期刊在线咨询服务,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

期刊咨询 杂志订阅 购物车(0)

高层建筑抗震设计论文模板(10篇)

时间:2023-09-06 17:20:15

高层建筑抗震设计论文

高层建筑抗震设计论文例1

2超高层建筑结构抗侧刚度设计与控制

为了提高超高层建筑的抗震性,其足够的结构侧向刚度必不可少。足够的结构侧向刚度不仅可以保障建筑物的安全性、抗震性,还可在一定程度上有效抵抗建筑结构构件的不利受力情况及极限承载力下的安全稳定性。设计超高层建筑的结构抗震侧向刚度,应重点从其结构体系和刚度需求进行。

2.1结构设计。结构初步设计根据建筑高度和抗震烈度确定高度级别和防火级别。超高层结构设计首先满足规范要求的高宽比限值和平面凹凸尺寸比值限值,其次控制扭转不规则发生:在考虑偶然偏心影响的规定水平地震力作用下,扭转位移比不大于1.4;最大层间位移角不大于规范限值的0.4倍时,扭转位移比不大于1.6;混凝土结构扭转周期比不大于0.9,混合结构及复杂结构扭转周期比大于0.85。最后设计过程中严格控制偏心、楼板不连续、刚度突变、尺寸突变、承载力突变、刚度突变等现象。满足结构设计规范的同时,还应考虑建筑师的设计意图和功能需求,同时满足设备专业设计要求。结构平面的规整程度直接影响着抗震设计的强弱,尽量采用筒体结构,以使得承受倾覆弯矩的结构构件呈现为轴压状态,且其中的竖向构件应最大程度的安置在建筑结构的外侧。各竖向构件和连接构件的受力合理、传力明确,降低剪力滞后效应,杜绝抗震薄弱层产生。

2.2结构侧向刚度控制。超高层建筑的抗震性能设计主要与结构侧向刚度的最大层间位移角和最小剪力限制相关。对于层间位移角限值,其是衡量建筑抗震性的刚度指标之一,地震作用应使得建筑主体结构具有基本的弹性,保证结构的竖向和水平构件的开裂不会过大。同时,因超高层建筑的底部楼层、伸臂加强层等特殊区域的弯曲变形难以起主导作用,所以应采取剪切层间位移或有害层间位移对其变形进行详细的分析与判断。对于最小地震剪力,其最重要的两个影响因素是建筑结构的刚度和质量,当超高层建筑难以达到最小地震剪力要求时,设计人员应该结合具体情况适度的增加设计内力,提高其抗震能力和稳定性,然而,当不能满足最小地震剪力时,还需通过重新设计或调整建筑结构的具体布置或提高刚度来提高建筑物在地震作用下的安全性,而非单纯增高地震力的调整系数。

3超高层建筑的性能化抗震设计

超高层建筑的抗震性能设计,国内主要根据“三个水准,两个阶段”,即“小震不坏、中震可修、大震不倒”。超高层建筑来说,其建筑工程复杂、高度极高、面积大、成本高,一旦受到地震损害,其损失程度会更高,因此,必须充分考虑各方理论、实际情况和专家意见,兼顾经济、安全原则,定量化的展开超高层建筑的性能化抗震设计。同时,相关文件虽针对超高层建筑结构的性能化设计制定了较具体且系统的指导理念,涉及宏观与微观两个层面。但是,由于结构构件会受到损坏,且损坏与整体形变情况的分析计算都需进行专业的弹塑性静力或动力时程计算,而目前我国尚未形成相关的定量化的评价体系,因此,设计人员应在积极参考ATC-40和FEMA273/274等规范。此外,对于弯曲变形为主导的建筑结构,在大震作用后应尤其注重构件承载力的复核。

4超高层建筑多道设防抗震设计

除了上述注意事项外,针对超高层建筑进行抗震性设计时,还因注重设计多道的抗震防线。多道抗震防线是指一个由一些相对独立的自成抗侧力体系的部分共同组成的抗震结构系统,各部分相互协同、相互配合,一同工作。当遭遇地震时,若第一道防线的抗侧移构件受到损害,其后的第二道和第三道防线的抗侧力构件即会进行内力的重新调整和分布,以抵御余震,保护建筑物。目前,我国超高层建筑主要依靠内筒和外框的协同工作来达到提供抗侧刚度的目的,包含两种受力状态:首先,建筑的内外结构通过楼板和伸臂析架来协调作用,进而使得外部结构承受了较多的倾覆弯矩和较少的剪力,而内筒则承受了较大的剪力和一些倾覆弯矩,广州东塔就是此受力方式的典型;其次,以交叉网格筒或巨型支撑框架为代表的建筑外部结构,其十分强大,依靠楼板的面内刚度,外部结构即可同时承受较大的倾覆弯矩和剪力,如广州西塔。

高层建筑抗震设计论文例2

1)建筑结构的平面布置。建筑结构的平面布置是影响结构抗震的重要因素,合理的建筑平面布置对建筑结构设计是至关重要的。大量地震灾害表明,平面布置简单、对称规则、质量和刚度分布比较均匀并且具有明确传力途径的建筑结构在地震时不容易发生破坏。规则结构能较为准确地预估结构的作用效应和地震时的反应,较容易采取有效的抗震措施及相应的结构措施来加强其抗震性能。相反,平面布置复杂、不对称且不规则的结构,其地震作用效应很难估计的。因此,高层建筑结构中规范规定,宜采用规则结构,不应采用严重不规则的结构。

2)建筑结构的体系选择。高层建筑结构设计中,就优先采用具有多道防线的结构体系。例如:框架—剪力墙结构、剪力墙结构和筒体结构。这三种结构可以作为地震区高层建筑的首选体系。当建筑物高度不高且层数不多时,可采用框架结构。但当建筑物位于地震区,且高度均较高时,应避免采用框架结构、板柱剪力墙结构。因为,地震具有强破性且持续时间很长,往复次数较多,能够对建筑物造成累积破坏。单一的结构体系在遭遇地震时,一旦发生破坏,很容易造成房屋倒塌,危及人们的生命及财产的安全。当结构体系具有多道防线时,当遭遇地震时,第一道防线遭破坏后,后续的防线仍然能抵抗地震的冲击力,可以最低限度的防止建筑物的倒塌,给人们以充分的时间进行逃生,保证人民的生命安全。因此,高层建筑结构抗震设计中的多道防线是进行抗震设计时所必须设置的。

3)结构薄弱层。当建筑结构的侧向刚度分布不均匀、竖向抗侧力构件不连续和楼层承载力突变时,容易产生薄弱层。薄弱层在地震中是最先遭受破坏的部位。因此,对有明显薄弱层的结构,应采用相应的抗震构造措施来提高其抗震能力。结构构件的实际承载能力是判断薄弱层部位的基础,有意识、有目的地控制薄弱层部位,让它有足够的变形能力,而且不使薄弱层发生转移是提高结构抗震性能的重要手段。

2高层建筑抗震设计常见问题

1)高层建筑结构的地基问题。高层建筑结构在设计阶段,应有完善的岩土工程勘察报告,为结构工程提供基本的设计依据。建筑结构场地应选择在有较稳定的基岩、开阔、平坦、土层坚硬或较密实的有利地段,不应建造在容易发生滑坡、地陷、崩塌和泥石流等不利地段及抗震的危险地段,有利地段的建造对建筑物的抗震是十分有利的。有时由于建设单位工期要求,在确定方案后设计人员就直接进入了施工图设计阶段,从而忽略了岩土工程勘察资料和场地的选择,从而给后续工作带来不必要的麻烦。

2)高层建筑结构平面布置问题。高层建筑为了追求外立面效果的美观而设计成平面不规则、不对称且有较大凹进或较大开洞的结构,这种结构对抗震十分不利。因此,在建筑方案正式确定前,结构工程师就应对建筑平面布置、体型方面的内容提出自己的见解,及时和建筑师进行沟通,尽量选用平面、竖向规则对称、质量和刚度、承载力均匀的平面布置,这对抗震十分有利。

3)高层建筑结构的高度问题。如今的高层建筑结构的高度越来越高,甚至出现了很多超高层的高层建筑,这就对结构工程师的专业知识提出了更高的要求。不同的高度对应不同的结构体系,规范上有明确规定。一旦结构超过了规范规定的限制高度,就应通过专门的审查、论证进行更严格的计算分析和研究。

4)高层建筑抗震设防等级的选取问题。抗震等级是结构抗震设计的重要依据,抗震等级选取不当将给建筑物的安全带来许多隐患,对工程造价也会带来不必要的浪费。抗震等级根据房屋的场地类别、抗震设防烈度、建筑高度、结构类型等因素综合评定。每个结构工程师应当熟练掌握结构的抗震概念设计和规范知识,做到该提高的应当提高其抗震等级,该降低则应适当降低。

5)计算软件的合理应用。高层建筑结构抗震设计时,应该应用正规的结构设计软件进行设计,软件中的各个参数指标能够正确反映建筑物的特征。结构工程师能正确分析结构软件所计算的结果,并做出正确的判断。但有时计算机设计会给结构工程师带来一种错觉,有的结构工程师往往过分依赖计算结果,而减少了结构的概念学习。一旦选择了错误的计算参数,就会导致结构设计出现问题,对结构的安全和经济方面造成影响。因此,结构工程师应加强自身的业务学习和抗震概念设计的理解,做到熟练掌握相关的结构概念设计,并且根据自身的专业知识配合计算结果选择最佳的结构设计方案。

高层建筑抗震设计论文例3

中图分类号:[TU208.3] 文献标识码:A

1 我国的高层建筑发展历程

上世纪80年代,我国高层建筑在设计计算机施工技术等领域快速发展,100m左右及以上的将建筑快速发展,多以钢筋为主要材料,在层数与高度增加的同时,功能与类型也日益增多。各大城市几乎都建立了具有各自特色的建筑,以上海锦江饭店为代表:高度达到153.52m,全部采用的钢结构体系;而深圳的发展中心大厦有43层,高度达到165.3m,算上天线高度达到185.3m,是我国第一幢大型的高层钢结构建筑。到了90年代,我国的高层建筑结构从设计到施工进入到一个新的阶段,除了体系与材料的多样化,高度上也有了质的飞跃。在1995年完工的深圳地王大厦,共有81层,高度达到385.95m,居世界第四高。

2 建筑抗震的理论

2.1 建筑结构的抗震规范

一般的抗震规范都是各国结合具体的情况进行的经验总结,是指导抗震设计的法定文件,及反应国家经济与建设的发展水平,也反映了各个国家的抗震经验。尽管抗震理论不断完善,技术水平也在不断地提高,但是必须要有实践的指导,要将建筑工程的安全性放在首要位置,容不得任何的大意与疏忽。基于这一认识,现代建筑部分条文被列为强制条文,使用了“严禁、不得”等绝对性的字眼,同时也有不同条文有较大的自由空间。

2.2 建筑抗震设计的理论

当前建筑抗震设计的理论主要分为拟静力理论、反应谱理论及动力理论。拟静力理论起源于20世纪10~40年代出现的理论,在估测地震对结构的影响时,假设结构为刚性,地震水平作用在结构或构件的质量中心,地震力的大小当于结构的重量乘以一个比例常数(地震系数)。

反应谱理论是在上世纪40-60年展起来的,以强地震动加速度观测记录的增多与对地震地面运动特性的进一步了解,及结构动力反应特性的研究为基础,是加理工学院的学者对地震加速度记录的特性进行分析后获得的成果。

动力理论是上世纪70-80年代的应用较为广泛的地震动力理论,是在60年代以来电子计算机技术与试验技术的发展为基础,人们对各类结构在地震作用下的线性与非线性的反应过程也有了较多的了解,随着强震观测台的增加,各种受损结构的地震反应记录也在不断地增加。进一步动力理论也称地震时程分析理论,它将地震作为一个时间过程,选择具有代表性的地震加速度时过程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,完成设计工作。

3 高层建筑的抗震结构设计

3.1 必要的抗震对策

在高层建筑结构的抗震设计中国,出了要考虑到概念的设计,还要进行验算,结合地震的情况,要在高度允许的范围内建造,增加结构的延性。在当前的抗震设计中,抗震验算及构造与措施等角度入手进行分析,提高结构的抗震性与消震性能。建立地震力与结构延性互相影响的双重设计指标,直到达到预期的抗震效果。当前强柱弱梁,强剪弱弯和强节点弱构件在提高结构延性方面的作用已得到普遍的认可。

3.2 高层建筑的抗震设计思想

在《建筑抗震规范》中有明文规定,建筑的抗震设防要符合“三水准、两阶段”的要求。所谓的“三水准”就是指“小震不坏,中震可修,大震不倒”。当遇到第一设防烈度地震即低于本地区抗震设防烈度的地震时,结构处于弹性变形阶段,建筑物可以正常使用。一般情况下,建筑物不会被损害,也不需要修理即可使用。所以,高层建筑结构的抗震设计要满足地震频发下的承载力极限,要求建筑的弹性变形不超过规定的弹性变形限值。当遇到第二设防烈度地震即相当于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物结构会发生损害,但是不经修理或者简单修理就可以继续使用。所以,建筑结构必须要有足够的延性能力,不会出现脆性破坏。当发生第三设防烈度地震的情况下,就是遇到本地区地震极限外的情况,结构会受到非常严重的损害,但是结构的非弹性变形距离倒塌仍有一段距离,不致产生危及生命的损害,保障了居住人员的安全。所以在进行高层建筑结构设计的过程中,要保证建筑的足够变形能力,其弹塑变形要在规范的数值之内,保证结构良好的抗震性能。三个水准烈度的地震作用水平是根据不同超越概率进行区分的,一般情况下是:

多遇地震:50年超越概率63.2%,重现期50年;设防烈度地震(基本地震):50年超越概率10%,重现期475年;罕遇地震:50年超越概率2%-3%,重现期1641-2475年,平均约为2000年。

从高层建筑的抗震水准来看,设防的要求是通过“两个阶段”设计来实现的,具体方法如下:第一环节,第一步采用与第一水准烈度相应的地震动参数,提前计算出高层建筑结构在弹性状态下的地震作用效应,与风力、重力荷载进行高效组合。同时引入承载力抗震调整系数,进行构件截面的准确射击,进而达到第一水准的强度要求;然后是运用同一地震参数计算出结构的层间位移角,使其可以在抗震规范设定的限值之内;同时采用相应的抗震构造对策,确保结构可以有足够的延性、变形能力与塑形耗能,进而达到第二水准的变形目的。而第二阶段则是运用与第三水准对应的地震动参数,算出结构的弹塑性层间位移角,使其在抗震规范的限值之内,然后进行必要的抗震构造对策,进而实现第三水准的防倒塌目的。

3.3 现代高层建筑结构的抗震设计方法

在《建筑抗震设计规范》中对各类的建筑结构的抗震计算应该采用的方法都有明确的规定:高度要在40m之内,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法等简化方法;除1款外的建筑结构,宜采用振型分解反应谱方法;特别不规则的建筑、甲类建筑和限制高度范围的高层建筑,应采用时程分析法进行多遇地震下的补充计算,可取多条时程曲线计算结果的平均值与振型分解反应谱法计算结果的较大值。

结语

地震是威胁较大的天灾之一,必须要加强防御,从上文的分析中我们可以看到,高层建筑的抗震结构设计必须要在要求的限值之内,保证结构的良好性能,提高建筑的使用性能。

参考文献

[1]朱镜清.结构抗震分析原理[M].地震出版社,2002.

高层建筑抗震设计论文例4

引言

现阶段,土与结构物共同工作理论的研究与发展使建筑抗震分析在概念上进一步走向完善,如果可以在结构与地基的材料特性,动力响应,计算理论,稳定标准诸方面得到符合实际的发展,自然会在建筑结构抗震领域内起到重要的作用。

1 高层建筑发展概况

80年代,是我国高层建筑在设计计算及施工技术各方面迅速发展的阶段。各大中城市普遍兴建高度在100m左右或100m以上的以钢筋为主的建筑,建筑层数和高度不断增加,功能和类型越来越复杂,结构体系日趋多样化。比较有代表性的高层建筑有上海锦江饭店,它是一座现代化的高级宾馆,总高153.52m,全部采用框架一芯墙全钢结构体系,深圳发展中心大厦43层高165.3m,加上天线的高度共185.3m,这是我国第一幢大型高层钢结构建筑。进入90年代我国高层建筑结构的设计与施工技术进入了新的阶段。不仅结构体系及建筑材料出现多样化而且在高度上长幅很大有一个飞跃。深圳于1995年6月封顶的地王大厦,81层高,385.95m为钢结构,它居目前世界建筑的第四位。

2 建筑抗震的理论分析

2.1 建筑结构抗震规范

建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。

2.2 抗震设计的理论

拟静力理论。拟静力理论是20世纪10~40年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数(地震系数)。

反应谱理论。反应谱理论是在加世纪40~60年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。动力理论。动力理论是20世纪70-80年广为应用的地震动力理论。它的发展除了基于60年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

3 高层建筑结构抗震设计

3.1 抗震措施

在对结构的抗震设计中,除要考虑概念设计、结构抗震验算外,历次地震后人们在限制建筑高度,提高结构延性(限制结构类型和结构材料使用)等方面总结的抗震经验一直是各国规范重视的问题。当前,在抗震设计中,从概念设计,抗震验算及构造措施等三方面入手,在将抗震与消震(结构延性)结合的基础上,建立设计地震力与结构延性要求相互影响的双重设计指标和方法,直至进一步通过一些结构措施(隔震措施,消能减震措施)来减震,即减小结构上的地震作用使得建筑在地震中有良好而经济的抗震性能是当代抗震设计规范发展的方向。而且,强柱弱梁,强剪弱弯和强节点弱构件在提高结构延性方面的作用已得到普遍的认可。

3.2 高层建筑的抗震设计理念

我国《建筑抗震规范》(GB50011-2010)对建筑的抗震设防提出“三水准、两阶段”的要求,“三水准”即“小震不坏,中震可修,大震不倒”。当遭遇第一设防烈度地震即低于本地区抗震设防烈度的多遇地震时,结构处于弹性变形阶段,建筑物处于正常使用状态。建筑物一般不受损坏或不需修理仍可继续使用。因此,要求建筑结构满足多遇地震作用下的承载力极限状态验算,要求建筑的弹性变形不超过规定的弹性变形限值。当遭遇第二设防烈度地震即相当于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物可能出现一定程度的破坏。但经一般修理或不需修理仍可继续使用。因此,要求结构具有相当的延性能力(变形能力)不发生不可修复的脆性破坏。当遭遇第三设防烈度地震即高于本地区抗震设防烈度的罕遇地震时,结构虽然破坏较重,但结构的非弹性变形离结构的倒塌尚有一段距离。不致倒塌或者发生危及生命的严重破坏,从而保障了人员的安全。因此,要求建筑具有足够的变形能力,其弹塑性变形不超过规定的弹塑性变形限值。

三个水准烈度的地震作用水平,按三个不同超越概率(或重现期)来区分的:多遇地震:50年超越概率63.2%,重现期50年;设防烈度地震(基本地震):50年超越概率10%,重现期475年;罕遇地震:50年超越概率2%-3%,重现期1641-2475年,平均约为2000年。

高层建筑抗震设计论文例5

我国是一个地震灾害比较频繁的国家,对于高层建筑来说,一旦遭遇地震,往往会遭受巨大的损失。因此在进行高层建筑结构抗震设计的过程当中应该充分考虑当地的地质情况,有针对性的进行相应的设计,尽可能的降低地震造成的损坏。

一、建筑抗震的理论分析

1、建筑结构抗震规范建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。

2、抗震设计的理论拟静力理论。拟静力理论是20 世纪10~40 年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数(地震系数)。反应谱理论。反应谱理论是在20世纪40~60 年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。动力理论。动力理论是20 世纪70-80 年广为应用的地震动力理论。它的发展除了基于60 年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

二、高层建筑抗震设计结构设计的方法

对高层建筑结构的抗震设计时,要从减小地震作用力的输入和增强地震抵抗力两个方面进行考虑。下面将从五个方面进行分析:尽可能减小地震作用能量的输入,运用高延性设计、推广消震和隔震措施的运用,注重抗震结构的设计,重视建筑材料的选择,增多抗震防线的建设。将减小地震作用力和增强建筑的地震抵抗力二者结合起来,从两方面入手,进行建筑抗震的设计施工。

1、减少地震发生时能量的输入

在具体的设计中,积极采用基于位移的结构抗震方法,对具体的方案进行定量分析,使结构的变形弹性满足预期地震作用力下的变形需求。对建筑构件的承载力进行验收的同时,还要控制建筑结构在地震作用下的层间位移限值;并且更具建筑构件的变形和建筑结构的位移之间的关系,确定构件的变形值;根据建筑界面的应变分布以及大小,来确定建筑构件的构造需求。对于高层建筑来讲,在坚固的场地上进行建筑施工,可以有效减少地震发生作用时能量的输入,从而减弱地震对高层建筑的破坏程度。

2、运用高延性设计、推广消震和隔震措施的运用

现在在我国,许多高层建筑进行抗震设计时,多采用延性结构,也就是适当的控制建筑结构的刚度,允许地震时结构的构件进入到具有很大延性的塑性状态,从而消耗地震作用时的能量,使地震反应减小,减弱地震给高层建筑带来的破坏和重大损失。如果某高层建筑的承载能力较小,但是具有较高的延性,那么在地震中它也不容易倒塌,因为延性构件可以吸收较多的能量,经受住很大的结构变形。延性结构的运用,在很多情况下是有效的,它可以消耗地震能量,减轻地震反应,使结构物“裂而不倒。

进入20 世纪以来,人们对建筑物抗振动能力的提高做出了巨大的努力,取得了显著的成果,其中阻尼器的使用在高层建筑的抗震方面有很大的作用。通过对阻尼器的利用,进行减震和能量的吸收,可以巧妙的避免或减弱地震对高层建筑的破坏作用。

3、注重抗震结构的设计

高层建筑抗震设计的结构应该得到人们的重视。我国150m 以上的建筑,采用的3 种主要结构体系(框.筒、筒中筒和框架- 支撑体系),都是其他国家高层建筑采用的主要体系。我国钢材生产数量已较大,钢结构的加工制造能力已有了很大提高,因此在有条件的地方,建议尽可能采用钢骨混凝土结构、钢管混凝土(柱)结构或钢结构,以减小柱断面尺寸,并改善结构的抗震性能。

我国传统文化中“以柔克刚”具有价高的思想价值,可以指导很多实际问题。在高层建筑结构的抗震设计中,可以从传统的硬性为主的抗震模式向以柔性为主的抗震模式转变,实现以柔克刚、刚柔相济,有效地减弱地震作用过程中释放的冲击力。比如,在高层建筑的拱形结构中有这样一个例子:迪拜帆船酒店,外观如同一张鼓满了风的帆,一共有56 层、321m高,就是运用拱结构抗震减灾的很好的例子。

4、重视建筑材料的选择

在高层建筑的抗震方案设计中,建筑结构的材料选择也非常重要。首先,我们可以对建筑材料的参数进行抗震性能的分析,从整体上对材料的参数变异性进行研究,而不能仅考虑建筑材料的承载力忽略其他因素。从抵抗地震的角度来讲,就是要控制建筑结构的延性需求,这就要求我们从高层建筑建设施工的各方面,来选择符合抗震需求而且经济适用的建筑结构材料。

5、增多抗震防线的建设

高层建筑结构防震可以设置多道抗震防线,增强对地震的抵抗力。高层建筑物设置多层的地震抵抗防线,第一道防线遭到破坏之后,有后备的第二道、第三道甚至更多的防线对地震的作用力进行阻挡,避免高层建筑物的倒塌。高层建筑结构进行抵抗地震设计时,可以采用具有多个肢节和壁式框架的“框架剪力墙”等防震结构。

框架剪力墙具有性能较好的多道防线抗震结构,其中的剪力墙是第一道抗震防线也的主要的抗侧力构件。所以,剪力墙要足够多,保证它的承受能力较高,不小于高层建筑底部地震倾覆力矩的一半。同时,为承受剪力墙开裂后重分配的地震作用,任一层框架部分按框架和墙协同工作分配的地震剪力,不应小于结构底部总地震剪力的20%和框架各层地震剪力最大值的1.5倍两者的较小值。剪力墙结构中剪力墙可以通过合理设置连梁(包括非建筑功能需要的开洞组成多肢联肢墙,使其具有优良的多道抗震防线性能。

总之,在建筑结构抗震设计方法的研究与进展,尤其是各国历次大地震对人类造成的严重灾害的经验教训,使世界各国地震工程学者及抗震设计人员逐步取得了较为一致的认识,经济与安全的关系,是建筑结构抗震设计的重要技术政策。

参考文献:

高层建筑抗震设计论文例6

Abstract: The high-rise building is a development direction in the construction industry with its particular meaning. As for a high-rise structure design, the problem may be intricate. This paper analyzes aseismic design of the necessary from the structure of the high-rise building characteristics of buildings, and explores the high-rise building design concept and aseismatic measures. And a high-rise building structure development trend is briefly introduced.Keywords: high-rise building, structure, seismic design

中图分类号:S611文献标识码:A 文章编号:

随着科学的发展和时代的进步,高层建筑如雨后春笋般的出现。高层建筑的高度在一定程度上反映了一个国家的综合国力和科技水平,世界著名的建筑更是建筑史上的纪念碑。但是如果高层建筑因结构设计不清,而造成结构布置不合理,不仅会造成大量的浪费,更重要的是给高层建筑留下了结构质量的安全隐患。因此高层建筑的结构设计就显得尤为重要了。

一 结构设计特点

1.1 水平载荷是设计的主要因素

高层结构总是要同时承受竖向载荷和水平载荷作用。载荷对结构产生的内力是随着建筑物的高度增加而变化的,随着建筑物高度的增加,水平载荷产生的内力和位移迅速增大。

1.2 侧向位移是结构设计控制因素

随着楼房高度的增加,水平载荷作用下结构的侧向变形迅速增大,结构顶点侧移与建筑高度的四次方成正比,设计高层建筑结构时要求结构不仅要具有足够的强度,还要具有足够的抗推强度,使结构在水平载荷下产生的侧移被控制在范围之内。

1.3 结构延性是重要的设计指标

高层建筑还必须有良好的抗震性能,做到“小震不坏,大震能修。”为此,要求结构具有较好的延性,也就是说,结构在强烈地震作用下,当结构构件进入屈服阶段后具有较强的变形能力,能吸收地震作用下产生能量,结构能维持一定的承载力。

1.4 轴向变形不容忽视

高层结构竖向构件的变位是由弯曲变形、轴向变形及剪切变形三项因素的影响叠加求得的。在计算多层建筑结构内力和位移时,只考虑弯曲变形,因为轴力项影响很小,剪力项一般可不考虑。但对于高层建筑结构,由于层数多,高度大,轴力值很大,再加上沿高度积累的轴向变形显著,轴向变形会使高层建筑结构的内力数值与分布产生明显的变化。

二 建筑抗震的理论分析

2.1 建筑结构抗震规范

建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。

2.2 抗震设计的理论

拟静力理论。拟静力理论是20世纪10~40年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数(地震系数)。

反应谱理论。反应谱理论是在加世纪40~60年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。动力理论。动力理论是20世纪70-80年广为应用的地震动力理论。它的发展除了基于60年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

三 高层建筑结构抗震设计

3.1 抗震措施

在对结构的抗震设计中,除要考虑概念设计、结构抗震验算外,历次地震后人们在限制建筑高度,提高结构延性(限制结构类型和结构材料使用)等方面总结的抗震经验一直是各国规范重视的问题。当前,在抗震设计中,从概念设计,抗震验算及构造措施等三方面入手,在将抗震与消震(结构延性)结合的基础上,建立设计地震力与结构延性要求相互影响的双重设计指标和方法,直至进一步通过一些结构措施(隔震措施,消能减震措施)来减震,即减小结构上的地震作用使得建筑在地震中有良好而经济的抗震性能是当代抗震设计规范发展的方向。而且,强柱弱梁,强剪弱弯和强节点弱构件在提高结构延性方面的作用已得到普遍的认可。

3.2 高层建筑的抗震设计理念

我国《建筑抗震规范》(GB50011-2001)对建筑的抗震设防提出“三水准、两阶段”的要求,“三水准”即“小震不坏,中震可修,大震不倒”。当遭遇第一设防烈度地震即低于本地区抗震设防烈度的多遇地震时,结构处于弹性变形阶段,建筑物处于正常使用状态。建筑物一般不受损坏或不需修理仍可继续使用。因此,要求建筑结构满足多遇地震作用下的承载力极限状态验算,要求建筑的弹性变形不超过规定的弹性变形限值。当遭遇第二设防烈度地震即相当于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物可能出现一定程度的破坏。但经一般修理或不需修理仍可继续使用。因此,要求结构具有相当的延性能力(变形能力)不发生不可修复的脆性破坏。当遭遇第三设防烈度地震即高于本地区抗震设防烈度的罕遇地震时,结构虽然破坏较重,但结构的非弹性变形离结构的倒塌尚有一段距离。不致倒塌或者发生危及生命的严重破坏,从而保障了人员的安全。因此,要求建筑具有足够的变形能力,其弹塑性变形不超过规定的弹塑性变形限值。

三个水准烈度的地震作用水平,按三个不同超越概率(或重现期)来区分的:多遇地震:50年超越概率63.2%,重现期50年;设防烈度地震(基本地震):50年超越概率10%,重现期475年;罕遇地震:50年超越概率2%-3%,重现期1641-2475年,平均约为2000年。

对建筑抗震的三个水准设防要求,是通过“两阶段”设计来实现的,其方法步骤如下:第一阶段:第一步采用与第一水准烈度相应的地震动参数,先计算出结构在弹性状态下的地震作用效应,与风、重力荷载效应组合,并引入承载力抗震调整系数,进行构件截面设计,从而满足第一水准的强度要求;第二步是采用同一地震动参数计算出结构的层间位移角,使其不超过抗震规范所规定的限值;同时采用相应的抗震构造措施,保证结构具有足够的延性、变形能力和塑性耗能,从而自动满足第二水准的变形要求。第二阶段:采用与第三水准相对应的地震动参数,计算出结构(特别是柔弱楼层和抗震薄弱环节)的弹塑性层间位移角,使之小于抗震规范的限值。并采用必要的抗震构造措施,从而满足第三水准的防倒塌要求。

3.3 高层建筑结构的抗震设计方法

我国的《建筑抗震设计规范》(GB50011-2001)对各类建筑结构的抗震计算应采用的方法作了以下规定:高度不超过40m,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法等简化方法;除1款外的建筑结构,宜采用振型分解反应谱方法;特别不规则的建筑、甲类建筑和限制高度范围的高层建筑,应采用时程分析法进行多遇地震下的补充计算,可取多条时程曲线计算结果的平均值与振型分解反应谱法计算结果的较大值。

四 高层建筑结构发展趋势

随着城市人口的不断增加建设可用地的减少,高层建筑继续向着更高发展,结构所需承担的荷载和倾覆力矩将越来越大。在确保高层建筑物具有足够可靠度的前提下,为了进一步节约材料和降低造价,高层建筑结构够构件正在不断更新,设计理念也在不断发展。高层建筑结构也正朝着结构立体化,布置周边化,体型多样化,结构支撑化,体型多样化,材料高强化,建筑轻量化,组合结构化,结构耗能减震化等方向发展。

五 总结

高层建筑物有效地减轻了住房压力,但必然也带来了安全隐患,其结构设计显得尤为重要。随着设计理念的不断发展,高层建筑物必将朝着更加合理的方向发展。

参考文献

高层建筑抗震设计论文例7

中图分类号:TU208文献标识码: A

一、建筑抗震的理论分析

(一)建筑结构抗震规范

建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。

(二)抗震设计理论发展历程

1、拟静力理论

拟静力理论是 20世纪 40 年展起来的一种理论。它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数。

2、反应谱理论

反应谱理论是在20世纪 40~60 年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。

3、动力理论

动力理论是 20 世纪 70~80 年广为应用的地震动力理论。它的发展除了基于 60 年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。

二、高层建筑结构抗震设计的原则

(一)结构构件应具有必要的承载力等性能

高层建筑物想要具备抗震能力,则构成该建筑的架构构件应该具备必要的承载力,其刚度、强度、稳定性等性能都应该较强。为此,建筑物的结构构件在设计的时候应该要注意“强柱弱梁、强剪弱弯、强节点弱构件、强底层柱”的设计原则。同时,对于整个结构中抗震性能较弱的地方要注意采取抗震加强措施增强其抗震性能,而对于承载力过多的重点构件要注意适当增加一些支点以分担其承载力。

(二)尽可能多的设置多道抗震防线

高层建筑的抗震系统应该由若干个单元抗震系统组成。这些单元抗震系统之间相互协作共同起到抗震作用。一般强地震过后还会有一些余震,如果高层建筑只是设置了一道抗震防线,那么当遇到余震时建筑物就没有抵抗余震的能力,很可能出现倒塌的情况。因此,高层建筑物应尽可能设置多道防线,如此就能够增强建筑物的抗震性能。除此之外,对于构件各部分之间的强弱关系应当引起注意,在进行设计的时候要注意当强地震使主要的构件遭受损坏的时候,其他的主要构件应该仍处于完好的状态,能够抵御地震作用,保持建筑的稳定性。

(三)增强薄弱构件的抗震能力

一般,承载力是衡量一个构件强弱的主要因素。要想使高层建筑具备较强的抗震能力,就必须要使楼层的实际承受能力和设计计算的弹性受力的比值保持在一个相对数值范围之内,这样一旦楼层受到地震的重创就会有一定的弹性变形。另一方面,应该有意识的加强薄弱构件的抗震性能,使之有足够的变形能力而不会发生错位倒塌的情况。

三、高层建筑结构抗震设计的要点

(一)结构的规则性

结构的规则性主要表现在高层建筑主体抗侧力结构上,尤其需要注意以下问题:

第一,高层建筑抗侧力的主体结构的主轴刚度要保持一致的水准,两主轴的变形特性也应该保持在相似的范围之内。因为高层建筑的主体结构是三维立体的,地震的作用力、实际风荷载等在方向上的任意性比较大,而高层建筑的主体抗侧力结构的主轴刚度、变形特性只要保持在一致的高度上,就可以使建筑结构具有较好的抗震能力和抵御强风的能力。

第二,高层建筑主体抗侧力结构的层剪切刚度不能突变,要保持一定的均匀性。而这种较为均匀的刚性结构可以防止建筑因某一薄弱层的损坏而导致整个主体结构的损坏,特别是处于强震区的高层建筑,对建筑结构的主体抗侧力的刚度要求更加严格。

第三,高层建筑的主体抗侧力结构的平面布置还要保持结构中心与其周边结构在刚度上的均匀协调性,使主体结构的刚度协调性保持均匀一致性,同时,还要保证结构主体的抗扭刚度维持在一定的水准,这样可以有效避免高层建筑结构在强风或强震的扭矩作用下发生扭曲变形,避免由此而引起的结构性或者非结构性的变形损坏。

(二)层间位移限制

高层建筑物在遭受地震的作用下,一般楼层之间会产生一定的位移,从而致使各个楼层之间错位,如果楼层间的位移超过限制就会发生倒塌的现象。根据以往的地震研究发现,层间位移的限度不仅与建筑施工所使用的材料有关,而且还与整个建筑物结构体系有关。一般钢筋混凝土相对于纯钢结构来说,对于高层建筑层间位移的限制较为严格;风荷载作用下的限度相对来说要求也较为严格。一般,基于位移的抗震设计方法以结构的容许位移为出发点,在设计的最后以结构件的强度进行检验,充分考虑各部件的破坏。因此,在实际的设计过程中应该综合考虑,设计出具有较强刚度又具有较高承载力的高层建筑。

(三)控制地震的扭转效应

大多数高层建筑物在地震中倒塌的主要原因在于建筑结构不规则、不对称,使得高层建筑在遭受地震作用时由于建筑构件各部分受力不平衡而致使楼层之间发生位移,层间的水平负荷中心与建筑结构的中心错位。另外,在发生地震时还容易出现建筑结构发生扭转而使结构整体倒塌。因此,对于建筑结构的扭转影响应该充分引起我们的注意。因为,在发生地震时建筑物各个楼层间所发生的形变量不同。其中距离建筑中心远的构件发生的形变量较大,距离建筑结构中心近的构件发生形变量较小。同时由于发生层间位移,所以各个楼层的中心就不在一条直线上。所以在进行建筑结构设计时应该为层间形变预留较大的空间,对于楼层间的支撑柱体应该注意加强其扭转能力和恢复力,这样在地震时就可以有弹性的形变,不至于因为扭转超过限制而发生倒塌的情况。

(四)减小地震能量输入

减小地震的能量输入要求,建筑结构的形变能力满足限定的地震作用下的形变要求。因此,在进行建筑结构设计时除了要对构件的各种性能进行控制外,还要对地震作用下层间的位移限度、构件的形变限度进行有效的控制。传统的结构抗震设计理论从静力法到动力时程分析法都是以加速度或建筑物各部分构件的受力情况为基础的,这对于刚性的建筑结构有一定的作用。但是从近几年的几次大地震中可以看出单一强度条件并不能够充分的对建筑结构的抗震能力进行评估。一般,建筑结构在强烈的地震作用下,其抗震能力呈现一种非线性的关系,即所输入的能量并不随着变形量的增加而呈直线状增大,地震所输入的能量有可能发生扩展形变,从而对地震的反应产生影响。因而,在进行建筑设计时要注意考虑多方面性能,确保建筑结构的抗震性能满足要求。

结语

综上,高层建筑抗震结构设计需要从目前抗震设计现状出发,提高结构与设备的关系,设计者应根据建筑工程抗震概念的知识和经验,作出判断,找出结构安全与经济合理的最佳结合点,探求出一种实用可行的二步或三步设防的合理有效的抗震设计方法,以更好地适应社会经济和科学技术的发展,满足人们使用需求。

参考文献

高层建筑抗震设计论文例8

现在建设的很多项目都是高层建筑,而且这些项目建设的时候,规模都很大而且还有一定的高度,在设计高层建筑结构的时候,对于抗震结构的设计很严格。随着建设项目的增多,抗震设计的方法也在变化,而且设计的结构越来越精确。在对高层结构设计的时候,先要在建筑的位置研究,勘查环境,使建筑结构具有抗震性。在保证建筑的抗震性上,要降低作用力这样才能达到抗震的目的。

1 影响高层建筑结构抗震效果的因素

1.1 高层建筑自身结构设计

高层建筑常用结构类型有钢结构和钢筋砼结构。钢结构整体自重轻、强度高、抗震性能好、施工工期短等特点,且截面相对较小,有很好延性,适合柔性方案,其缺点是造价较高。当场地土特征周期较长时易发生共振。钢筋砼结构刚度大、空间整体性能好、造价相对较低及材料来源也较丰富,较适用承载力大,控制塑性变形的刚性方案结构。不利因素是结构自重大、抵抗塑性变形能力差,施工周期较长。因此高层建筑采取何种形式应取决于结构体系和材料特性,同时取决于场地土类型,避免场地土和建筑发生共振,而使振害更加加重。

1.2 高层建筑结构施工材料和过程

建筑中的材料与建筑的抗震性是有一定影响的,在设计环节要保证材料的选择。当建筑的质量达到要求的时候,及时发生了地震,建筑的损害也会很小。因此在其他条件不变的情况下,要保证建筑的材料应该具有抗震性。如果使用的材料质量没有办法保证,那么在地震的时候建筑的破损情况严重,一般在高层建筑中使用的材料都是塑料板材还有混凝土板,这些材料对于建筑的抗震是有积极影响的。因此在高层建筑中可以使用这些材料。

要想保证高层建筑的抗震效果,在建筑的设计环节就要保证所有的环节都是合理的,通过科学的设计方便建筑的施工也方便建筑的管理。要有人员去检查建筑的设计,保证设计图纸以及设计内容科学,从而让建筑的抗震效果达到要求。

1.3 场地选择

场地选择对高层建筑至关重要。地震造成的破坏除地震直接引起结构破坏外还有场地条件原因。当地震来临时,其对高层建筑结构破坏的原因有很多方面,最主要的是地表滑坡、山体崩塌及岩石断层等导致地表发生运动,使建筑结构受到破坏,而水灾和海啸等地震带来的次生灾害也会破坏建筑物。因此选择有利抗震建筑场地,是减轻地震灾害的第一道工序,抗震设防区建筑工程应选有利地段,应避开不利的地段。

2 高层建筑结构抗震延性设计要点

2.1 选择有利场地

在对高层建筑设计的时候,首先要选择一个正确的位置,这个位置地震活动少,在设计前要在建筑的位置收集资料,包括当地的地质以及地质活动等等,然后根据材料对建筑的抗震性作出合理的判断。规划建筑的位置对建筑的抗震有什么影响,例如地质条件稳定的位置对建筑的抗震有利,地震频繁的地区对建筑的抗震不利。如果建筑的位置经常出现地震,那么设计单位在设计的时候,要提出要求,尽量避开这些地方。如果没有恰当的方式可以避开,就要有合理的措施保证建筑的稳定。非常危险的地方最好不要建筑高层。

2.2 合理建筑结构体系及参数设计计算分析

建筑结构应据建筑抗震设防类别、抗震设防烈度、建筑高度、场地条件、地基、结构材料和施工等因素,经技术、经济和使用条件综合比较确定。结构体系应满足:(1)应具有明确计算简图和合理地震作用传递途径;(2)应避免因部分结构或构件破坏而导致整个结构丧失抗振能力或对重力荷载的承载能力;(3)应具备必要抗震承载力,良好变形能力和消耗地震能量能力。

对复杂结构进行多遇地震作用下的内力和变形分析时采用不少于两个不同力学模型。目前主要有两种计算理论:剪摩理论和主拉应力理论,它们有各自适用范围:砖砌体一般采用主拉应力理论,而砌块结构可采用剪摩理论。对计算机计算结果应经分析判断确认其合理、有效后方可用于工程设计。结构计算控制主要计算结果有结构自振周期、位移、平动及扭转系数、层间刚度比、剪重比、有效质量系数等。

2.3 层间位移限制

在出现地震的时候,高层建筑中的某些楼层会有位移,在出现位移的时候,建筑中的楼层会有错位,当错位超过一定程度的时候,建筑就会坍塌。根据某些研究发现,建筑的楼层出现位移,有建筑的材料有关,此外,还与建筑的结构联系。现在建筑的结构有钢筋混凝土,也有一部分是纯钢结构。但是钢筋混凝土结构对建筑位移的限制要比钢结构严格,尤其是对于建筑的抗风能力。现在对建筑的抗震设计主要是从位移出发,而且还要检查结构的强度,将各个部件所能承受的能力都作为设计的一个标准。这样才能保证设计的高层建筑有强度而且还有承载力。

在控制建筑位移的时候应该从两个方面出发,一个是平面体型;一个是建筑的里面变化。这样才能保证建筑的刚度没有变化,在设计结构的时候,要讲究结构的整体性。建筑结构之间的构件连接要保证有效。在设计地基的时候,也要保证地基有整体性,这样可以控制建筑发生位移,还能保证建筑结构稳定。对于建筑的某些薄弱环节要各位的注意,在设计的时候严格要求。建筑的宽度以及高度都要保证在合理的范围内,这样可以使建筑在发生位移的时候能够在一个可以控制范围内。

2.4 减小地震能量输入

在设计的过程中通常采用的是在位移结构抗震的方法,同时还要对方案开展定量分析工作,从而使得结构的弹性形变能够很好的满足地震作用力下位移的基本要求,在对建筑构件的承载力开展验算的同时,还需要对建筑结构受到地震作用之下所产生的位移极限值进行有效的控制和调整,同时还要按照建筑构件构造的实际要求来对构件变形值和地震发生时候的能量输入进行有效的控制,这样也就能在很大程度上减弱了地震对高层建筑产生的不利影响。高层建筑在建设的过程中一定要具备非常强的变形能力,这样就可以更好的吸收地震过程中所产生的能量,从而减少了地震破坏所产生的影响,在必要的时候我们还需要采取一定的手段来减少地震能量对结构的不利影响。

结束语

综上,结构抗震设计要达到的总体要求是“小震不坏,中震可修,大震不倒”这一目的,必须进行严格的选型、分析和计算。高层建筑是当下建筑发展的主要趋势,其抗震设计是高层建筑设计的重中之重。

参考文献

高层建筑抗震设计论文例9

中图分类号:U452文献标识码: A

我国的城市化建设非常迅速且规模巨大,人们大量涌入城市成为其中的一员。地震作为一种破坏性很强的自然灾害,对建筑结构安全的影响尤其重大,也直接关系到每个人的安全。本文在这里就建筑结构抗震设计作一概述,使人们对抗震设计有一个初步而又清晰的认识。

地震理论概述

我国处于世界两大地震带,东部的环太平洋地震带和西部、西南部的欧亚地震带之间,据统计我国大陆地震约占世界大陆地震的三分之一。因此我国是一个多震国家。建筑的抗震设计非常重要。

地震多发生在距地表几十公里内的地壳层和地幔层的上部。按成因地震可分为四种类型:构造地震、火山地震、冲击地震、诱发地震。其中构造地震占绝大多数。地震的破坏程度与震级、震源深度都有关系。震级是地震发生强度的一种度量,地震越强,震级就越大。震级相差一级,能量相差约30倍。地震震级和地震烈度不同,震级代表地震本身强弱,烈度表示同一次地震在地震波及的各个地点所造成的影响程度,它与震源深度、震中距、方位角、地质构造以及土壤性质等因素有关。地震烈度是在没有仪器记录的情况下,凭地震时人们的感觉或地震后工程建筑物破坏程度、地表的变化状况而定的一种宏观尺度。一般来说震级越大、震源越浅、震中距越近,地震烈度越大。宏观的地震烈度加上各国抗震规范规定的与之相应的地震加速度,就成为指导抗震设计的依据。

二、建筑抗震理论分析的进程

1、拟静力理论。拟静力理论是20世纪10~40年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小相当于结构的重量乘以一个比例常数(地震系数)。

2、反应谱理论。反应谱理论是在20世纪40~60年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础。是美国的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。

3、动力理论。动力理论是20世纪70-80年代广为应用的地震动力理论。它的发展基于60年代以来电子计算机技术和试验技术的发展,以及人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解。同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成建筑抗震设计工作。

三、建筑抗震设计

(一)建筑的抗震措施

在建筑的抗震设计中,除要考虑概念设计、结构构件抗震验算外,历次地震后人们在限制建筑高度,提高结构延性(限制结构类型和结构材料使用)等方面总结的抗震经验一直是各国规范重视的问题。当前,在抗震设计中,从概念设计,抗震验算及构造措施等三方面入手。在将抗震与消震(结构延性)结合的基础上,建立计算地震力与结构延性要求相互影响的双重设计指标和方法,直至进一步通过一些结构措施(隔震措施,消能减震措施)来减震,即减小结构上的地震作用。使得建筑在地震中有良好而经济的抗震性能,是当代抗震设计发展的方向。而且,强柱弱梁,强剪弱弯和强节点弱构件等要求在提高结构延性方面的作用已得到普遍的认可。

(二)建筑的抗震设计理念

我国《建筑抗震规范》(GB50011-2010)对建筑的抗震设计提出“三水准、两阶段”的要求。“三水准”即“小震不坏,中震可修,大震不倒”。当遭遇第一设防烈度地震即低于本地区抗震设防烈度的多遇地震时,结构处于弹性变形阶段,建筑物处于正常使用状态。建筑物一般不受损坏或不需修理仍可继续使用。因此,要求建筑结构满足多遇地震作用下的承载力极限状态验算,要求建筑的弹性变形不超过规定的弹性变形限值。当遭遇第二设防烈度地震即相当于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物可能出现一定程度的破坏。但经一般修理或不需修理仍可继续使用。因此,要求结构具有相当的延性能力(变形能力)不发生不可修复的脆性破坏。当遭遇第三设防烈度地震即高于本地区抗震设防烈度的罕遇地震时,结构虽然破坏较重,但结构的非弹性变形离结构的倒塌尚有一段距离。不致倒塌或者发生危及生命的严重破坏,从而保障了人员的安全。因此,要求建筑具有足够的变形能力,其弹塑性变形不超过规定的弹塑性变形限值。

三个水准烈度的地震作用水平,按三个不同超越概率(或重现期)来区分的:多遇地震:50年超越概率63.2%,重现期50年;设防烈度地震(基本地震):50年超越概率 10%,重现期475年;罕遇地震:50年超越概率 2%-3%,重现期 1642-2475年,平均约为2000年。实际应用上,多遇地震烈度可取比基本地震约低1度多,罕遇地震烈度比基本地震约高1度。

对建筑抗震的三个水准设防要求,是通过“两阶段”设计来实现的。其方法步骤如下:第一阶段:第一步采用与第一水准烈度相应的地震动参数,先计算出结构在弹性状态下的地震作用效应,与风、重力荷载效应组合,并引入承载力抗震调整系数,进行构件截面设计,从而满足第一水准的强度要求;第二步是采用同一地震动参数计算出结构的层间位移角,使其不超过抗震规范所规定的限值;同时采用相应的抗震构造措施,保证结构具有足够的延性、变形能力和塑性耗能能力,从而自动满足第二水准的变形要求。第二阶段:采用与第三水准相对应的地震动参数,计算出结构(特别是薄弱楼层)的弹塑性层间位移角,使之小于抗震规范的限值。并采用必要的抗震构造措施,从而满足第三水准的防倒塌要求。

(三)建筑的抗震设计方法

我国的《建筑抗震设计规范》(GB50011-2010)对各类建筑结构的抗震计算应采用的方法作了以下规定:1、高度不超过 40m,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法等简化方法。2、除1 款外的建筑结构,宜采用振型分解反应谱法。3、特别不规则的建筑、甲类建筑和限制高度范围的高层建筑,应采用时程分析法进行多遇地震下的补充计算,当取3组加速度时程曲线输入时,计算结构宜取时程法的包络值和振型分解反应谱法的较大值;当取7组及7组以上时程曲线时,可取时程法的平均值和振型分解反应谱法的较大值。

总之,建筑的抗震设计是一个浩大而复杂的问题,也是关系到每个人切身安全的问题。本文就其作一概述,希望对人们对建筑抗震设计理解的加深有所帮助。

[1]建筑抗震设计规范

北京:中国建筑工业出版社

[2]高层建筑混凝土结构技术规程

北京:中国建筑工业出版社

[3]黄世敏 杨沈.建筑震害与设计对策

北京:中国计划出版社

高层建筑抗震设计论文例10

随着我国经济的快速进展,建筑物越来越多,也越来越高,在这种情况下必须做好抗震设计。抗震结构设计规范是设计人员在进行建筑结构设计过程中遵循的原则,使结构满足强度、刚度、延性及耗能能力等方面的要求,以而实现“小震不坏、中震可修、大震不倒”的目的,但是在实际设计中,却达不到看作效果。因此, 我们在对建筑物进行结构设计的时候,必须把建筑物的抗震问题放到非常重要的位置,并采取适当的措施,尽量避免地震对建筑物的损坏。1 建筑抗震结构设计的基本要素

1.1 在抗震设计中有意识、有目的地控制薄弱层(部位),使之有足够的变形能力又不使薄弱层发生转移,这是提高结构总体抗震性能的有效手段。

1.2 一个抗震结构体系应由若干个延性较好的分体系组成,并由延性较好的结构构件连接协同工作。例如框架——剪力墙结构由延性框架和剪力墙两个分体组成,双肢或多肢剪力墙体系组成。

1.3 构件在强烈地震下不存在强度安全储备,构件的实际承载能力分析是判断薄弱部位的基础。

1.4 强烈地震之后往往伴随多次余震,如只有一道防线,则在第一次破坏后再遭余震,将会因损伤积累导致倒塌。抗震结构体系应有最大可能数量的内部、外部冗余度,有意识地建立一系列分布的屈服区,主要耗能构件应有较高的延性和适当刚度,以使结构能吸收和耗散大量的地震能量,提高结构抗震性能,避免大震时倒塌。

1.5 要使楼层(部位)的实际承载能力和设计计算的弹性受力的比值在总体上保持一个相对均匀的变化,一旦楼层(部位)的比值有突变时,会由于塑性内力重分布导致塑性变形的集中。

1.6 要防止在局部上加强而忽视了整个结构各部位刚度、承载力的协调。

2 建筑抗震的理论分析

2.1 建筑结构抗震规范。建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。

2.2 抗震设计的理论

2.2.1 拟静力理论。拟静力理论是20世纪10~40年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数(地震系数)。

2.2.2 反应谱理论。反应谱理论是在加世纪40~60年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。

2.2.3 动力理论。动力理论是20世纪70-80年广为应用的地震动力理论。它的发展除了基于60年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

3 建筑结构设计的有利抗震措施

3.1 建筑物结构悬挂隔震,将建筑物的全部或者一部分悬挂起来以隔离地震,就是我们常说的悬挂结构,名字很恰当地表达了它的特点,同时,我们也能很直接的感受到它的缺点和局限,即耗费的成本太大,和并不适合于普遍的推广,虽然是一种非常行之有效的方法,但是执行起来却是值得商榷的。一般情况下,大型的钢结构会采用此种措施。大型钢结构一般分为主框架和子框架,在悬挂体系中,子框架通过索链或者吊杆悬挂于主框架上,地震来临时主体框架虽然受到冲击,但是其子框架以及其他零部件是用近似于双节棍的链接方式与主体相连的,那么主体受到的冲击力在传送给子框架时就会减小很多,有益于保护子体框架。

3.2 建筑物基础设置隔震装置减震,这这种减震措施与上文的不同之处在于是在建筑物中间加上辅助材料或者部分已达到减震目的,而前者则是在整体框架结构上的创新上入手,减震装置属于独立于建筑物自身的材料,使用得当最多可使震力减少三分之一左右,不过这种方法局限于非高层建筑,高层如果采取这种方法,反而会增加建筑物的质量,而使地震来临时,这些附属物的重量给生命和财产造成更大的伤害。

3.3 建筑物地基,用具有防震功能的材料,彻底从根源上稳固地基,将防震落实到最底部,从而到达减震的最终目的。传统的做法是在建筑物的基础部位用粘土和砂子结合固定,也可以直接设置粘土或砂子垫层。在我国建筑史上,曾经有人突发奇想以糯米为原材料,采其优良的粘着性,在建筑物底部形成防震的糯米垫层,减少震对建筑物的损害,不可谓不奇,当然现当今的材料学,尤其是建筑材料学已经发展的足够进步,我们可以不仿照古人的做法了,但是这种创新和探索的精神还是值得我们学习的。

3.4 层间隔震,层间隔离主要用于旧房改建的改建中对于防震的需求,在施工方面很简洁,专业性不强,居民可自行操作。当然于此对应的是低收益,也就是层间隔离的效果没有上述几种方法明显,这也是必然的,因为旧房改建,旧房的地基,基础结构是不能改变的,也是无法改变的,所以只能作为辅助结构使用,其作用原理与前面提到的在建筑物中增加辅助减震的原理基本相同,可以借鉴,也可以根据不同的具体情况选择使用。

4 结语

总之,建筑物的抗震问题是目前建筑结构设计界讨论比较多的话题之一, 也是涉及到人类生命财产安全的重要问题, 因此, 我们在对建筑物进行结构设计的时候, 必须把建筑物的抗震问题放到非常重要的位置, 并采取适当的措施, 尽量避免地震对建筑物的损坏。

参考文献