd(II)/Pd(IV)的催化循环体系是有机化学中新兴的研究领域,这类高价金属复合物是发生C–H键活化和三氟甲基化的重要活性中间体.本课题组与刘国生课题组[31~33]合作,研究了一系列Pd(IV)催化的有机化学反应,如钯催化的苯乙烯分子内氨基氟化反应[31]、钯催化的烯烃的氧化芳基烷基化反应[32]和钯催化的苯乙烯的氟酯化反应[33].本课题组[34]近期研究表明,Pd(IV)反应中间体在MS/MS条件下,能发生气相还原偶联反应,生成相应的偶联产物和Pd(II)物种(图3),这与Pd(IV)复合物的液相反应活性一致.同时,许毓课题组[35]也报道了Pd(IV)复合物的相关质谱学研究结果.由于ESI-MS技术能捕获催化循环中的关键反应中间体,被Chen[36]和Irth[37]证实是高通量筛选催化剂的一种极具价值的研究工具.

    3.2自由基中间体

    中性自由基反应中间体不易被ESI-MS检测,Metzger等[38]曾利用微反应器-电喷雾质谱联用技术捕获到了单电子转移引发的反式茴香脑二聚反应中的自由基阳离子中间体.在一些自由基反应中,一般需Lewis酸进行催化,同时金属Lewis酸可与底物或自由基中间体形成复合物,被质谱检测[39].本课题组[40,41]运用ESI-MS研究了Selectfluor参与的亲电氟化反应和醛的α-氟化反应,成功捕捉到了亲电氟化反应过程中的自由基阳离子中间体.通过向反应体系中加入自由基捕获剂(如Tempo和Dempo等)[42],用质谱捕捉到了自由基捕获剂与反应中的自由基阳离子中间体形成的复合物,证明了在所选底物的亲电氟化反应过程中确实存在单电子转移过程.

    3.3高价碘复合物参与和催化的反应

    本课题组[43]于2012年对PhI催化芳基酮α-乙酰氧基化反应进行了研究,捕获了反应中目前未能分离或用其他手段未能直接分析的重要中间体:α-λ3-碘烷基酮复合物.进一步研究质子化的该复合物在串联质谱中的气相裂解行为表明,最后一步产物的生成经历了分子内五元环过渡态的还原消除过程比分子间SN2反应过程更合理.此外,我们[44]还运用质谱法研究了三氟甲基苯基碘鎓阳离子(CF3I+Ph),发现PhI+CF3能发生气相分子内三氟甲基迁移反应并脱除碘原子生成PhCF3+,而PhCF3+可进一步丢失CF2生成PhF+(图4),该反应能很好地体现高价碘氟化试剂的本质反应活性.随后,本课题组[45]又研究了多氟取代碘苯自由基阳离子,发现其在气相中特殊的CF2丢失反应,这体现了多氟取代引发的新型芳环裂解反应.

    3.4气相与液相人名反应相关性的研究

有机化学的反应例3

一、酯化反应

常见反应:

(1)无机含氧酸与醇、糖等的酯化反应。如:

CH3CH2OH+HO―NO2(浓)浓硫酸

CH3CH2O―NO2+H2O

[C6H7O2(OH)3]n(纤维素)+3nHO―NO2(浓)浓硫酸[C6H7O2(NO2)3]n+3nH2O

(2)羧酸与醇、糖等的酯化反应.如:

CH3COOH+HOC2H5浓硫酸

CH3COOC2H5+H2O

CH2OH(CHOH)4CHO+5CH3COOH浓硫酸CH3COOCH2(CHOOCCH3)4CHO+5H2O

HOOC―COOH+2C2H5OH浓硫酸

C2H5OOC―COOC2H5+2H2O

浓硫酸

3C17H35COOH+CH―OHCH2―OHCH2―OH浓硫酸

(3)羟基羧酸分子内或分子间的酯化反应.如:

HOCH2CH2CH2COOH浓硫酸

+H2O

HOCH2CH2COOH+HOCH2CH2COOH浓硫酸HOCH2CH2COOCH2CH2COOH+H2O

二、水解反应

常见反应:(1)卤代烃的水解反应.如:

CH3CH2Br+NaOHCH3CH2OH+NaBr

+NaOH催化剂高温、高压+NaCl

(2)酯、油脂的水解反应.如:

CH3COOC2H5+H2O稀H2SO4CH3COOH+C2H5OH

注意:油脂在碱性条件下的水解反应称为皂化反应.

(3)双糖、多糖的水解反应.如:

C12H22O11(麦芽糖)+H2O催化剂2C6H12O6(葡萄糖)

C12H22O11(蔗糖)+H2O催化剂C6H12O6(葡萄糖)+C6H12O6(果糖)

(C6H10O5)n(淀粉或纤维素)+nH2O催化剂nC6H12O6(葡萄糖)

注意:糖类的水解反应常用稀硫酸或酶做催化剂.

(4)蛋白质的水解反应,最终产物是氨基酸.

三、脱水反应

常见反应:(1)醇分子内或分子间的脱水反应.如:

CH3CH2OH浓硫酸170℃CH2CH2+H2O

C2H5OH+HOC2H5饬蛩140℃C2H5OC2H5+H2O

(2)糖的脱水反应.如:

C12H22O11(蔗糖)浓硫酸12C+11H2O

(3)羧酸与醇分子间的脱水反应(酯化反应).如:

CH3COOH+HOCH3浓硫酸CH3COOCH3+H2O

(4)羟基酸分子内或分子间的脱水反应(酯化反应).如:(见上述酯化反应).

(5)氨基酸分子内或分子间的脱水反应.如:

H2NCH2CH2CH2COOH浓硫酸

H2NCH2COOH+H2NCH2COOHH2NCH2CO―HNCH2COOH +H2O

四、加聚反应

常见反应:(1)乙烯型(烯烃及其衍生物)的自聚反应(发生加聚反应的单体只有一种).如:

nCH2CHA催化剂[―CH2―CHA―]n(A= H、R、Cl、CN、COOCH3等)

(2)丁二烯型的自聚反应;如:

nCH2CH―CHCH2催化剂[―CH2―CHCH―CH2―]n

(3)乙烯型的共聚反应(发生加聚反应的单体有两种或两种以上);如:

nCH2CH2+nCH2CHCH3催化剂[―CH2―CH2―CH2―CHCH3―]n

(4)丁二烯型与乙烯型的共聚反应.如:

nCH2CH―CHCH2+nCH2CH催化剂[―CH2CHCHCH2CH2CH―]n

注意:①写加聚反应方程式时,单体的化学计量数与加聚物结构简式的下标n要一致.

②发生加聚反应的单体一般含有碳碳不饱和键;③单体和生成的聚合物化学组成相同;④加聚物的平均相对分子质量=链节的式量×n=单体的相对分子质量×n.

五、缩聚反应

常见反应:(1)酚与醛之间的缩聚反应;如:

n OH+nHCHO催化剂+H[―OH―CH2―]nOH+(nC1)H2O

(2)二元羧酸与二元醇之间的缩聚反应;如:

nHOOC(CH2)4COOH +nHOCH2CH2OH催化剂HO[―CO(CH2)4CO―O(CH2)2O―]nH+(2nC1)H2O

(3)羟基羧酸之间的缩聚反应;如:

nHO(CH2)5COOH催化剂H[―O(CH2)5CO―]nOH+(nC1)H2O

(4)二元羧酸与二元胺之间的缩聚反应;如:

nHOOC(CH2)4COOH+nH2N(CH2)6NH2催化剂

HOCO(CH2)4CO―NH(CH2)6NHnH+(2nC1)H2O

(5)氨基酸之间的缩聚反应.如:

nH2N(CH2)5COOH催化剂 H[―NH(CH2)5CO―]nOH+(nC1)H2O

注意:①写缩聚反应方程式时,除单体的化学计量数与缩聚物结构简式的下标n要一致外,也要注意生成小分子的化学计量数.一般来说,由一种单体进行缩聚反应,生成小分子的化学计量数应为(nC1);由两种单体进行缩聚反应,生成小分子的化学计量数应为(2nC1).②发生缩聚反应的单体一般具有(或经过反应生成)两个或两个以上的官能团;③单体和生成的聚合物化学组成不相同.

有机化学的反应例4

当今,有机化合物的应用已深入到人类生活的各个领域,学习有机化合物对提高学生的科学素养有着重要的意义。有机化学主要探讨有机化合物的结构、性质、反应机理、合成方法及其应用,其内容涉及到物质的微观结构、反应的微观过程等,这些微观结构、微观过程肉眼无法看到,在传统教学中只能依靠想象,对学生来说存在一定的困难。通过调查发现,在有机化学学习过程中,大多数学生在同分异构体以及化学方程式的书写,物质之间的相互转换以及目标化合物的合成方面存在困难。究其根本原因,在教学中,过去乃至现在,中学阶段很少有老师采用除PPT以外的可视化手段讲解有机化合物及反应机理,学生对有机物的空间结构以及有机反应发生的本质理解不够。近年来,信息技术的迅猛发展使得可视化技术在各个领域的应用得到广泛关注。借助3ds Max三维动画制作软件进行反应机理可视化教学,不仅是将物质的微观结构、反应的微观过程宏观化的有效方式,也是进行素质教育以及提高学生创新思维的重要手段。

3ds Max是唯一一款可以模拟化学反应过程的三维动画软件,功能十分强大。将其应用于中学有机化学反应机理的学习当中可以产生很好的教学效果。

一、通过三维动画可以激发学生的学习热情和求知欲望,达到有效教学的效果

有效教学在很大程度上取决于学生学习的意愿,即学习动机。学习动机是引发、维持学习活动,指引学习活动趋向学习目标的心理过程。学生在学习过程中是否产生了学习动机是教师有效教的关键,也是学生有效学的关键。高中一、二年级的学生正处于青春期,好奇心强,易于接受新鲜事物,通过三维动画展示有机化学反应机理不仅满足了学生此阶段的心理需要,而且以生动、形象、直观的过程唤起了学生的求知欲和探索欲,使其对所学内容产生浓厚的兴趣,从而产生强烈的学习动机,变被动学习为主动学习,变“要我学”为“我要学”,进而提高学习的有效性。

二、通过三维动画展示反应机理可以揭示反应发生的本质,进而达到加深理解和记忆的效果

研究发现,传统教学中教师往往只通过口述或板书来讲解有机反应,效果往往事倍功半。利用三维动画将反应过程中瞬间的复杂变化模拟出来,把以往只能在头脑中建立的立体形象,变成学生能够看得见的过程。不仅可以让学生深层次的理解和掌握反应,还可以锻炼学生的空间想象能力,同时对学生以直观的方式从空间结构理解基团间的相互作用具有重要意义。就乙烯与溴单质的加成反应来说,在传统教学下,学生无法想象出溴f离子如何生成,又如何转变成产物,所以仍然采用死记硬背的方式进行记忆。通过可视化反应机理教学,学生从宏观的角度清楚地看到了整个反应发生的微观过程,溴单质在烯烃π电子的作用下产生诱导偶极,靠近烯烃的溴原子带部分正电荷,远离烯烃的溴原子带部分负电荷,烯烃进攻带部分正电荷的溴原子成为溴f离子中间体,另一个原子以溴负离子的形式离去后再从溴f离子的背面进攻,得到1,2-二溴乙烷。反应过程中的每一步都展示的很清晰,对学生理解了反应发生的本质具有很大的帮助,加深了学生对反应的理解和记忆,达到了不仅知其然更知其所以然的目的。

三、通过三维动画将微观过程宏观化以化解学习难点,达到提高学习效率的效果

在中学有机化学中利用三维动画进行反应机理可视化教学可以使抽象问题形象化,复杂问题简单化,枯燥问题有趣化,微观问题宏观化,增强化学教学的直观性,形象性和系统性,化解学习难点。例如:酯化反应是高中有机化学中的重要知识点之一,是学生对取代反应认知的深化,取代反应是学生认知的难点,也是学业水平测试和高考考查的重点。通过对深圳市光明新区高级中学部分高二学生的调查发现,该学校老师在有机化学教学时完全采用讲述的方式,学生对硫酸在反应过程的作用不理解,对酯化反应的理解仅仅是“酸脱羟基醇脱氢”。通过展示三维动画,学生从视觉角度看到了乙酸和乙醇立体结构间的相互作用,看到了硫酸在其中是如何参与反应的,从而突破了学习难点,真正理解了酯化反应的本质及硫酸在其中发挥的催化和吸水作用。

五、通过三维动画活跃学生思维,达到培养学生创新能力的效果

现代人才观强调现代教育应当培养社会所需要的创新型、智能型人才,要求教育特别是基础教育注重学生创新能力的培养。但是,反观我国基础教育的现状就会发现,中小学生的创新能力普遍偏低。创新首先是建立在广博的知识基础之上的,没有厚实的知识积累,即使有了创新点子,也无法将点子转变为解决问题的方法;其次培养创新能力是建立在培养好奇心、激发求知欲以及营造教学环境等多方面基础上的。利用三维动画进行反应机理可视化教学不仅可以让学生学习丰富的反应机理知识,拓展学生知识面,为创新能力的培养奠定基础,还可以激发学生学习热情,营造良好的学习氛围,增强课堂教学的开放性和选择性,让学生在轻松自在的环境中发展自己的学习个性,实现学习活动的主动性与创造性。

综上所述,在中学有机化学教学中引入三维动画是十分必要的。

参考文献:

[1]中华人民共和国教育部.普通高中化学课程标准(实验)[S].北京:人民教育出版社,2003,4.

有机化学的反应例5

A.CH3+Cl2光照

CH2Cl+HCl

B.2CH3CH2OH+2Na

2CH3CH2ONa+H2

C.CH3CH2CH2CH2OH +HBr

CH3CH2CH2CH2Br+H2O

D.C2H5OH+HOC2H5浓硫酸140℃

C2H5OC2H5+H2O

解析根据取代反应的概念可知,反应A、C、D均属于取代反应;而反应B不属于取代反应(属于置换反应)。

故答案为B。

知识点拨①取代反应的特点是“交换成分,有上有下”。

②常见的取代反应有:烷烃、苯及其同系物、酚等的卤代反应,苯及其同系物、酚等的硝化反应与磺化反应,酯化反应,醇与氢卤酸(HX)的反应,醇分子间脱水生成醚的反应,有机物的水解反应。

③取代反应与置换反应的主要区别:一是取代反应的反应物和生成物不一定有单质,而置换反应的反应物和生成物一定有单质;二是取代反应一般进行不完全、速率慢,而置换反应一般能进行完全、速率快;三是取代反应无电子得失,而置换反应有电子得失。

二、加成反应

例2下列有机反应中,不属于加成反应的是()。

A.CH3CH=CH2+HCl催化剂

CH3CHClCH3

B.CH2=CHCH2CH3+H2O催化剂CH3CHOHCH2CH3

C.CH2=CHCH3+2Cl2光照CH2=CHCHCl2+2HCl

D.CH2=CHCH2CHO+2H2催化剂CH3CH2CH2CH2OH

解析根据加成反应的概念可知,反应A、B、D均属于加成反应;而反应C不属于加成反应(属于取代反应)。

故答案为C。

知识点拨①加成反应的特点是“合二为一,只上不下”。

②常见的加成反应有:不饱和烃及其衍生物与H2、卤素(X2)或卤化氢(HX)的加成反应,不饱和烃与水的加成反应,芳香烃、醛、酮、葡萄糖、果糖等与H2的加成反应。

③能发生加成反应的有机物一般含有碳碳双键、碳碳三键、碳氧双键等不饱和键。

④取代反应与加成反应的主要区别是:取代反应反应前后分子数目一般不变,而加成反应反应后分子数目一般减少。

三、酯化反应

例3下列有机反应中,不属于酯化反应的是()。

A.CH3CH2CH2OH+HCl

CH3CH2CH2Cl+H2O

B.CH3CH2COOH+HOCH2CH2CH3

CH3CH2COOCH2CH2CH3+H2O

C.CH3CH2OH+HO―SO3H(浓)浓硫酸CH3CH2O―SO3H+H2O

D.\[C6H7O2(OH)3\]n(纤维素)+3nHO―NO2(浓)浓硫酸\[C6H7O2(ONO2)3\]n+3nH2O

解析根据酯化反应的概念可知,反应B、C、D均属于酯化反应;而反应A不属于酯化反应(因HCl是非含氧酸,且生成物CH3CH2CH2Cl属于卤代烃、而不属于酯)。

故答案为A。

知识点拨①酯化反应概念中的酸指有机酸(羧酸)或无机含氧酸(如H2SO4、HNO3等);醇不仅指醇类,而且包括含醇羟基的有机物(如葡萄糖、纤维素等)。

②酯化反应属于取代反应。

③羧酸与醇发生酯化反应的原理:一般是羧酸分子里羧基上的羟基跟醇分子里羟基上的氢原子结合成水(即脱水方式为“酸脱羟基醇脱氢”),其余部分互相结合成酯。无机含氧酸与醇发生酯化反应的原理:一般是无机含氧酸分子里羟基上的氢原子跟醇分子里的羟基结合成水(即脱水方式为“醇脱羟基酸脱氢”),其余部分互相结合成酯。

④常见的酯化反应:无机含氧酸与醇或糖等的酯化反应,羧酸与醇或糖等的酯化反应,羟基羧酸分子内或分子间的酯化反应。其中,二元羧酸与二元醇或羟基羧酸发生酯化反应时,可以生成链状酯、环状酯或高聚酯。

四、消去反应

例4下列有机反应中,不属于消去反应的是()。

A.CH3CH2CH2CH2OH浓硫酸CH3CH2CH=CH2+H2O

B.CH2CH2CH2Cl+NaOH

乙醇

CH2CHCH2+NaCl+H2O

C.BrCH2CH2CH2CH2Br+2NaOH

乙醇CH2=CHCH=CH2+2NaBr+2H2O

D.2CH3CH2CHOHCH3+O2

催化剂

2CH3CH2COCH3+2H2O

解析根据消去反应的概念可知,反应A、B、C均属于消去反应,而反应D不属于消去反应(根据氧化反应的概念可知,反应D属于氧化反应)。

选D。

知识点拨①消去反应的特点是“一分为二,只下不上”。

②常见的消去反应有:卤代烃与强碱的醇溶液共热的反应,醇分子内的脱水反应。

③与连有卤素原子或羟基碳原子的邻位碳原子上有氢原子的卤代烃或醇,才能够发生消去反应。

④由于苯环是稳定结构,卤素原子直接与苯环相连的卤代烃(如Br)或酚(如OH),既使与连有卤素原子或羟基碳原子的邻位碳原子上有氢原子,也不能发生消去反应。

五、氧化反应与还原反应

例5下列既不属于氧化反应,又不属于还原反应的是()。

A.2C6H6+15O2乙醇12CO2+6H2O

B.2CH3CH2CH2CHO+O2

催化剂

2CH3CH2CH2COOH

C.CH3COOH+HOCH2CH2CH3浓硫酸

CH3COOCH2CH2CH3+H2O

D.CH2=CHCHO+2H2催化剂

CH3CH2CH2OH

解析根据氧化反应的概念可知,反应A、B属于氧化反应;根据还原反应的概念可知,反应D属于还原反应;而反应C既不属于氧化反应,又不属于还原反应(属于酯化反应或取代反应)。答案为C。

知识点拨①氧化反应的特点是“得氧”或“失氢”;还原反应的特点是“得氢”或“失氧”。

②常见的氧化反应有:有机物的燃烧反应、有机物(不饱和烃及其衍生物、与苯环相连的碳原子上有氢原子的苯的同系物、醇、醛等)与酸性KMnO4溶液的反应、苯酚与空气中的氧气的反应、醛及含有醛基的有机物与银氨溶液或新制Cu(OH)2的反应、醇或醛的催化氧化或被强氧化剂氧化的反应。

③常见的还原反应有:有机物与氢气的加成反应。

④连有羟基的碳原子上含有氢原子的醇才能发生催化氧化反应;含有碳碳不饱和键的有机物、芳香烃、醛、酮、单糖等能够发生还原反应。

六、水解反应

例6下列有机反应中,不属于水解反应的是()。

A.在一定条件下,乙烯与水反应生成乙醇

B.在一定条件下,丙酸乙酯与水反应生成丙酸和乙醇

C.在一定条件下,蔗糖与水反应生成葡萄糖和果糖

D.在加热条件下,2-溴丙烷与NaOH的水溶液反应制2-丙醇

解析根据水解反应的概念可知,反应B、C、D均属于水解反应;而反应A不属于水解反应(属于加成反应)。

故答案为A。

知识点拨①有机物的水解反应属于取代反应。

②能发生水解反应的有机物主要有:卤代烃、酯、油脂、双糖、多糖、肽和蛋白质等。

③卤代烃发生水解反应的条件是与强碱(NaOH或KOH)的水溶液共热,卤代烃水解可生成醇(或酚);酯在酸性条件下水解生成相应的酸和醇,酯在碱性条件下水解生成相应酸的盐和醇;油脂在酸性条件下水解生成相应的高级脂肪酸和甘油,油脂在碱性条件下水解生成相应的高级脂肪酸盐和甘油;麦芽糖水解生成葡萄糖,蔗糖水解生成葡萄糖和果糖;淀粉和纤维素水解的最终产物为葡萄糖;肽和蛋白质水解的最终产物为氨基酸。

④油脂在碱性条件下的水解反应称为皂化反应。

⑤单糖(如葡萄糖、果糖)不能发生水解反应。

七、加聚反应和缩聚反应

例7下列有机反应中,属于缩聚反应的是()。

A.由甲基丙烯酸甲酯合成聚甲基丙烯酸甲酯的反应

B.由3-羟基丙酸合成聚3-羟基丙酸的反应

C.由1,3-丁二烯合成聚1,3-丁二烯的反应

D.由HOOC(CH2)4COOH和H2N(CH2)6NH2合成高聚物的反应

解析根据加聚反应的概念可知,反应A、C都是由不饱和的单体通过加成的方式生成高聚物的反应,则反应A、C都属于加聚反应;根据缩聚反应的概念可知,反应B、D在生成高聚物的同时都有小分子生成(反应B生成的小分子物质是水,反应D生成的小分子物质是氨),则反应B、D都属于缩聚反应。

故答案为B、D。

有机化学的反应例6

中图分类号:G642;O62-4 文献标识码:A 文章编号:1671-2064(2017)11-0211-01

目前已知的有机化合物已经难以确切计数,而每天依然有更多的被发现、被创造出来,由于每个化合物可以进行许多可能的反应,所以有机化合物有可能有数不胜数的反应。除非这些反应过程是由相对较少的基本反应组成的,否则掌握有机化学反应是一项非常艰难的任务,有机化学的教学也必然会陷入尴尬境地。

幸运的是我们有了有机化学反应机理这个舞台,学生通过学习反应机理能掌握一系列类似的反应,能独立分析各种“神秘”的反应过程(其实每个反应过程都是由多个学生熟悉基本反应组合而成),之所以“神秘”是因为反应初看起来,似乎神秘,甚至不可能发生,但是通过分析机理常常会揭示隐藏在反应过程背后的秘密。反应机理如此有用,但这部分内容繁杂、抽象枯燥、易懂难记、应用灵活,成为有机化学课程的难点,很多教学改革也是围绕反应机理展开的。南京大学冯骏才教授认为:有机化学教学只要贯彻了以反应机理为主线来讨论反应,不但有利于对有机知识的掌握,还有利于举一反三[1]。正确地引导学生认识反应机理的魅力,通过合适的方法让学生真切地体会到通过机理推导未知、复杂反应的过程犹如一个魔术师的表演,这样有机化学反应机理课会变得生动、有吸引力,学生就会喜欢上有机化学反应机理,这正是我们教学改革的目的。

每讲到烷烃取代反应机理这节课时(这是学生学习有机化学第一次接触的反应机理),我们都会问学生:“喜欢魔术吗?”学生的积极性会一下被调动起来,回答当然是肯定的。当我们接着问:“愿意成为有机化学的魔术师吗?”学生的眼睛都会冒出火花,但每个人心里都有这样的疑问:“可能吗?”此时告诉他们:“今天我们先来体验一把。”于是在这种摩拳擦掌的氛围里有C化学反应机理的学习开始了,好的开始是成功的一半。

魔术之所以吸引观众的眼球是因为它的神秘与震撼,其实有机化学反应亦如此,如果教师在讲解反应之前先给出现象,提出问题,让学生有了一种神秘的感觉,再告诉他们:“现在验证奇迹的时刻到了,让我们进入到该反应机理中去揭示隐藏在反应过程背后的秘密吧!”这种情境的渲染使枯燥难学的反应机理被学生所渴望。兴趣是最好的老师,机理便也变得不再枯燥,整个课堂会立刻被满满的求知欲所包围。

回到上面我们第一节机理课的学习中,烷烃的取代反应也就是卤代反应,鉴于此可以通过提问让学生自己分析可能得到的产物,通常学生会说卤代烃,接着引导他们思考甲烷与氯气反应会生成什么产物?一氯甲烷、二氯甲烷、三氯甲烷甚至会有四氯化碳,这些学生都会想到。如果问他们会不会生成乙烷?他们往往会摇头否定。接着带领充满好奇学生进入到自由基机理的学习过程中。通过链的引发,链的传递及链的终止,学生完全搞明白为什么还会有乙烷生成,这种氛围的渲染使一堂枯燥的机理课变得被学生所喜爱。这只是刚刚开始, 告诉学生在后面的学习中会有更多更亮丽的精彩。

假如我们把反应机理看作是一个“魔术”,教师便是“魔术师”,反应原料、条件相当于“道具”,反应过渡态、中间体就是我们的“托儿”,“道具”和“托儿”在魔术中起着非常重要的作用,让学生掌握反应过程,就是让学生找到并认清楚“托儿”。

吴范宏[2]译的《Advanced Organic Chemistry----Reaction Mechanisms》第一版序言中提到“在背景下介绍理论”;“强烈反对化学课程开始讲授许多化学理论的倾向,如果先介绍化学现象,再介绍解释这些现象的理论,这个课程将会更加有趣。”讲授机理,如果先给出反应和现象,教师在解释反应机理的过程中灵活运用“道具”和“托儿”,会使反应机理更为神秘。如果对每一个反应机理我们多用心去挖掘它的“魔术”魅力,那一定会把最枯燥难学的反应机理变为最具有吸引力的内容。

每学完一种反应机理,学生就会掌握一个“魔术”技巧,如何运用这些技巧分析解决实际问题是有机化学反应机理的难点。只有将这些技巧巧妙组合才能创造更多更新的“魔术”,完成各种复杂的反应过程,学生才会更有成就感,反应机理才会更有魅力。我们通过这样的介绍鼓励学生经常独立分析各种没有见过的反应过程。

可见,只要我们教师努力挖掘课程内容的“魔术”魅力,把枯燥难学的内容变生动、有吸引力,让学生喜欢上有机化学反应机理不是一句空话。

有机化学的反应例7

1 概述

原位合成反应在有机合成和配位聚合物的研究中具有非常突出的应用前景。这种反应液被广泛应用到了水热溶剂热的合成中,目前为止在水热中的原位合成反应类型非常有限,这既是对水热原位合成反应的挑战,同时也给这种合成方法更为广大的发展空间。随着合成条件和表征手段的日益完善以及不断提高,将会有更多的原位合成反应被发现,这些研究成果将促进有机化学和配位化学的进一步发展。

1998年,Li等人发现了一种新型的原位合成反应方法既水热法[1]。他们将CuCl2和CuBr2分别同2,2-二吡啶胺进行配位,反应产物得到了两种黄色的晶体。通过单晶X射线解析,在这两个化合物结构中有机配体并非反应初始的原料而是变成了dpiz分子。通过这一现象研究者认为在这个反应体系中发生了原位合成反应。这个反应的出现对水热合成原位反应是一个很大的鼓舞,新颖的水热原位合成反应不断地被报道出来。已经报道的原位合成反应中,最主要的是环加成反应,烷基化反应,脱硫反应等2,图1中列出了几种典型的有机原位反应。

2 原位反应的优点

原位反应之所以被广泛的重视,还是因为这一反应具有普通有机反应所不具备的特点。传统的有机合成反应,大多数是采取有机溶剂的回流方法,这种方法在制备化合物时可以得到较纯净的产物,但是这种方法在合成中会使用到大量的有毒性的有机溶剂,会对研究工作者的身体和周围的环境造成伤害和污染。相对来说原位合成反应就可以克服这一点,反应是在一个密封的体系内进行的,可以将对环境污染降低,同时在进行配位反应的时候,反应体系内新生成的产物反应活性较高,更有利于得到结构新颖的配位聚合物。

综上所述,原位有机反应相对于传统有机合成反应具有两方面的主要优点:(1)反应安全性高;(2)产物的反应活性高。

3 原位反应的类型

常见的原位反应有卤化反应、脱硫反应、烷基化反应和环加成反应等,下面列举几例比较典型的这类反应。

(1)卤化反应:如图1所示的第一个有机原位反应就是一例卤化反应,在配位聚合物的合成反应中这一反应经常被发现,当有卤素存在的反应体系,这一反应的活性很高。

(2)烷基化反应:烷基化反应在醇溶液的反应体系中存在的较多。这类反应的反应机理可以分两步来理解,首先,在卤素离子的作用下,发生取代反应生成得到了卤代烷,接着卤代烷进攻有机分子中的氮原子,进而发生了烷基化反应。因此烷基化反应的一般被看成是分两步进行的。

在水热溶剂热合成中,越来越多类型的有机原位反应被报道,这类反应的发现促进了有机化学和配位化学的进一步发展。

4 结束语

原位合成反应作为一种新型的合成方法,可以得到常规条件下不易得到的一些产物,是一种环境友好型合成方法。这一研究方法被广泛应用到了有机化学、无机化学和配位化学等研究领域。

参考文献

[1]李红,等.溶剂热法制备YAG微粉及其机理分析[J].功能材料,2006.

有机化学的反应例8

中图分类号:G642.4 文献标志码:A 文章编号:1674-9324(2014)30-0178-03

有机化学是研究有机化合物及有机物质的结构、性质、反应的学科,是化学中极重要的一个分支,同时也是林学类、生物类及材料类等相关专业重要的基础课。由于有机化学这门科学所涉及的前沿知识非常广泛,使其知识体系极其纷繁复杂,在学习这门课程时,熟练掌握各种反应机理成为同学们熟练驾驭有机化学知识的重要工具。本文就教学中的体会,对机理学习中的几个基本概念和应用进行简单的分析,方便同学们更好地学习。

一、从能量的变化分析机理过程

一个化学反应过程在物质变化的过程中必然要经历一些能量变化,如图1所示,所有的基元反应过程可以从图中的能量变化曲线得以体现。对能量变化曲线进行观察,它由起点、终点、若干个势垒和势井及中间的单调连续曲线所组成。根据势垒的位置和个数,可以把一个反应分成若干个基元机理过程。在图1中,A和D作为能量比较低的起点和终点,分别为反应原料和产物;B、C两个势井为活泼中间体;E、F、G处于势垒位置,为高能的过渡态。由于有三个势垒,该机理可以分成三个基元机理反应。通过对比一个势垒两侧的两个势井间的高度差异,可以粗略地判断出该基元反应的平衡方向及平衡常数等的大致范围;通过比较A和D的相对高度,可以预测整个反应为吸热或者放热过程;通过反应机理的基元反应式得到的能量变化曲线图,可以让同学们很容易地找到能量最高的势垒,即为连串反应过程的慢反应,也被称为反应的速率控制步骤。

此外,能量变化曲线图对于平行反应的相互竞争判断也有帮助作用。如图2所示,从R通过相同的基元反应得到活性中间体A,B、C为两个相互竞争的过渡态,代表两个竞争的反应方向,从B、C高度的对比可以知道B为速度控制步骤,对比D和E的高度可以看出E为平衡控制步骤。

二、杂化轨道对于机理掌握的重要性

碳原子外层只具有2s和2p两种原子轨道,根据杂化轨道理论,碳原子在与其他原子成键时,只可能形成sp、sp2和sp3三种形式的杂化轨道。根据这三种杂化轨道可形成的独立σ键的关系,碳原子以这三种杂化方式与其他原子成键时,将分别形成直线型、平面三角形和正四面体三种形式的立体结构。这就基本上限制了有机化合物静态分子中指定碳原子的构型,基本不会出现其他的立体结构,对此深刻的理解就等于对于分子立体结构的基本掌握。如图3中,双键A上的两个碳原子都是sp2杂化,B碳原子为sp3杂化,C上的两个碳原子均为sp杂化。在图4中,以轨道形式画出了重叠二烯烃的结构,可以看出,B为sp2杂化,而A为sp杂化,图4也适合对乙烯酮、异氰酸酯和重氮甲烷等结构的描述。

在反应机理中讨论的极限结构,即中间体和过渡态,也没有脱离sp,sp2,sp3这三种结构。在有机化学教材中,出现最多的中间体和过渡态是带有一个p轨道的sp2杂化轨道,不同之处只在于中间体是游离的p轨道,而过渡态是一侧或者两侧连接有共价键的高能p轨道,它们分别处于能级图的势井和势垒位置,如图5所示。而在能级图的其他位置,表明了过渡态与中间体之间,或者过渡态与反应物或产物之间的所有转化过程。

不管是分子或者活泼中间体,烯烃的平面三角形结构都是一个非常典型、非常重要的结构。例如,由sp3杂化轨道断键得到的具有sp2杂化轨道结构的碳正离子、碳负离子和自由基,与由烯烃加成得到碳正离子,碳负离子和自由基具有完全相同的碳架结构。因此熟练运用杂化轨道理论学习有机化学反应机理是同学们必须掌握的基本技能。

三、重视鱼钩键的作用

有机化合物的共价键分为极性和非极性两种,其对应的断裂方式有均裂和异裂两种,其成键的方式也可分成两种,这里我们给出一对对应的名字:均成和异成。均成是由两个轨道各提供一个电子形成共价键,异成则是一个轨道提供两个电子,另一个轨道只提供空轨道形成共价键的过程。其中,异成和异裂是用鱼钩键来表示两个电子的转移方向,充分理解鱼钩键的作用对于学习有机化学反应机理,无论是酸碱中和还是亲核、亲电等类型的反应中有机化合物分子的变化过程都非常重要。如图6所示,通过卤代烃消除反应中可以充分体会鱼钩键对于帮助理解的作用。

至于一个反应是亲核还是亲电,我的个人理解是,亲电和亲核反应总是同时发生的,只是有机化学反应认知体系形成的过程中定义的主体不一致而已。在速度控制步骤中,鱼钩键指向的分子为主体时该反应即为亲核反应,反之则为亲电反应。如图7所示,在烯烃加成的慢反应中,烯烃为主体,从箭头的方向来看为亲电;而如图8所示,在羰基加成的速度控制步骤中,羰基为主体,从箭头方向来看为亲核反应,在主体的界定上尊重历史和习惯即可。

四、对相关机理进一步类比以利于帮助记忆

既然根据能级图可以把一个反应分成若干个基元反应,而在不同类型的反应机理中,有很多基元反应又是非常相似的,那么通过对这些基元反应做进一步的类比,在不同的机理之间建立起内在的联系,可以使归纳和记忆变得更为简单。

通过对羟醛缩合、康尼查罗歧化和克莱森酯缩合反应进行比较,可以发现其内在的相似性(如图9~11所示)。观察三个机理的速率控制步骤,我们会发现都是亲核加成反应(用虚框标出),进攻试剂都通过前面各自的基元反应得到带有负电的亲核试剂。

五、结论

有机化学的反应例9

中图分类号:R9-4;G642.4 文献标识码:A 文章编号:1009-914X(2017)12-0334-01

药物合成反应是制药工程专业的一门专业基础课程,具有相当大的重要性。主要是在有机化学课程的基础上形成,可实现对有机药物合成反应、反应的影响因素、反应的选择性及其实际应用进行系统的学习。同时也为药物化学以及药物工艺学等课程打下坚实基础。因药物合成反应课程涉及多方面的化学反应,在教学时存在较大难度。我们必须通过合理的手段以及方法实现对药物合成课程反应趣味性的有效提高。

1 重视绪论,引发学生对《药物合成反应》课程的重视和兴趣

现阶段使用的药物合成反应课程教学,教材主要是由化学工业出版社出版的第三版教材,主编是闻韧教授。该教材在普通高等教育十一五部级规划教材涵盖范围之内,条理清晰、层次分明是该教材内容的显著优势与特征。但也存在一定的缺陷,没有实现编排绪论就是其主要缺点。在实际进行教学实践时我们如果按照教材内容进行,具体的化学反应就是第一节课需要讲述的内容,在这种情况下学生不能实现对课程的全面认识,学习,、目标不明确现象也普遍存在,最终导致学生对学习失去兴趣。因此,教师必须提高对绪论部分教学的重视程度,在实际对教材内容讲解之前给学生介绍药物合成反应课程的主要内容。同时实现与有机化学药物化学制药工程学课程之间的联系进行科学研究。学习这门课程对以后的学习以及工作有极大的帮助,在学习过程中必须采用科学的方法以及有效的手段,同时帮助学生对课程的研究对象内容以及特点等进行明确的认识。药物合成反应与有机化学之间存在密不可分再联系。需要在有机化学的基础上实现对药物合成反应的学习。因此在实际进行药物反应学习之前学生科首先对有机化学进行熟悉,然后对课程内容设置的一同进行科学的比较。这可在一定程度上消除学生队课程畏难心里。

2 综合比较,帮助学生将各章节中的内容有机联系起来

《药物合成反应》课程所涉及的有机反应非常多,内容繁杂,学生在学习过程中容易产生畏难心理。通过综合比较,可以帮助学生将各章节中的内容有机联系起来,增强各章节热萘系性,便于学生理解和掌握。例如第一章卤化反应,涉及的化学反应包括不饱和烃的卤加成反应、烃类的卤取代反应、羰基化合物的卤取代反应、醇酚醚的卤置换反应、羧酸的卤置换反应以及其他官能团化合物的卤置换反应,可从反应过程中所用卤化剂的类型着手,分析各反应的特点。卤加成反应大多是通过亲电加成的反应机理进行,这就要求卤化剂在反应过程中能够提供正离子作为亲电试剂参与反应,卤化剂卤素、次卤酸(酯)、N-卤代酰胺能够提供卤正离子,而卤化氢能够提供氢正离子;烃类的卤取代反应、羰基化合物的卤取代反应是用卤素取代化合物结构中的氢,大多是通过亲电取代的反应机理进行,要求卤化剂在反应过程中能够提供卤正离子作为亲电试剂参与反应,可以选用卤素、次卤酸(酯)、N-卤代酰胺等能够提供卤正离子的卤化剂,而卤化氢只能够提供卤负离子,不适用于卤取代反应;醇酚醚的卤置换反应、羧酸的卤置换反应和其他官能团化合物的卤置换反应是用卤素置换化合物结构中的特定官能团,大多是通过亲核取代的反应机理进行,这就要求卤化剂在反应过程中能够提供卤负离子作为亲核试剂参与反应,不能选用卤素、次卤酸(酯)、N-卤代酰胺等能够提供卤正离子的卤化剂,只能选择氢卤酸、卤化亚砜、卤化磷、有机磷卤化物等能够提供卤负离子的卤化剂[1]。通过对各种类型的卤化反应进行比较,可以帮助学生更深刻的理解卤化反应的机理,掌握各反应的相同之处和不同之处。

3 讲解实例,使学生更好的理解各反应在药物合成中的应用

《药物合成反应》课程涉及的有机化学反应纷繁复杂,学生在学习过程中容易对所学的化学反应有何用途感到迷茫,难以将各单元反应与药物合成联系起来。通过讲解实例,介绍一些学生熟悉的药物的合成过程,可以将《药物合成反应》课程与药物生产实际紧密结合在一起,在理论与实践之间架起一座桥梁。

例如,在介绍羧酸甲酯、乙酯为酰化剂用于脂肪胺的N-酰化时,以中枢神经抑制剂巴比妥类药物的合成为实例,巴比妥类药物都具有环状丙二酰脲母核,在合成的时候可以采用丙二酸二乙酯衍生物和尿素为原料,丙二酸二乙酯属于羧酸乙酯类化合物,作为酰化剂,尿素含有氨基,作为被酰化物,发生脂肪胺的N-酰化可以制得含有酰胺键的环状丙二酰脲母核。之后讲到Claisen反应,可举例苯巴比妥的中间体苯基丙二酸二乙酯的合成,苯基丙二酸二乙酯采用苯乙酸乙酯和乙二酸二乙酯为原料合成,苯乙酸乙酯含α-活泼氢,乙二酸二乙酯不含α-活泼氢,可发生酯与不含α-活泼氢的酯的Claisen反应,然后加热失去一个酰基,得苯基丙二酸二乙酯。再通过比较苯基丙二酸二乙酯与苯巴比妥的化学结构,启发学生思考如何制备苯巴比妥,引导学生通过活性亚甲基化合物与溴乙烷的烃化反应,引入乙基生成乙基苯基丙二酸二乙酯,再通过羧酸乙酯和尿素的N-酰化反应得到苯巴比妥。通过讲解苯巴比妥的合成的实例,不仅让学生更好的理解Claisen反应,同时回顾了活性亚甲基化合物的烃化反应以及脂肪胺的N-酰化反应,也让学生将理论知识具体化,能够与生产实际结合起来。

4 结合实践,进一步加深学生对理论知识的掌握

制药工程专业属于工科专业,主要培养应用型人才,因此在教学过程中需要重视提高学生的实验动手能力和思考问题、解决问题的能力,要求结合教学实践及学生的实际情况,充分利用学校教学资源,更有效的开展实验教学。结合教学实践及学生的实际情况将实验课程分为单元反应实验、综合性实验和设计性实验三个部分,三部分实验内容从易到难循序进行,有助于学生接受和理解。单元反应实验较为简单,可通过一步或两步反应完成,如苯丙酮的制备、对硝基苯甲醛的制备等,主要涉及理论课所学习的卤化反应、烃化反应、酰化反应、缩合反应、重排反应、氧化反应、还原反应等单元反应。

5 结语

综上所述,《药物合成反应》课程所涉及的有机化学反应、反应机理较多,教学内容难度较大,课堂教学容易枯燥无味,可以从重视绪论,引发学生对《药物合成反应》课程的重视和兴趣;综合比较,帮助学生将各章节中的内容有机联系起来;讲解实例,使学生更好的理解各反应在药物合成中的应用;结合实践,进一步加深学生对理论知识的掌握四个方面着手提高药物合成反应课程的趣味性。

有机化学的反应例10

文章编号:1008-0546(2013)07-0086-02 中图分类号:G633.8 文献标识码:B

doi:10.3969/j.issn.1008-0546.2013.07.034

在中学阶段化学可分为无机化学和有机化学两大块。有机化学中主要包括有机化合物之间的相互转化和联系。有机化合物简称有机物,它主要由碳元素、氢元素、氧元素组成。有机物是生命产生的物质基础。大多数有机化合物主要含有碳、氢两种元素,此外也常含有氧、氮、硫、卤素、磷等。部分有机物来自植物界,但绝大多数是以石油、天然气、煤等作为原料,通过人工合成的方法制得。同无机物相比,构成有机物的元素不多,但有机物的种类繁多、数目庞大。要想学好这些有机物光靠死记硬背是不行的,需要从官能团的有关性质入手,主要从以下五个方面入手:

一、借助官能团类别,认识有机物的结构、组成及分类

官能团是决定有机物化学性质的原子或原子团。中学阶段常见的官能团有碳碳双键、碳碳叁键、羟基、羧基、醛基、酯基、羰基、醚键等等;确定了官能团的类别,就可以认识有机物的结构;而结构就决定其性质及组成。例如乙醇的分子式为C2H6O,如何确定乙醇官能团的位置与结构,很多学生只是死记硬背其结构简式。其实在教学过程中,可以先让学生写出其可能有的结构,再让学生动手操作其球棍模型观察其不同的结构模型。让大家先形成一种感性的认识,对于分子式C2H6O有两种不同的结构,一种是CH3CH2OH,另一种是CH3OCH3,到底是哪种结构?可以让学生讨论和交流,学生各抒己见。实验是检验其结构的标准。大家动手做金属钠与无水乙醇的实验,观察到实验现象金属钠沉在无水乙醇的底部,在金属钠的表面有气泡均匀冒出;说明金属钠能与无水乙醇发生化学反应。据此实验可以确定乙醇的结构。对于乙醇的结构可以有两种解释;第一种是根据少量的金属钠保存在煤油中,而煤油是烃类的混合物,只含有C和H两种元素,由此说明金属钠与碳元素上连接的氢元素不反应,无水乙醇与金属钠反应只能与羟基上的氢原子反应。从而证明乙醇分子中含有醇羟基;另一种方法是通过实验验证进行定量计算得出结论,取一定量的金属钠与一定体积的无水乙醇反应。这样通过实验验证定量计算发现2mol乙醇和2mol金属钠反应生成1mol氢气。由此确定出乙醇分子的结构中含有一个醇羟基。

二、根据官能团的特点,确定物质的性质

有机物的种类和数目非常繁多,原因之一就是存在许多的同分异构体,它们属于分子式相同,结构不同的化合物。例如分子式为C5H12O,它的同分异构体的数目就很多。如果根据官能团的种类进行分类,以含有相同的醇羟基的同分异构体有六种,结构决定性质。只要具有相同的官能团,不论醇羟基在任何位置其化学性质相似。例如:凡是醇都可以发生燃烧反应生成二氧化碳和水;凡是有机物中含有醇羟基就能跟金属钠、钾等活泼金属反应置换出氢气,不能跟氢氧化钠、碳酸氢钠反应;凡是有机物中含有醇羟基就能跟氢酸(HX)发生取代反应,生成相应的卤代烃;凡是有机物中含有醇羟基就能羧酸发生酯化反应生成相应的酯等等;凡是有机物中含有醇羟基就可以发生分子间脱水 (取代反应)生成相应的醚。一般醇可以发生氧化反应生成相应的醛或酮,只有少数醇不能被氧化生成相应的醛或酮。这是由于官能团的位置不同,当醇羟基的位置连接在末端碳原子上,就都能被氧化成醛;当醇羟基的位置连接在中间碳原子上,并且此碳原子上还必须连接氢原子,就都能被氧化成酮,反之此碳原子上没有连接氢原子就不能被氧化生成相应的醛或酮;同样大多数醇在浓硫酸作催化剂条件下,可以发生消去反应生成相应的烯烃。凡是连有醇羟基的邻位碳原子连有氢原子,就可以发生消去反应生成相应的烯烃,反之连有醇羟基的邻位碳原子没有连有氢原子,就不能发生消去反应生成相应的烯烃。掌握好官能团的特点,就可以确定有机物的性质,这对学好有机化学非常重要。

三、明确反应条件对官能团的影响,做到举一反三,灵活应用

由于官能团相同而反应条件不同时,造成产物不同。因此要记清条件,灵活应用做到举一反三。例如乙醇与氧气反应,在点燃的条件下生成二氧化碳和水;而在铜丝做催化剂加热条件下生成乙醛和水。有时反应温度不同,产物也不同。还是以乙醇为例,乙醇在浓硫酸做催化剂条件下,温度在140℃度时进行分子间脱水,发生取代反应产物是乙醚和水;而在170℃时进行分子内脱水,发生消去反应产物是乙烯和水。因此做乙醇生成乙烯的实验中温度要快速升至170℃,否则就会有副产物生成。同样酯类的水解,在酸性条件下水解不完全,生成相应的酸和醇;而在碱性条件下水解完全,生成相应的盐和醇;因此油脂在碱性条件下水解完全,被称为皂化反应。反应条件不同,产物不同是有机化学学习的一个重点。

四、注重官能团之间联系,研究物质的合成

有机物之间能够相互转化,都是利用官能团的之间联系。目前中学阶段常见的官能团有碳碳双键、碳碳叁键、羟基、羰基、羧基、醛基、酯基等。以乙醇为例合成乙酸乙酯,其合成路线是乙醇中的醇羟基经催化氧化为乙醛,乙醛进一步氧化为乙酸,乙酸中的羧基与乙醇中的羟基在浓硫酸作用下发生酯化反应生成乙酸乙酯,而乙酸乙酯中的酯基又可以发生水解反应生成相应的醇和羧酸。因此凡有关物质的合成的问题,要学会分析合成的有机物属于何种类型,带有什么官能团,与哪些信息有关;还要综合运用有机反应中官能团的衍变规律及有关的提示信息,掌握正确的思维方法,综合运用顺推或逆推的方法导出最佳的合成路线,这是学好有机化学的有一个诀窍。

五、辨别官能团的特性,准确理解反应机理

有机物中不同的物质,化学性质不同,造成它们不同的原因在官能团上。官能团不同,在化学反应中表现的反应机理不同。例如,乙醇与乙酸在浓硫酸作用下发生酯化反应,它们的反应过程是乙醇中的官能团—羟基去氢,乙酸中的官能团—羧基去羟基;醇与酸发生酯化反应机理是:酸去羟基,醇去羟基氢。

官能团的知识至关重要,只有掌握官能团这一知识点,在学中必须加以灵活运用,才能把知识转化为自己的能力,才能学好有机化学。

有机化学是中学化学的重要组成部分。要想学好有机化学,必须要掌握官能团的性质,深刻领会官能团在有机化学中的重要地位是学好有机化学的金钥匙。

总之通过有机化学的学习发现有机化学的规律性比无机化学更强,一旦掌握规律,就会使很多题目迎刃而解。这就需要同学们在以后的学习中用心去记识、去理解、去掌握。