期刊在线咨询服务,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

期刊咨询 杂志订阅 购物车(0)

新能源科学工程模板(10篇)

时间:2024-01-08 10:31:00

新能源科学工程

新能源科学工程例1

作者简介:韩新月(1982-),女,河南商丘人,江苏大学能源与动力工程学院,讲师;何志霞(1976-),女,甘肃泾川人,江苏大学能源与动力工程学院,副教授。(江苏 镇江 212013)

基金项目:本文系江苏大学教学改革项目(项目编号:JGZD2009025)、江苏省高等教育教学改革研究重中之重课题(课题编号:2011JSJG006)的研究成果。

中图分类号:G642 文献标识码:A 文章编号:1007-0079(2013)05-0009-03

一、我国高校设立新能源专业的必要性

能源问题与环境问题是21世纪人类面临的两大基本问题,发展新能源是解决这两大问题的必由之路。新能源是相对于常规能源而言,以采用新技术和新材料而获得,在新技术基础上系统地开发利用的能源,如太阳能、风能、地热能、海洋能等。由于新能源具有再生、清洁、低碳、可持续利用等优势,所以越来越多的国家开始重视它。而且新能源可以作为促进人类发展和保护环境的重要途径,所以这些国家在相关政策中都增加了新能源的元素。新能源产业的发展也是未来中国可持续发展的关键。但是,和发达国家相比,我国新能源产业化发展起步较晚,技术相对落后,总体产业化程度不高。不过,我国天然资源非常丰富,市场需求空间很大,在政府大力发展新能源及可再生能源政策的带动下,新能源领域成为大型能源集团、民营企业、国际资本、风险投资等诸多投资者的投资热点,技术利用水平正逐步提高,具有较大的发展空间。“十二五”期间将是我国新能源产业从起步阶段进入大规模发展的关键转折时期。我国新能源在这一时期的发展总目标是:建立初步适应大规模新能源发展的电网等重大基础设施体系,推动新能源装备制造业的壮大和升级,促进新能源市场的不断扩大,争取在2015年将非化石能源在能源消费中的比重提高到12%左右。[1]

尽管国家已经把发展新能源放在一个重要的战略位置上,一场新的能源革命已在悄然进行,它必将带来新的经济繁荣、新的社会理念和新的生活方式。但是,我国新能源产业发展过程中的一大难题是缺少成熟先进的新能源技术。我国主要的新能源设备和技术完全依赖进口,新能源领域的科技创新能力明显不足。而新能源产业化进程中的这些难题有待专业人士去破解。所以,培养新能源方面的专业和复合型人才是重中之重。[2]但是,新能源产业作为一个错综复杂的资源环境复合体,涉及物理学、化学、流体力学、传热学、电子电工学、材料科学、生物学、管理学、工业经济学等学科内容,是一个典型的多学科交叉的新兴产业。[3]因此,需要设立专门的新能源专业来满足,新能源产业对新能源人才要有宽的知识面、自主的学习能力、丰富的想象力、敏锐的洞察力以及较强的沟通协调能力等要求,进而要求高校做好优化人才培养层次、改进人才培养方案等工作。

国外已有一些著名大学建立了新能源的本科专业,用于培养太阳能、风能、生物质能等方面的科技人才,如澳大利亚的新南威尔士大学设立了专门的光伏与可再生能源工程学院,并于2000年开设了光伏与太阳能本科专业,2003年又开设了可再生能源工程本科专业;澳大利亚国立大学依托其可持续能源系统中心也建立了四年制的可再生能源系统专业。此外,意大利的都灵理工大学和米兰理工大学都开办了四年制的可再生能源专业。美国的俄勒冈州科技学院于2005年也建立了可再生能源四年大学本科学位课程。随着全球能源结构的变化,对于新能源方面的人才需求不断增加,世界上将会有更多的高校开办有关新能源的专业。

我国高校在新能源专业设置和新能源产业专业人才培养方面还落后于发达国家。为顺应时代的发展,为国家培养新能源这一新兴产业的专业人才,2010年7月经教育部审批,浙江大学、中南大学、江苏大学等11所高校首次设立新能源科学与工程专业。其中江苏大学的新能源科学与工程本科专业由能源与动力工程学院承担开设任务,已分别于2011年9月和2012年9月招收第一批和第二批本科生。关于新能源科学与工程专业本科生的培养方案、培养模式和培养体系则处于不断探索和完善中。

二、 新能源科学与工程专业的培养方案

在对国内外新能源相关专业人才培养充分调研的基础上,分析国家社会和经济发展要求,基于新能源产业特点及企业和社会对新能源专业人才知识结构和能力结构的要求,同时结合本校自身的学科特色和优势,确定了新能源专业人才培养方案,主要包括专业培养目标的确立及科学、合理的课程体系的设置、可行的教学计划的制订等。

1.培养目标

专业的培养目标是专业建设和一切教学活动的基础、依据,也是人才培养的最终目的。新能源科学与工程专业在国内甚至在世界上都是非常新的专业,目前处于初步形成和探索阶段,因此,找准本校专业人才培养定位和确立该专业人才培养的长远目标尤为重要。江苏大学能源与动力工程学院结合自身实际情况,依托机械工程、电气信息工程、材料科学与工程、化学化工、土木工程等学科专业的支持,并结合新能源产业的特点设立了新能源科学与工程专业,使培养出来的学生具有良好的综合素质和创新意识,富有社会责任感,具有国际一流的视野,具备新能源科学与工程这一强交叉学科宽厚扎实的物理、化学及热流体科学基础理论,系统掌握新能源科学与工程应用专业知识及技能、新能源转换与利用原理、新能源装置及系统运行技术,能胜任新能源技术相关的科学研究、工程设计、技术开发及技术经济管理等工作的高级专门人才。

2.课程体系的构建

尽管自2010年以来国内陆续已有许多高校正式获批新能源科学与工程专业在本科阶段的招生资格。但总体来看,我国系统培养新能源科学与工程本科生、研究生的工作才刚刚起步,对于相应课程体系的构建也处于探索阶段。一个专业所设置的课程相互间的分工与配合构成课程体系。课程体系是否合理、课程内容是否先进直接关系到培养人才的质量。而且,一个专业要具有区别于其他专业的培养方向和业务范围,就应有自己独立的课程体系。[4]新能源科学与工程专业是一门内容丰富而又广泛的科学与工程,属交叉学科。它与数学、物理、化学、生物学等紧密相关,又强烈地依托于能源与动力工程、材料、机械、电气、化工、自控和生物工程技术的发展。由于国内在这方面的研究几乎为空白,因此,如何以这些学科为依托,形成内容先进、结构合理的课程体系是急需解决的一项重大课题。笔者根据孙根年有关课程体系优化的思路给出了系统思考下新能源科学与工程专业课程体系的总体结构,如图1所示。[5]

由图1可以看出,在层次上将新能源科学与工程课程划分为通识教育平台课程、学科专业基础课程、专业(方向)课程、集中实践环节和课外实践环节五个方面。新能源科学与工程课程体系作为一个系统,不同的课程类别在培养目标和培养规格的指导下相互作用、相互影响,共同服务于新能源科学与工程专门人才培养这一特定的功能。

3.教学组织与实施

基于新能源科学与工程专业的培养目标及课程体系结构,考虑到本地区、本学校的实际情况,笔者制定的新能源科学与工程专业的指导性教学计划如图2所示。

由图2可以看出,在教学组织上前五学期主要进行普通文化课和专业技术基础课的教学,为后续专业课程的学习打下良好基础。同时,在第二、三、四、五学期还安排了金工实习、专业认知实习、电工电子实习和机械设计课程设计,目的是增加学生在校期间的动手操作机会。第六、七学期组织专业(方向)课程的教学和实习实训,核心课程均采用一体化教学方式。第八学期开展毕业设计环节,从而培养学生综合运用所学知识、结合实际独立完成课题的工作能力。

三、 新能源科学与工程专业培养计划的特色

1.以厚基础、宽平台、交叉学科为理念,强调扎实的物理、化学和热流体科学基础理论

课程建设时,首先在物理、化学基础理论方面增加了“大学化学”、“物理化学”、“能源与环境化学”和“半导体物理”课程。其次,根据新能源专业的特点,强调物理、化学基础的同时,通过减少“工程图学”、“工程力学”和“机械原理与设计”课程的学时数来弱化机械类课程。再次,为了充分发挥本校本学院学科优势和特点,在热流体理论方面除了开设“流体力学”、“工程热力学”和“传热学”课程外,还开设了“热流体数值计算基础”和“新能源利用中的热流体理论与技术”两门专业特色课程。目的是提升专业内涵,强化特色,确保学生具备新能源领域相关的扎实的基础理论,是学生今后在本专业及相关领域是否具备发展潜力的关键所在。

2.强调实践教学及新能源工程训练

首先,增加了“现代分析测试技术”课程。其次,增加了实习环节的学时数,把一般安排在第六学期的三周生产实习变为第四学期末的一周认知实习和第六学期的三周生产实习。目的是增加实践教学,先认知实习,后生产实习,使实习环节更为科学和合理。再次,还增加了项目设计,把一般安排在第七学期的两周课程设计修订为第六学期末的两周课程设计和第七学期末的两周项目设计。目的是先开展某门课程的课程设计,后进行具体的项目设计,设置更为科学和合理。通过指导学生开展设计性、综合性项目设计,培养学生发现问题、解决问题的创新能力。此外,还增加了新能源工程训练环节,在此环节中学生和指导老师双向选择后,学生参与到老师的科研项目中。指导老师在与国内外新能源企业合作中,向学生提供不同类型的专业实践机会。这个环节是在第七学期前完成,设置此环节的目的是培养学生实践创新和工程应用能力。通过明确的学分要求保证学业导师制的落实。指导老师通过这样一个环节对于特别优秀的学生可向学院推荐其保研,实现本研贯通培养,前后的培养具备一定的连续性。最后,为了充分利用学科资源及已有的实验条件,培养学生实践创新能力,更好地满足新能源专业对学生实践能力和新能源技术工程应用能力的高要求,在课内及集中实践环节总学分要求基础上还增加大于等于六个学分的课外实践要求(社会实践、竞技活动)。

3.体现多学科交叉特点

在课程设置时,除开设“工程图学”、“工程力学”、“电工电子学”、“机械原理”、“工程材料”等课程外,还增开了物理、化学方面的课以及“新能源材料”、“现代生物学导论”、“能源与环境”、“新能源系统自动控制原理”课程,这样充分体现了新能源科学与工程专业和动力工程及工程热物理、应用化学、材料物理、机械工程、化学工程与技术、环境科学与工程各学科的交叉。

4.重视形成宽阔的国际视野

首先,学校开设了全英文及双语课程,比如全英文的“太阳能光伏技术”以及双语的“热流体数值计算基础”、“热泵原理与应用”、“生物质燃烧及混燃技术”课程。其次,借鉴国外新能源专业的课程设置增设了反映新能源领域前沿的“生命周期评价”课程。此外,还增设“新能源前沿及工程应用专题”必修课。这门课要求学生在第七学期结束前听取学院安排的新能源前沿及工程应用专题讲座7次以上。专题可以是合作企业、国内外知名专家的讲座,也可以是本专业教师科研最新进展的讲座,目的是让学生了解本专业领域的最新研究进展及发展趋势,拓宽视野,尽快适应社会发展要求,同时提高学生的专业兴趣。

5.以太阳能为主,兼顾生物质能和风能,提供其他种类新能源的广泛选择的专业定位

首先,在太阳能方面,学校设置有“太阳能热利用”和“太阳能光伏技术”专业课;在生物质能方面,开设有“现代生物学导论”和“生物质能转化原理与技术”;而在风能方面,设置有“风力机空气动力学”和“风力发电与控制技术”专业课。其次,还提供了广泛的新能源相关选修课程来满足学生对不同专业的需求,比如“氢能与新型能源动力系统”、“新能源发电并网技术”、“水力发电与水电站”、“燃料电池原理与技术”、“热泵原理与应用”、“生物柴油制备及应用”、“生物质燃烧与混燃技术”、“能源工程管理”、和“能源经济学概论”等课程。

四、结束语

新能源科学与工程专业的设置顺应时代的发展,是我国可持续发展的需要。但是,由于新能源科学与工程专业是非常新的专业,与之配套的培养方案、课程安排等还处于起步探索阶段。笔者考虑到本地区、本学校的实际情况,同时结合新能源产业对人才的要求提出了具有鲜明特色的新能源科学与工程专业的培养方案,以供参考。笔者相信江苏大学有能力、有信心建设好该专业,为国家经济的可持续健康发展输送合格的人才。

参考文献:

[1]任东明.中国新能源产业的发展和制度创新[J].中外能源,2011,

(1).

[2]王伟东,艾建军,杨坤.新能源产业人才培养问题与对策[J].中国电力教育,2011,(12).

[3]张珏.新能源产业发展所需专业人才培养探讨[J].中国人才,

新能源科学工程例2

中图分类号:G642.3 文献标识码:C DOI:10.3969/j.issn.1672-8181.2013.19.023

新能源产业人才培养落后于产业发展,已严重阻碍了我国当前新能源产业的健康发展,培养新能源方面专业技术人才已经成为当务之急[1-3]。新能源科学与工程专业是教育部2011批准的第一批战略性新兴产业专业,目前处于初步形成和探索阶段,没有现成的经验和模式可以借鉴。明确准确的培养人才定位,形成可操作性强、结构合理的课程体系是新能源科学与工程专业建设迫切需要解决的一项重大课题。

1 新能源科学与工程专业存在的问题

新能源科学与工程专业是2011年开始招生的战略性新兴产业专业,大部分高校都是在原有能源与动力工程专业基础上开始几门新能源领域相关的课程,专业培养方向、课程体系设置等方面存在不少问题。

第一,专业定位、培养方向模糊。在原有能源与动力工程专业基础上开设几门新能源领域相关的课程,培养出来的学生无法满足企业对专业人才的需求。

第二,设置的专业基础课程与专业课程的知识结构不成体系、不能相互支撑。新能源本身涵盖学科知识领域广,学生学习困难,难以达到理想的学习效果。

第三,缺乏合理的实践、实训体系。新能源技术涉及到多个领域,多种技术,要想达到理想的教学效果,培养合格的具备实践应用能力和创新能力的复合型人才,必须开设多种实践、实训教学,但教学设备状况根本无法满足人才培养的需求。

2 新能源科学与工程专业人才培养方案的制定思路

江苏是光伏产业大省,立足地方,结合光伏产业背景,构建常州工学院新能源科学与工程专业的课程体系,探索出与产业背景紧密结合、具有明显特色的专业课程设置,带动人才培养体系创新,实现教育教学质量提高。

第一,依据学校创新型应用人才培养目标,结合新能源技术的理论与实践特点,创新教学理念,提炼新能源科学与工程专业的培养方向与专业特色,为教学改革和创新型人才培养引领方向。

第二,根据学生的认知规律,结合新能源技术的理论与实践特点,以“新能源产业链为主线”构建纵横协同的专业课程体系。实现专业知识覆盖到“新能源材料开发”、“新能源器件制备”、“新能源应用系统设计”等整个完整的新能源产业链。

第三,以“实践创新能力培养”为实践主线,构建“分层次、递进式”实践训练体系。纵横之间通过综合实训、课程实验、生产实习、课程设计、毕业设计等环节有机联系,协调运作,有效解决传统实践教学内容依附于理论课程进行划分,模块之间关联度小,知识体系缺乏连续性、系统性的问题,更好地适应信息时代的需求。

3 新能源科学与工程专业人才培养方案构建

3.1 结合江苏省的光伏产业背景,以及学校的实际情况明确培养方向

围绕常州的新能源产业背景,尤其是光伏产业,依托常州新能源学院,确定常州工学院新能源科学与工程专业以光伏技术为培养方向,培养从事可再生能源,尤其是光伏技术开发与应用系统的设计、开发、测试、运行、管理等方面的具有创新精神的应用型高级工程技术人才。

3.2 以“新能源产业链”为主线,构建纵横协同的课程体系

依据“以人为本,因材施教,学、做、创并举”的教学理念,构建纵横协同教学课程体系。纵向以“新能源产业链中的各种技术能力培养”为主线,建立适应新能源技术学科特点,涵盖新能源材料开发技术、新能源器件制备技术、新能源系统设计与应用等三大系列的“模块化、系列化”完整的课程体系。横向按知识体系与认知能力模块化专业课程,以“机电基础”与“理化基础”为两个专业基础模块、以“光伏技术”为专业主导线、“测试技术”为专业副主线、“各种新能源技术”为专业支撑线,“能源管理”为专业特色线四个专业模块,共六个课程模块。在课程体系范围内,根据培养目标的要求,完善教学大纲,科学合理的设置各个系列各门课程的“多样化”内容。

3.3 以“实践创新能力培养”为实践主线,构建“分层次、递进式”实践训练体系

以“实践创新能力培养”为主线构建“分层次、递进式”实践能力训练体系。将学生实践能力的培养贯穿于实验、课程设计、毕业设计、技能培训、参加科研项目、创新训练项目、各种学科竞赛等实践教学活动的全过程,体现“全程化”。注重工程实际应用能力的培养,大部分课程设计、毕业设计的选题来自于各类科研项目,科研反哺教学,使学生受到更为系统的工程训练,体现“工程化”。针对基础、能力不同的学生,在实践能力培养上提出不同层次的要求,不搞“一刀切”体现 “多元化”。

4 结语

紧密围绕长江三角洲地方产业背景,确定常州工学院新能源科学与工程专业以光伏技术为培养方向;根据学生的认知规律,结合新能源技术的理论与实践特点,以“新能源产业链为主线”构建纵横协同的专业课程体系;以“实践创新能力培养”为实践主线,构建“分层次、递进式”实践训练体系;探索出与产业背景紧密结合、具有明显特色的专业课程设置,带动人才培养体系创新,实现教育教学质量提高。培养多层次的光伏方向的专业人才,服务于地方经济的发展。

参考文献:

[1]王伟东,艾建军,杨坤.新能源产业人才培养问题与对策[J].中国电力教育,2011,(12):5-6.

[2]王彦辉,齐威娜.新能源产业人才培养存在的问题及对策[J].中国成人教育,2010,(2):54.

[3]王永,张渊,刘浩,程超.长三角地区高职光伏专业建设研究[J].职业教育研究,2012,(2):31-32.

作者简介:熊超,常州工学院光电工程学院,江苏常州 213002

新能源科学工程例3

0引言

2010年教育部批准河北建筑工程学院开设风能与动力工程专业,2011年我校开始招收第一批风能与动力工程(080507S)专业学生。风能与动力工程是一门交叉学科,教学环节涉及控制、电气、计算机、机械、自动化等多种学科。根据教育部2012年本科专业设置方案,我校风能与动力工程专业更名为新能源科学与工程(080507T)。全国开设新能源科学与工程的高校中,各个高校侧重点不同,结合我校学科群特点和优势我校该专业继续定位在风能方向。下面结合我校实际特点就新能源科学与工程的专业培养方案进行简要探讨。

1.专业培养目标

我校的该专业培养掌握新能源科学与工程基本理论,具有扎实学科领域基础知识与应用能力,综合掌握风力发电工程设计、风电设备原理及风电场运行的理论和技能,具有创新精神和实践能力的高素质新能源科学与工程专业人才。这样使毕业生主要在风电场设计与运行、控制与维护、风电机组设计及制造领域从事专业技术工作和管理工作,也可在相关研究机构从事研发设计工作。

2.课程培养方案设置

2.1学科大类基础课程和跨学科基础课设置

由于我校该专业方向为风能方向,侧重点为电气、自动化、控制部分。但该专业本身涉及到控制、电气、计算机、机械、自动化等多种学科,结合我校是河北省电子信息教育创新高地的资源优势,我校学科大类基础课程和跨学科基础课设置如下表。结合我校的优势学科,我校在跨学科基础课程上设置了许多计算机、物联网类课程,这对于学生在以后学习风电机组电气工程、监测维护、电力系统调度等做了充足的理论准备。

2.2专业基础课程设置

对于该专业的学生,我们力图通过四年的培养达到如下条件:

(1) 培养学生具有良好的综合素质和创新意识,富有社会责任感,具有国际一流的视野,具备新能源科学与工程这一强交叉学科宽厚扎实的科学基础理论,系统掌握新能源科学与工程应用专业知识及技能、新能源装置及系统运行技术。

(2) 培养学生具有扎实的自然科学基础,良好的政治理论基础,较好的社会科学基础和正确运用本国语言、文字的表达能力;

(3) 本专业主要学习空气动力学、风资源测量与评估、电工学、管理学、自动控制的理论和技术,接受现代风力发电专业的基本训练,使学生具有进行风电机组及风电场的设计、制造、运行、试验研究、项目投资与管理的基本能力。

(4) 较系统地掌握本专业领域所必须的专业知识,如风力发电原理、风电机组设计与制造、风电场电气部分、风电场运行与控制、风力发电项目开发等。

所以在专业基础课程和专业核心课程的设置上进行了侧重。

3教材的选用

教材是体现教学内容和教学方法的知识载体,也是深化教育教学改革、全面推进素质教育、培养创新人才的重要保证。教育部《关于加强高等学校本科教学工作提高教学质量的若干意见》(教高司[2001]4号)中明确指出“教材的质量直接体现高等学校教育和科学研究的发展水平,也直接影响本科教学质量”。为了进一步规范教材选用与管理,选用高水平的教材,杜绝质量低劣的教材进入课堂,健全科学的教材选用制度,不断提高教学质量,我专业教材选用采用如下办法。

3.1教材选用原则

(1)优先原则:优先选用国家级、省部级获奖教材;优先选用国家级、省(部)级重点教材和规划教材;优先选用“面向21世纪课程教材”。

(2)择优、择新、适用原则:树立精品意识,在同类教材中,通过比较,选用质量最好的、近三年出版的、适用的新版教材。

3.2教材选用标准

(1)选用的教材必须符合社会主义市场经济建设、社会发展和科学进步对人才培养的需要。能运用辩证唯物主义和历史唯物主义的方法,全面、准确地阐述本学科的基本理论、基本知识和基本技能。

(2)选用的教材必须符合本专业人才培养目标及课程教学的要求,取材合适,深度适宜,份量恰当,符合认知规律,富有启发性,有利于激发学生学习兴趣,有利于学生知识、能力和素质的培养。

(3)选用的教材应体现科学性、先进性和适用性的有机统一,能反映本学科领域国内外科学研究的先进成果,正确阐述本学科的科学理论,完整表达课程应包含的知识,结构严谨,理论联系实际,具有学科发展上的先进性和教学上的适用性。

新能源科学工程例4

华中科技大学是首批列入国家“211工程”和“985工程”重点建设院校之一,在国内高校中具有重要影响力。能源与动力工程学院作为学校重点建设的学院之一,拥有国家重点实验室,国家一级重点学科——动力工程及工程热物理,国家二级重点学科工程热物理与热能工程,一级学科博士点,国家级优秀博士后工作站,湖北省品牌专业,国家特色专业等,学科优势和综合实力优势明显。

优质的师资队伍

学院拥有“国家基金委创新群体”、“教育部创新团队”和“湖北省自然科学基金创新群体”,团队成员包括一批国内外知名学者和数名从国外回国工作的专家学者,他们具有广泛的国际合作研究背景。这些团队主要的研究方向都包括了新能源科学与工程,为组建新能源科学与工程专业的教师队伍创造了良好的先天条件。此外,能源与动力工程学院于2005年成功入选国家外国专家局、教育部高等学校学科创新引智计划(“111计划”),使学院成为全国首批26个创新引智基地之一。在该计划的资助下,学院瞄准国际学科发展前沿,结合新能源学科领域的具体情况,每年从世界排名前100位的大学或世界排名前20位的学科或研究机构的优势学科队伍中,引进、汇聚10位左右的海外学术大师、学术骨干,配备一批国内优秀的科研骨干,形成高水平的研究队伍,建设世界一流的学科创新引智基地。

经过多年的发展,学院目前已经形成了以太阳能、生物质能和风能为代表的研究团队和教师队伍,在新能源科学与工程专业方向上共有教授18名,副教授12名,其中博导20名,硕士导师30名,具有博士学位教师29名。教师队伍中有“国家重点基础研究发展计划(973计划)项目首席科学家”1人,“教育部长江学者特聘教授”3人,“国家杰出青年基金”获得者4人,入选国家“百千万人才工程”第一、二层次的2人,入选教育部“跨世纪优秀人才培养计划”5人,教育部骨干教师4人。拥有国家精品课程2门,湖北省精品课程1门。学校新能源学科还与美国麻省理工学院、加拿大阿尔伯特大学、英国帝国理工、日本东京大学、香港理工大学等国外著名研究机构和大学在人才培养、项目研究、技术开发等方面建立了广泛的合作,形成了一支梯队健全、结构合理、具有较高学术水平的教学科研队伍。

此外,新能源科学与工程专业还拥有一批极具优势的国际化教学力量。华中科技大学能源与动力工程学院承建的中欧清洁和可再生能源学院(China-EU Institute for clean and renewable energy,简称CEICARE或ICARE)是继中欧国际工商学院、中欧法学院之后,由中国政府和欧盟委员会共同发起建立的第三所中外合作办学机构。该学院每周都从法国巴黎高科、希腊雅典国家技术大学、西班牙萨拉哥萨大学、英国诺森比亚大学、意大利罗马大学、法国佩皮尼昂大学、国际水资源事务所等共6个国家9所重点大学邀请新能源领域著名学者和专家来汉为研究生授课,同时应邀为本科生讲授部分新能源学科课程,这些国际化水准师资力量的引入为新能源科学与工程专业的建设提供了良好的发展契机,极大丰富了新能源专业的国际化视野。

雄厚的科研实力

新能源科学与工程专业的建设有着强大的科研基地做支撑,其中包括:煤燃烧国家重点实验室、中美清洁能源联合研究中心试验基地、中澳煤与生物质利用联合实验室、煤燃烧教育部网上合作研究中心、国家煤清洁低碳发电技术研发中心、能源动力装置节能减排教育部工程中心、武汉新能源研究院、流体及热科学研究实验中心、动力工程及工程热物理博士后科研流动站等,这些科研基地的主要研究方向都包括新能源研究领域,其专业教师完成的先进丰硕的科研成果为新能源学科的发展提供了强有力的支撑。

国家“十五”计划以来,共完成国家、地方和企业委托的科研课题300多项。其中,牵头和参加“973”项目37项,获“863”项目9项,获国家自然科基金重点项目2项,国际合作重点项目2项,面上的与企业合作研究项目53项,国防预研类项目5项;获国家级、省部级科研和教学成果奖20多项,其中国家自然科学二等奖、国家技术发明二等奖、国家科技进步二等各1项,省部级科技一等4项,二等奖9项,国家授权的发明和实用新型专利近50项;出版专著、译著和教材30余部,发表学术论文2000余篇,被国际三大索引收录的论文600余篇,其中生物质能研究领域的多篇论文进入国际SCI高引数据库,单篇最高它引次数超过300次,在国际生物质能领域具有持续的影响力。同时,学校在新能源科学与工程理论研究和技术开发方面有着独特的优势。新能源学科承担了有关生物质能、太阳能热利用、太阳能电池、风力发电、能源清洁利用、CO2减排相关的973课题、863计划项目、国家自然科学重点基金、国家自然科学面上基金等许多国家项目,为新能源科学与工程专业学科的建设奠定了坚实的基础。

培养方案改革

华中科技大学新能源科学与工程专业着重培养具备宽厚的基础理论知识、受到新能源转换与利用以及新能源利用技术与设备的全面训练、集新能源科学及工程知识与现代信息技术为一体的跨学科复合型高级技术人才和管理人才。要求学生通过4年的专业学习能够具有一定的人文社会科学和自然科学基本理论知识,特别是有较好的人文素质;系统地掌握本专业必需的技术基础理论,主要包括力学、热学、电工与电子、自动控制及能源动力工程基础理论等;熟悉本专业领域内1-2个专业方向或有关方面的专业知识,了解学科前沿和发展趋势;具有本专业必需的制图、计算、测试、调研、查阅文献和基本工艺、操作、运行等基本技能;掌握一门外国语,要求能阅读专业书刊,并有一定的听说能力;具有一定计算机相关知识和较强的计算机应用能力,能熟练使用计算机解决工程中的有关问题;具有新能源科学与工程的专业知识,兼顾装备制造、过程控制和信息技术基础知识,能利用新能源开发与利用工程实践经验,解决工程中的有关问题;同时,具有较强的自学能力、分析能力和创新意识。

在专业培养方案的制定上,基于学院多年教学摸索和多次研讨设计出“通专结合,协调发展”的创新型培养方案:3年——加强基础的专业通才教育;0.5年——拓宽专业方向的分组教育;0.5年——面向就业市场的个性化专业方向教育,优化专业教育内容。同时,制定出“专业分组与专业方向相结合”的教学组织模式:学生在通才教育基础上自主选择专业分组,可跨专业组选课;并在此基础上根据就业或考研的具体情况,第二次再选专业方向。

本科教学建设

“夯实基础、拓宽平台、交叉学科”的教学设计

为确保学生具备新能源领域相关的扎实的基础理论,同时又考虑到新能源学科本身具有多学科交叉的特点,因此,专业的基础课程必须宽而广。在基础课程设计上,本科生通过系统的学习,可以掌握本专业必需的技术基础理论,主要包括力学、热学、电工与电子、自动控制及能源动力工程基础理论等。主要课程包括工程热力学、工程流体力学、传热学、工程燃烧学、能量转换与利用、自动控制原理、可持续能源利用技术、新能源转换-原理与技术、风力发电原理、太阳能热利用技术与原理、生物质能转化原理与利用、节能减排技术等。

主辅并进的专业定位

先进的生物质能源技术是目前可再生能源技术中全球使用最为普遍的新能源,而太阳能和风能是发展最为迅速的新能源。生物质能、太阳能和风能作为最主流的新和可再生能源,其就业需求也迅速增加。能源与动力工程学院自20世纪60年代成立以来,就在水电、太阳能、生物质、风力机等新能源方面进行着研究,并一直开设“可再生能源概论”等新能源相关的本科选修课程;此外,引进国际化高层次人才和邀请中欧清洁与可再生能源学院外国知名教授,这些方式的采用进一步完善和优化了师资体系。有了强大的师资力量作为基础,综合考虑就业面需求,制定了以生物质能、太阳能和风能为主,兼顾其他新能源的广泛选择的专业课程框架体系。其中专业核心课程包括了《可持续能源利用技术》、《风力发电原理》、《太阳能热利用技术与原理》、《节能减排技术》、《新能源转换-原理与技术》、《生物质能转化原理与利用》。

强化对外办学扩展国际视野

为了加强国际交流与合作,取长补短,学院与美国、法国、日本、加拿大、澳大利亚、意大利、葡萄牙等20多个国家的著名大学和科研机构建立了长期合作关系。中欧清洁与可再生能源学院(ICARE)在太阳能、生物质能、风能、地热能以及节能方面开展了硕士培养及专业技术人员培训。在欧盟资助的10年期内ICARE将培养近2000名高水平可再生能源双学位硕士,培训不少于5000名的可再生能源从业人员,培养与推介若干博士生/青年教师以及在中欧可再生能源领域开展学术、技术交流。为了培养高品质的本科生,进一步提高办学的国际化水平,在学校本科教学协同计划基金的资助下,该专业聘请了多名国外一流大学的教授来校给本科生授课,授课形式采取多名外国教授共同教授一门全英文课程的形式展开。同时,还将聘请新能源产业著名企业的高级工程师和高级管理人才来汉授课。通过与国际可再生能源培养机构和业界知名企业的合作,将极大提高新能源专业人才培养的国际化程度,推进新能源学科建设的快速发展。

新能源科学工程例5

一、优化课程结本文由收集整理构

创新能力来源于宽厚的基础知识和良好的素质,仅仅掌握单一的专业知识是很难做到的。因此,加强学生专业基础教育的内涵更新和外延拓展及构建合理的课程体系非常重要。首先要优化课程结构,按照“少而精”的原则设置必修课,增加选修课比重,允许学生跨系跨专业选修课程。还要提高学生获得信息的手段,使学生有机会接触各学科发展前沿,了解科技发展的趋势,掌握未来变化的规律。

二、优化课堂教学形式

课堂教学是教学的基本组成形式,学生的创新精神和创新能力的培养也必须渗透到各科教学过程中。教师既是知识的传授者,也是创新教育的实施者。要结合学生的认知水平和生活体验,创设新的教学情景导入新课,营造一个鼓励学生创新的课堂氛围。采用多样的课堂教学形式,鼓励学生提出不同的见解。加强各学科的相互渗透和交叉综合,有利于学生整体素质的提高;注意融合学科前沿知识和高新科技,激发学生的创新精神。

三、探索开放式实验教学体系

充分利用我院省级化学工程实验教学示范中心的仪器设备和师资力量,探索和完善实施开放式实验教学的方法及其在课堂教学、实验技能竞赛、创新实验设计竞赛、新能源设计竞赛、数学建模竞赛、本科生毕业设计(论文)中的应用,改革和完善实验课程成绩的科学评价体系,改革实验室管理运行机制,探索开放实验室的管理方式和体制,探索保障实验仪器设备不断更新以跟上学科发展的途径,完善实验仪器设备、实验经费和实验耗材的实验室管理体制。

四、完善学生科技创新体系,建立校内外创新实践基地

实行学生研究训练计划,引导学生在教师的指导下进行科研训练;鼓励学生参加教师的科研课题,与教师合作进行科学研究;实行学生科研立项制度,从政策和经费上鼓励学生进行科技创新;聘请国内外著名专家学者为学生作学术报告等形式,使学生了解能源化工专业发展的学术前沿;鼓励学生申报国家创新实验项目,省、校级挑战杯项目等,提高学生的科学素质,培养学生的科学精神。发挥区域经济优势,签约合作企业,并对创新设计实验室进行重点投入建设,本专业已建成国家级石油化工工程实践教育中心和大庆炼化公司的创新实践基地,为学生创新实践提供了保障。

五、完善评价体系,建立创新激励机制

评价是教育管理中实施控制的特殊手段,是教育管理的重要环节。传统培养体系不利于培养创新人才的弊病反映在评价体系上采用简单划一的方式,未能反映出学生的真实全面的水平和能力。对学生的评价不仅要重视知识的全面性考查,更要重视创新能力的考查。考试方式多样化,考试时间自主化。同时建立对学生的创新意识、创新能力、创新成果积极的激励机制,即对学生的各种创新行为和成果给予正面的激励和奖励。建立专门制度,从政策导向上鼓励和支持教师在传授知识过程中,积极探索创新思维能力培养的方法并付诸实践。

六、实践成果

1.丰富和完善了教育教学研究的改革和实践。项目在能源化工专业2009级中进行了三年的应用,收到了良好效果,极大地推动了其他化工专业类拔尖人才和创新人才的培养和实践,对促进石油化工类拔尖创新本科人才培养质量的提高发挥了积极的作用。2010年以来,石油化工类专业承担省级教改项目3项。发表教学研究论文9篇,主编教材3部;完成了《分离工程》等省级精品课程的建设,《化工热力学》、《化学反应工程》、《工业催化》3门重点课程建设。

2.促进了石油化工专学科建设。石油化工创新拔尖人才培养的改革促进了以化学工程与工艺为主的石油化工类学科建设。目前在学科建设方面已有1个国家级特色专业—化学工艺,1个国家级战略性新兴产业相关专业—能源化学工程,1个省重点(特色)专业—化学工程。已有1个国家级实践教育平台—国家级石油化工工程实践教育中心,1个轻烃加工与利用部级重点实验室,1个石油与天然气化工省重点实验室和1个省级石油化工技术研发中心,已成为黑龙江省石油化工工程技术人才培养和培训基地。

新能源科学工程例6

    创新能力来源于宽厚的基础知识和良好的素质,仅仅掌握单一的专业知识是很难做到的。因此,加强学生专业基础教育的内涵更新和外延拓展及构建合理的课程体系非常重要。首先要优化课程结构,按照“少而精”的原则设置必修课,增加选修课比重,允许学生跨系跨专业选修课程。还要提高学生获得信息的手段,使学生有机会接触各学科发展前沿,了解科技发展的趋势,掌握未来变化的规律。

    二、优化课堂教学形式

    课堂教学是教学的基本组成形式,学生的创新精神和创新能力的培养也必须渗透到各科教学过程中。教师既是知识的传授者,也是创新教育的实施者。要结合学生的认知水平和生活体验,创设新的教学情景导入新课,营造一个鼓励学生创新的课堂氛围。采用多样的课堂教学形式,鼓励学生提出不同的见解。加强各学科的相互渗透和交叉综合,有利于学生整体素质的提高;注意融合学科前沿知识和高新科技,激发学生的创新精神。

    三、探索开放式实验教学体系

    充分利用我院省级化学工程实验教学示范中心的仪器设备和师资力量,探索和完善实施开放式实验教学的方法及其在课堂教学、实验技能竞赛、创新实验设计竞赛、新能源设计竞赛、数学建模竞赛、本科生毕业设计(论文)中的应用,改革和完善实验课程成绩的科学评价体系,改革实验室管理运行机制,探索开放实验室的管理方式和体制,探索保障实验仪器设备不断更新以跟上学科发展的途径,完善实验仪器设备、实验经费和实验耗材的实验室管理体制。

    四、完善学生科技创新体系,建立校内外创新实践基地

    实行学生研究训练计划,引导学生在教师的指导下进行科研训练;鼓励学生参加教师的科研课题,与教师合作进行科学研究;实行学生科研立项制度,从政策和经费上鼓励学生进行科技创新;聘请国内外着名专家学者为学生作学术报告等形式,使学生了解能源化工专业发展的学术前沿;鼓励学生申报国家创新实验项目,省、校级挑战杯项目等,提高学生的科学素质,培养学生的科学精神。发挥区域经济优势,签约合作企业,并对创新设计实验室进行重点投入建设,本专业已建成国家级石油化工工程实践教育中心和大庆炼化公司的创新实践基地,为学生创新实践提供了保障。

    五、完善评价体系,建立创新激励机制

    评价是教育管理中实施控制的特殊手段,是教育管理的重要环节。传统培养体系不利于培养创新人才的弊病反映在评价体系上采用简单划一的方式,未能反映出学生的真实全面的水平和能力。对学生的评价不仅要重视知识的全面性考查,更要重视创新能力的考查。考试方式多样化,考试时间自主化。同时建立对学生的创新意识、创新能力、创新成果积极的激励机制,即对学生的各种创新行为和成果给予正面的激励和奖励。建立专门制度,从政策导向上鼓励和支持教师在传授知识过程中,积极探索创新思维能力培养的方法并付诸实践。

    六、实践成果

    1.丰富和完善了教育教学研究的改革和实践。项目在能源化工专业2009级中进行了三年的应用,收到了良好效果,极大地推动了其他化工专业类拔尖人才和创新人才的培养和实践,对促进石油化工类拔尖创新本科人才培养质量的提高发挥了积极的作用。2010年以来,石油化工类专业承担省级教改项目3项。发表教学研究论文9篇,主编教材3部;完成了《分离工程》等省级精品课程的建设,《化工热力学》、《化学反应工程》、《工业催化》3门重点课程建设。

    2.促进了石油化工专学科建设。石油化工创新拔尖人才培养的改革促进了以化学工程与工艺为主的石油化工类学科建设。目前在学科建设方面已有1个国家级特色专业—化学工艺,1个国家级战略性新兴产业相关专业—能源化学工程,1个省重点(特色)专业—化学工程。已有1个国家级实践教育平台—国家级石油化工工程实践教育中心,1个轻烃加工与利用部级重点实验室,1个石油与天然气化工省重点实验室和1个省级石油化工技术研发中心,已成为黑龙江省石油化工工程技术人才培养和培训基地。

新能源科学工程例7

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2017)07-0108-02

随着全球经济一体化进程的加速,世界各国对人力资源的竞争也日益激烈。为了适应当前社会的需求,各国高校在人才培养模式和理念也在逐步的由以“学历”为主向以“能力”为主过渡。2015年,总理提出:“大学生是实施创新驱动发展战略和推进大众创业、万众创新的生力军,既要认真扎实学习、掌握更多知识,也要投身创新创业、提高实践能力。”那么,如何切实地提高我国当代大学生的创新实践能力,则是笔者重点研究内容。自上世纪60年代开始,欧美众多高校就逐步调整教学模式,以培养大学生动手实践能力为主,经历几十年的探索和实验,他们积累了十分丰富的实践教学经验。而我国在1977年恢复高考以后,高等教育在历经十几年的停滞之后,逐步地恢复正常秩序。到90年代初期,我高校才逐步开始意识到大学生实践能力培养的重要性,这相比于欧美等西方高校,已经严重落后。

一、国外高校现状

在高等教育非常发达的美国,他们为了提高学生的动手实践能力、培养学生的创造力以及促进学生的全面个性化发展,采用了灵活多样的教育方式和制订了多种的教育制度用以保证学生的各项权利和身心全面发展。例如,在高校的学习生活时间十分富有弹性,允许学生自由选择校内和校外的学习方式以及学习途径,同时,也允许学生自由选择学科专业,以及自由的转换专业等,在校期间的学习的年限十分灵活,可以选择全日制、非全日制(远程教育、函授)等多种途径进行学习,只要达到完成相应的课程学习目标和获得课程考核的通过,就能获得同样的学历或学位。不仅如此,学生在校期间,可选择理工科、文史科、自然科学等单一学科进行学习,也可以选择电子商务类似的交叉学科或者跨学科门类进行学习等[1]。

而在欧洲德国和瑞士等高校,他们将实践教学精心设计成与职业技能相关的实验实训课程,把理论教学的知识点分散充实到实践教学之中,从而将课程和实践完美的结合。这种类似于学徒培养的人才培养模式,我们称之为“双轨制”。通过“双轨制”培养出来的学生,能将课题的理论知识最大限度地应用于实践之中,同时,能将实践中所遇到的困惑,在理论知识中找到解答,这将极大地提高学生对专业问题的处理能力和动手实践能力,对学生未来的就业和职业生涯规划,有着十分重要的作用。

亚洲邻国印度,他们在计算机信息技术领域所取得的成绩,与他们对学生创新实践能力的培养是密不可分的。我们以印度理工学院为例,简答阐述印度高校对学生实践能力的培养具体措施。首先,印度理工学院为学生提供全体24小时免费开放的计算机实验室,要求学生自觉独立的完成相应的教学实验项目。其次,在学生进行相关实验的过程中,指导老师参与项目的设计和规划,带领学生通过简单的项目入手,让学生完整地了解项目开发制作过程。而后,指导老师进一步以企业真实项目为案例给学生讲解,最终实现学生能够以团队模式完成企业项目开发为培养目标。在大量的项目开发实验教学过程中,学生积累了丰富的解决问题的经验,从而有效地提高了学生的创新实践能力。正是这种实验教学为主的培养模式,也为印度成为世界软件强国提供了人力资源基础[2]。

二、国内高校现状

在了解欧美和近邻的高校学生创新实践能力培养之后,再反观我国的高等教育。在我国当前的高等教育中,主要存在两大问题:一是在教学活动中过分强调授课教师的作用,在课堂教学过程中以教师讲授为主体,从而忽略了学生的学习意识和主体地位;二是在教学评价过程中,过分强调以考试成绩作为评优标准,导致无形中强化了学生的一种“标准答案”模式思维,从而逐步让学生的创新性思维消失殆尽,很难让学生去锻炼发散性思维和提高创造力。这种传统的应试教育模式,束缚了学生的思维方式,让学生的灵感和悟性无从释放,造成了思维惰性、惯性依赖、知识僵化等等无法学以致用的创新障碍[3]。除此之外,参与科研项目研究是能够作为锻炼人们创新实践能力的一种最佳途径。而我国大多数高等院校中参与科研项目研究的主力军仍然是高校教师和研究生们,而本科生作为高校的主要组成部分,却很少能参与进科研项目研究过程中,即使是本科生的毕业设计环节,对于大多数高校来说也只是当作他们完成大学学业的一门普通课程去对待,很少有高校能将科研项目分解成若干本科生的毕业设计,主动吸纳本科生来共同完成科研项目的。这样就直接造成了,大学生对于科研项目的态度是不了解、不积极和没兴趣。从此,造成了学生的创新意识淡薄和学校的科研氛围不浓,这也严重制约着大学生的创新实践能力的培养。

三、基于工程中心科研资源的高校学生创新实践能力培养模式

如今,我国许多高校均已建立了国家级、省部级或者地市级的工程技术研究中心。高校通过这些工程中心的建立和发展,将自身的科研成果不断地产业化,有效地建立起一种产、学、研相结合的社会服务的机制,并且已经拥有了丰富的技术成果、先进的仪器设备、优秀的专业技术人员和优良的企业资源。

那么,如何来利用好工程中心的这些科研实践资源来有效地建立一种高校学生创新实践能力培养的模式呢?笔者将主要阐述以下几点:

1.利用工程技术中心丰富的科研实践资源,将科研和教学有机结合,把所获得的科研成果的转化分解为若干个创新实践实验项目补充到实践教学中。这样不仅可以有效地提高学科实践教学质量,还可以让大学生们真正感知到知识应用和知识转化的过程,加深他们对学科前言动态的了解,从而提高他们对学科的兴趣、强化科学创新意识和促进学科知识到实用技能的转变。

2.吸{大学生来参与工程中心的科研项目研究中,由工程中心来指派相关的项目负责老师来完成对他们的项目研究指导,不仅可以让学生切实地了解项目的研发管理,还可以将自己所学的学科知识得以应用实践。学生在参与科研项目研究又主要分成两类情况:一是工程中心的指导老师可将在研项目分解成若干子任务,指导学生以团队的形式共同来完成子任务的研发,相对于每一位学生来说,每一个子任务必须独立完成;二是在工程中心指导老师的指导下,由学生自己完成科研项目,从中他们需要独立完成选题、设计、调查和论证过程并撰写相关报告,从而提高他们的科研能力、创新思维能力、语言表达能力、分析问题与解决问题能力。通过科研训练,不仅是提高他们的各项基本能力,同时,对于他们的综合素质提高和团队意识的增强,有着显著的效果。

3.工程中心往往还兼具大学生创新项目创业孵化的功能,因此,工程中心可以为许多高年级大学生或者研究生们提供创新创业指导和项目孵化的资金和技术支持,这样不仅是鼓励大学生去创新和知识应用,更是以一种开放式的姿态去将高校科研资源最大化利用。

四、结束语

让大学生参与到科研实践中,是为了给他们提供更多的知识应用和实践的机会,让他们在学习知识的过程中不断地去了解和探索学科前言。通过科研成果的转化分解,不仅是让他们了解和掌握知识转化的过程,更是培养他们解决问题和知识更新的能力。

参考文献:

[1]商应美.国外大学生创新性实践能力培养对我国的启示[J].中国青年政治学院学报,2011,(3).

[2]刁稚芳.实验教学在提高学生创新实践能力中的价值新探[J].实验技术与管理,2006,(9).

新能源科学工程例8

中图分类号:G646 文献标志码:A 文章编号:1674-9324(2014)20-0202-02

一、我国高校“新能源科学与工程”专业产生的背景

2011年,教育部公布了全国各高校申报设立的140个本科新专业名单。这140个新设置专业全部为国家确定的战略性新兴产业相关本科专业,从2011年开始招生。这些新增专业着重培养物联网、互联网、绿色经济、低碳经济等国家战略性新兴产业发展所需的高素质专门人才[1]。新能源科学与工程专业就是其中一个。该专业主要学习新能源的种类和特点、利用的方式和方法、应用的现状和未来的发展趋势。

根据联合国与国际能源组织预计,新能源的开发和利用是人类可持续发展的重要出路。为实现经济的可持续发展,我国“十二五”发展规划明确把常规能源、新能源、节能减排等能源类领域的发展放在优先位置,能源已成为我国未来国民经济高速发展的重要基础之一。根据国家中长期发展规划,2000年至2020年是新能源及可再生能源发展的重要时期。到2020年之前,我国可再生能源发展的总目标是:提高可再生能源在能源消费中的比重,解决偏远地区无电人口用电问题和农村生活燃料短缺问题,推行有机废弃物的能源化利用,推进可再生能源技术的产业化发展。到2020年建成水电3亿千瓦、风电3000万千瓦、生物质发电3000万千瓦、太阳能发电180万千瓦。建成太阳能热水器面积3亿平方米,实现沼气年利用440亿立方米、生物质成型燃料5000万吨,非粮生物液体燃料形成年替代1000万吨石油的能力。为实现上述目标,到2020年,我国需在可再生能源开发利用领域投资大约2万亿元,从现在到2020年的投资大约1.5万亿元。按照相关部门使用的投资拉动就业推算公式,每亿元固定资产投资对就业的拉动量保持在297~706人之间,均值为474人/亿元来计算,则1.5万亿元可拉动就业岗位711万个。因此“十二五”期间,这一领域的人才需求将呈现大幅上升的势头,新能源科学与工程专业作为2011年新增战略性新兴产业专业,是一个以培养新能源合理开发、高效清洁利用为目标的能源类专业,肩负着培养国家能源类紧缺人才的重任[2,3]。

二、天津市高校开设“新能源科学与工程”专业的必要性

目前,天津市从事能源类的企业达到300多家,如天津市风电整机、关键部件和配套企业达到50家,总投资126.45亿元,从业人员24760人,在全国风电行业形成了最完整的产业体系。据统计,目前,天津市整机生产能力达到5600兆瓦,叶片生产能力为14000支,按三叶片整机计算,可满足4900台整机需要;齿轮箱5400台以上;发电机1500台;控制系统3200台;以树脂为主的叶片材料5.5万吨,已成为中国最大的风电成套设备生产制造基地。

天津滨海新区日前也出台了《新能源产业发展规划纲要》和《促进新能源产业发展的若干措施》,明确在新能源领域重点发展风电、光伏、绿色二次电池和LED四大产业,计划每年从新区促进经济发展各专项资金中集中8000万元到1亿元,专项用于支持新能源产业发展。同时,各相关功能区结合各功能区新能源产业发展重点,也将集中12亿元,加大对新能源产业的支持力度。天津市西青区也计划在张家窝投资25亿元建立以新能源产业为龙头的科技产业园区。预计天津市在“十二五”期间投资在新能源产业上的资金超过50亿元。按照上述公式计算可拉动就业岗位2.37万个,也就是年平均5925个。天津市19所高校中有天津大学、天津理工大学、天津商业大学和天津城市建设学院开设能源动力类专业――热能与动力工程,每年的毕业生不足1000人。因此,仅从天津市这一局部区域来说,能源类人才培养和储备严重不足。

三、专业建设的整体目标与思路

在对国内外新能源相关专业人才培养充分调研的基础上,分析国家社会和经济发展要求,基于新能源产业特点及企业和社会对新能源专业人才知识结构和能力结构的要求,同时围绕天津区域经济社会发展对能源类人才的需求,确定了新能源专业人才培养建设方案,主要包括建设目标的确立及科学、合理的课程体系的设置,可行的教学计划的制订等[4]。

1.建设目标。围绕天津区域经济社会发展对能源类人才的需求,引进先进的教育思想(如认知灵活性理论等),以“3.4.5.6”人才培养理念贯穿于本专业教育的全过程中,高起点、高标准、严要求地开展本专业建设工作。首先是在以“全科模拟工作岗位实训体系”为专业教学轴心的分层次人才培养模式下,强化学生的人文素质教育,使其具有强烈的事业心、责任感,有良好的社会公共道德、职业道德和法律意识。同时优化该专业结构,提升本专业建设的整体水平;进一步强化校企合作,加强专业链与产业链的有效对接,共建应用型人才培养基地;建立企业、高校、科研院所三位一体的人才培养联盟和协作机制,全方位提高人才培养的质量,使该专业在教学条件、师资队伍、人才培养模式、人才培养方案、课程体系与教学内容、教学方法与教学手段等方面形成更具竞争力的优势和特色,实现“教育思想先进、培养目标明确、教学改革领先、师资队伍优化、教学成果优秀”的目标。

2.建设思路与实施方案。①以服务天津区域经济社会发展为导向。围绕天津市提出的农业科技创新工程和设施农业提升工程,构建具有都市型农业特色的“大农业”(郊区农业+市区绿化环卫)废弃物资源化利用工程技术平台和绿色能源在“大农业”生产中高效利用工程技术平台。并在此基础上,探索人才培养与地方需求的最佳结合点,形成互利共赢、互动发展的良好局面,培养适合天津农业和工业领域人才需求的能源类创新性复合型人才。②以“创新性复合型”人才培养为目标。创新性复合型人才是当今时代的迫切需求,也是培养能源类卓越工程师的前提。为此,大力开展教学改革,构建以基础教育、专业基础教育和专业教育为主体,全科模拟岗位实训贯穿其中,实现专业交叉,融入艺术教育的新型教学体系,探索“以能力培养为主线,宽口径、厚基础、强能力、高素质、重个性”的分层次人才培养模式。③以理论教学和实践教学并重为手段。坚持“以人为本、以学生为中心、以致用求创为目标”的教学改革思路,打通基础教学、专业基础教学和专业教学的瓶颈,构建有机的教学体系和师资交流平台。首先,在重视基础、专业基础和专业教学的知识积累的同时,更加重视“学生的思路、方向、方法论基础和把握全局者的综合性基础”素质的培养,使基础教学成为提升学生专业兴趣和好奇心的“催化剂”。其次,大力实施“全科模拟工作岗位实训计划”、学生科技创新活动和高校、企业、科研院所无缝隙合作工程,使其成为培养学生理论联系实践解决实际问题能力的主要手段,实现分层次人才培养,实现学生个性发展的主要措施,促进学生适应社会、适应岗位的“催熟剂”。

四、总结

“新能源科学与工程”专业是高等院校战略性新兴本科专业,其专业培养方案的设计和制定必须紧跟新能源科学技术的发展步伐,与时俱进。以动态跟踪的专业培养目标为依据,创新培养模式,建立科学的、先进的、发展的课程体系。专业建设要依据社会和企业需求,专业联系产业,学科对接产业,专业对接职业,积极培养新能源产业发展所需要的高级专门人才。

参考文献:

[1]郭瑞,王胜辉,高微,王帅杰.“新能源”科学与工程(太阳能方向)专业人才培养初探[J].沈阳工程学院学报(社会科学版),2012,8(3):400-402.

[2]任东明.中国新能源产业的发展和制度创新[J].中外能源,2011,(1).

[3]陈学俊.对能源科学与工程发展的若干建议[J].院士与学部,2005,20(6):451-455.

新能源科学工程例9

从学科发展层面看,随着化石能源利用导致的环境问题日益凸显,可再生能源重新受到了人类青睐。20世纪末以来,可再生能源以“新能源”的形式不断崛起。奥巴马上台后美国推出的能源新政,2009年中国出台的战略性新兴产业发展规划,均将开发利用新能源提升为国家战略。

目前,新能源学科的研究和实践范围大大扩展,其学科外延从对传统能源和动力的简单替代,向燃料替代、电力替代、动力替代全面拓展,尤其是在即将到来的以信息技术和新能源技术结合为基本特征的第三次工业革命时期,新能源更是被赋予了推动经济发生深刻变革的使命。

学科发展现状及存在的问题

发展现状

目前我国高等学校已有3个层次的新能源人才培养体系:博士学位、硕士学位、学士学位。据统计,2014年我国开展新能源人才培养的博士点64个、硕士点68个,本科专业培养点60余个,覆盖全国62个学位授予单位,其中高校为59个。

本科层面专业设置情况:1981年,河南农业大学、沈阳农业大学在农业机械化专业下面开设了农村能源方向,后改为农村能源开发与利用工程专业,培养生物质能、太阳能和风能方面的本科人才。1998年本科专业目录修订过程中,该专业与农业建筑环境专业合并成农业建筑环境与能源工程专业(081903)。目前该专业主要开设在农业院校。2006年华北电力大学在工学能源动力类专业下增设风能与动力工程本科专业(080507),之后河北工业大学、河海大学、长沙理工大学、兰州理工大学、内蒙古工业大学亦先后开设了该专业。2010年教育部批准设置新能源科学与工程专业(080512S),为能源动力类专业下的试办专业。首批批准11所高校开设该专业。2012年教育部进行本科专业目录修订,将风能与动力工程专业整合到新能源科学与工程专业(080503T),据不完全统计,目前开设新能源科学与工程专业的高校有60余所。

研究生层面学科设置情况:新能源相关学科的设置跨工学和理学两大门类,分布在10个一级学科下,且除了设在农业工程一级学科下的农业生物环境与能源工程(082803)是《授予博士、硕士学位和培养研究生的学科、专业目录(2008版)》正式设立的二级学科外,其他均是自主设置的二级学科或交叉学科,这些学科名称混杂重叠,令社会、学生、家长,甚至专业人士都感到困惑。详见表1。

存在的问题

在我国现行的学科目录中,新能源学科的主要研究领域被划分在不同的学科门类中分别发展。这种局面存在如下问题:

(1)不利于我国新能源学科在更高的平台上汇聚优秀人才、在更广的视野下凝练学科方向,制约了我国新能源学科建设水平的整体提升以及产业服务功能的全面增强。

(2)不利于进一步提高新能源人才培养和学位授予质量。新能源一级学科平台的缺失,使这个发展迅速且综合性极强的交叉学科不能很好地整合学科的内涵和外延,阻碍为学生构建系统和完整体现新能源专门知识的人才培养体系,进而影响新能源人才培养的质量。

(3)不利于学科专业的规范管理。目前新能源学科设置十分混乱,涉及10个一级学科,基本上都属于自主设置学科。而且,即使是设置在同一个一级学科下的自主设置学科,名称也不尽相同,十分不利于规范管理。

(4)不利于国际交流。由于现行开展新能源教育的学科专业名称多样,容易导致在国际交流中产生不必要的歧义,影响对外交流渠道的进一步畅通和实际效果。

增设的必要性及发展前景

增设新能源一级学科的必要性体现在以下4个方面:

(1)符合人类文明发展方向。人类已进入生态文明发展阶段,中国已将生态文明建设列入了国家发展战略。建设生态文明需要解决人类发展需求与自然资源环境承载力之间日益尖锐的矛盾,这需要新的技术革命或工业革命,而新能源被认为是人类实现第三次工业革命的主要支撑,因此,新能源承载着人类发展的希望。

(2)符合教育和学科发展的规律。学科的发展历史表明,“传统文理学科―现代科学技术―交叉学科演化”是学科发展的主线。新能源学科是一个具有很强交叉特征的学科,建设该学科符合学科发展规律。

(3)符合国家战略性新兴产业发展对新能源人才的旺盛需求。新能源产业是我国规划发展的七大战略性新兴产业之一,产业发展势必推动人才需求。根据联合国环境规划署《绿色就业:在可持续低碳世界的体面工作》报告,到2030年太阳能光伏、风能和生物燃料领域创造的就业岗位将分别达到630万、210万和1200万。

(4)符合中国在国际新能源技术与产业领域的地位。中国已成为在新能源领域发展速度最快的国家之一。随着经济的快速增长对能源需求的持续增加,中国在未来世界新能源技术和产业领域中将会发挥引领者的作用。新能源一级学科的设置将有助于巩固中国在新能源技术与产业领域中的大国地位。

新能源学科的发展前景与时代背景和人类命运息息相关。目前,可持续发展已经成为全人类的共识,能源紧缺、气候变暖、环境污染是人类面对的共同挑战。节能减排、生态文明已经成为中国的基本国策。新的时代与新的需求呼唤新的人才。根据国际绿色和平组织与欧洲可再生能源理事会研究,到2020年,新能源将创造超过650万个工作岗位,是现有新能源工作岗位的3倍。

主要研究方向、内容和二级学科设置

新能源可设3个二级学科或研究方向:太阳能转换利用技术与工程、生物质能转化利用技术与工程和风能与动力工程。

(1)太阳能转换利用技术与工程。主要研究太阳能规模化利用所面临的能量转换及传递过程各个环节所需的新理论、新设备、新循环、新工艺、新材料等,解决太阳能光热、光电和光化学转换,以及能量储存、传递过程强化及控制所面临的问题,提高太阳能转换利用效率。

(2)生物质能转化利用技术与工程。主要研究生物质规模化利用所面临的能源转化及利用过程各个环节所需的新理论、新技术、新工艺、新设备等,解决生物质燃烧及发电、热化学转化和生物转化制取生物燃料所存在的问题,提高生物质转化及利用效率。

(3)风能与动力工程。主要研究风能规模化利用所面临的能量转换及风资源预测所需的新理论、新技术、新工艺和新设备,以及规模化风能接入后对电力系统的影响与交互作用机理,解决大型风力发电机组在设计、制造及风力发电场功率预测方面存在的问题,不断提高风能转换利用效率。

与相近一级学科的关系

与新能源相近的一级学科有动力工程及工程热物理(0807)、电气工程(0808)和农业工程(0828)等。新能源与动力工程及工程热物理联系紧密,它们在研究中有共同的目标和交叉的研究领域,但从学科的现实以及未来的发展趋势来看,新能源学科又与动力工程及工程热物理学科有着根本性差异。

动力工程及工程热物理学科是一门研究能量以热的形式转化的规律及其应用的技术科学,它研究各类热现象、热过程的内在规律,并用以指导工程实践。其传统分支学科包括工程热力学、热机气动热力学与流体机械、燃烧学、传热传质、多相流等。为了满足持续发展的需求,人们在传统能源科学基础上不断开拓新的研究热点和新学科分支,形成了新能源学科。但是,随着新能源学科的快速发展,动力工程与工程热物理学科的内涵已难以涵盖新能源学科。突出体现在以下几个方面:

第一,研究范畴不同。动力工程与工程热物理学科的核心在于研究“能量以热的形式转化的规律”,而新能源学科研究重点是“能量以光、机械和化学能等形式转化的规律”。

第二,研究对象不同。动力工程与工程热物理学科的研究重点在于能量转换过程,而新能源学科研究对象涵盖新能源资源、新能源材料,以及能量转换过程。

第三,服务对象不同。动力工程与工程热物理学科更多地服务于以化石能源支撑的集中式供能系统,而新能源则以服务于分布式能源系统为主。

新能源科学工程例10

专业定位。新能源科学与工程专业围绕浙江大学“以人为本、整合培养、求是创新、追求卓越”的教育理念,以“培养知识、能力、素质俱佳,具有国际视野的新能源科学与工程专业拔尖创新人才和未来行业领导者”为宗旨,以新能源的开发、储运、利用为特征,紧密结合学科前沿和行业发展需要,积极培养满足国家战略性新兴产业的创新型人才。

培养目标。培养具备热学、力学、电学、机械、自动控制、能源科学、系统工程等宽厚理论基础,掌握可再生能源和新能源专业知识,能从事清洁能源生产、可再生能源开发利用、能源环境保护、新能源开发、工程设计、优化运行与生产管理的跨学科复合型高级人才。

课程设置。专业课程设置按照浙江大学“通识课程+大类课程+专业课程”体系进行构建,其中专业课程包含专业基础课、专业核心课和专业实验实践课。专业基础课的安排上,设置了如工程流体力学、工程热力学、传热学、能源与环境系统工程概论等基础课程,使学生具有热学、力学、机械、能源科学和系统工程等宽厚理论基础。专业核心课程开设了包括生物质能源、太阳能、风能、氢气大规模制取的原理和方法、新型液体燃料能源等课程,旨在让学生掌握新能源领域相关科学原理、工艺以及新技术研究发展趋势方面的知识。在专业实验实践课程上,安排了新能源实验、认识实习、风电风机课程设计、生物质发电系统课程设计等,使学生掌握新能源的有关实验,掌握现场运行,工程设计和生产管理等知识,为今后从事新能源开发利用工作打下基础。

专业建设特色

依托动力工程及工程热物理国家重点一级学科平台,浙江大学新能源科学与工程专业建设体现出鲜明的科研与教学相长的教学特色。

强大的学科平台。能源系拥有国内一流的学科与科研优势,具备国际竞争的实力。现有国家重点一级学科1个,一级学科博士点1个,国家重点实验室1个,国家工程研究中心2个。设博士点8个、硕士点8个、博士后流动站1个。连续5年科研经费超过亿元。依托强大的学科与科研优势,以及不断在学科交叉领域取得的创新型研究进展,为学生直接参与项目研究、在实践中培养创新精神创造了条件;同时为优秀大学生继续深造提供了宽广的平台。能源系在新能源领域已有大量的研究积累,开展了大量新能源的研究方向,如太阳能热利用发电技术,生物燃料电池,微藻制油等,并已承担了新能源方向的973项目2项,863项目多项。

一流的师资力量。能源系拥有一批在国际上具有竞争力的中青年人才,其中院士1人,“973计划”项目首席科学家3人,长江学者奖励计划特聘教授6人,国家杰出青年基金获得者5人,浙江省特级专家2人,国家百千万人才工程人选7人,教育部跨世纪和新世纪优秀人才5人。全系教师队伍具有博士学位比率达93.1%,已形成了一支知识结构、学历结构和学缘结构优化、年龄结构合理、教育教学能力和研究能力突出、具有国际竞争力的教学团队。在新能源专业方向上,已形成了由院士牵头,5位长江学者和一大批教授为核心的新能源研究队伍。

先进的教学模式。专业建设以拓宽专业基础、专业知识面为宗旨,制订与国家发展需求相适应的本科教学计划和课程体系。科研成果通过教学改革、课堂教学、大学生科技创新活动、毕业论文(设计)等途径,转化为教学资源,实现教学科研互动,为学生创新能力的培养提供了平台。能源系积极开展本科教学改革,“结合国家重大需求,创建能源与环境复合型人才培养新体系”获2009年国家级教学成果二等奖;《工程热力学》、《热工实验》课程获国家级精品课程称号;“国家级能源与动力实验教学示范中心”2012年通过专家验收。

开放的实践体系。经过多年的建设,能源系建立和发展了与学科前沿及行业发展紧密结合的能源与动力创新型人才培养实验实践教学体系。依托动力工程及工程热物理国家重点一级学科、能源清洁利用国家重点实验室,以能源与动力国家级实验教学示范中心建设为契机,通过实验课程精品化、建设学生创新实验室和节能减排实践基地、开展以全国大学生节能减排竞赛为代表的各类学生科技创新活动、与行业领军企业共建创新实践教学基地等形式,构建了多层次训练、多学科交叉、全方位辐射的立体创新实践平台。

专业建设成效

学科资源与科学研究成果及时、有效地引入本科教学建设中,为本科教育提供了大量优质资源,有效地提升了教学质量。本科生对该专业的认同度高,目前该专业已经成为最受学生欢迎的热门专业之一,学生主修专业确认平均绩点在4以上,在工科专业中排名第三。

核心课程精品化建设。专业依托教师在新能源领域的前沿研究方向,将科研方法、体验与成果引入课程,推进核心课程精品化建设。2013级培养方案修订中,确定《太阳能》、《生物质能源》2门专业核心课程建设,并增设了《非常规天然气和合成气开发与发电技术》、《生物质直燃发电技术》、《新型液体燃料能源》等课程,优化了课程结构,体现了专业特色。

专业教材高质量建设。近年来,教师总结多年科研和教学经验,出版了《能源与环境系统工程概论》、《能源工程管理》等2部“十一五”国家级规划教材。出版了《热学基础》、《核电与核能》、《热能专业英语阅读与写作》、《燃烧理论与污染控制》、《多孔介质燃烧理论与技术》、《二氧化碳捕集封存和利用技术》、《生物质液化原理及技术应用》等专业课程指导教材。

实验教学创新性建设。教师结合新能源领域的科研项目研究成果和科研项目实验台开展新开实验课程项目的建设与研究,开设了“硫碘热化学循环制氢”、“流动和雾化的激光测量”、“生物能源实验”等实验项目,同时充分利用学科实验室的设备为学生提供优质的实验环境。

实习基地全面性建设。在校外实践教学基地建设中,与东方电气集团东方锅炉股份有限公司、上海锅炉厂、浙能集团等9家企业签订了校企合作协议,并根据行业面向与专业培养目标,对校企合作的课程进行了合理的规划,注重实习企业的交叉互补。如东方锅炉、上海锅炉厂等企业提供热能转化设备的实践实习;深圳东方锅炉控制有限公司提供热能设备控制方面的实习;蓝天环保等提供燃烧污染控制方面的实习;华电电力科学研究院提供测试方面的实习;广州瑞明电力股份有限公司提供电厂整体的实习。上海锅炉厂有限公司、东方电气集团东方锅炉股份有限公司成为首批国家级工程实践教育中心。

学生科技创新活动开展。能源工程学系打破教学、科研、学科实验室界限,学生通过自主立项或参加教师的科研项目,自定实验方案、自主完成大学生科研训练计划、节能减排竞赛等课外科技创新活动。目前,新能源科学与工程专业本科生已获得SRTP立项31项,浙江省大学生科技创新活动计划项目3项,全国大学生创新创业训练计划项目1项;获校级大学生节能减排学科竞赛奖项15项,获国家级大学生节能减排竞赛三等奖1项。

未来专业建设的方向

友情链接