期刊在线咨询服务,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

期刊咨询 杂志订阅 购物车(0)

高层建筑抗震结构设计模板(10篇)

时间:2023-08-20 14:46:38

高层建筑抗震结构设计

高层建筑抗震结构设计例1

中图分类号:TU97文献标识码: A 文章编号:

1、 高层建筑抗震结构设计的基本原则

一是框架—剪力墙结构由延性框架和剪力墙两个分体组成,双肢或多肢剪力墙体系组成。二是抗震结构体系应有最大可能数量的内部、外部冗余度,有意识地建立一系列分布的屈服区,主要耗能构件应有较高的延性和适当刚度,以使结构能吸收和耗散大量的地震能量,提高结构抗震性能,避免大震时倒塌。三是适当处理结构构件的强弱关系,同一楼层内宜使主要耗能构件屈服后,其他抗侧力构件仍处于弹性阶段,使“有效屈服”保持较长阶段,保证结构的延性和抗倒塌能力。四是在抗震设计中某一部分结构设计超强,可能造成结构的其他部位相对薄弱,因此在设计中不合理的加强以及在施工中以大带小,改变抗侧力构件配筋的做法,都需要慎重考虑。

2、高层建筑结构措抗震施设计

在对结构的抗震设计中,除要考虑概念设计、结构抗震验算外,历次地震后人们在限制建筑高度,提高结构延性(限制结构类型和结构材料使用)等方面总结的抗震经验一直是各国规范重视的问题。当前,在抗震设计中,从概念设计,抗震验算及构造措施等三方面入手,在将抗震与消震(结构延性)结合的基础上,建立设计地震力与结构延性要求相互影响的双重设计指标和方法,直至进一步通过一些结构措施(隔震措施,消能减震措施)来减震,即减小结构上的地震作用使得建筑在地震中有良好而经济的抗震性能是当代抗震设计规范发展的方向。而且,强柱弱梁,强剪弱弯和强节点弱构件在提高结构延性方面的作用已得到普遍的认可。

3、高层建筑的抗震设计理念

我国建筑抗震规范对建筑的抗震设防提出“三水准、两阶段”的要求,“三水准”即“小震不坏,中震可修,大震不倒”。当遭遇第一设防烈度地震即低于本地区抗震设防烈度的多遇地震时,结构处于弹性变形阶段,建筑物处于正常使用状态。建筑物一般不受损坏或不需修理仍可继续使用。因此,要求建筑结构满足多遇地震作用下的承载力极限状态验算,要求建筑的弹性变形不超过规定的弹性变形限值。当遭遇第二设防烈度地震即相当于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物可能出现一定程度的破坏。但经一般修理或不需修理仍可继续使用。因此,要求结构具有相当的延性能力(变形能力)不发生不可修复的脆性破坏。当遭遇第三设防烈度地震即高于本地区抗震设防烈度的罕遇地震时,结构虽然破坏较重,但结构的非弹性变形离结构的倒塌尚有一段距离。不致倒塌或者发生危及生命的严重破坏,从而保障了人员的安全。因此,要求建筑具有足够的变形能力,其弹塑性变形不超过规定的弹塑性变形限值。

4、高层建筑结构抗震设计方法探讨

对建筑抗震的三个水准设防要求,是通过“两阶段”设计来实现的,其方法步骤如下:第一阶段:第一步采用与第一水准烈度相应的地震动参数,先计算出结构在弹性状态下的地震作用效应,与风、重力荷载效应组合,并引入承载力抗震调整系数,进行构件截面设计,从而满足第一水准的强度要求;第二步是采用同一地震动参数计算出结构的层间位移角,使其不超过抗震规范所规定的限值;同时采用相应的抗震构造措施,保证结构具有足够的延性、变形能力和塑性耗能,从而自动满足第二水准的变形要求。第二阶段:采用与第三水准相对应的地震动参数,计算出结构(特别是柔弱楼层和抗震薄弱环节)的弹塑性层间位移角,使之小于抗震规范的限值。并采用必要的抗震构造措施,从而满足第三水准的防倒塌要求。

5、高层建筑结构抗震设计方法

5.1基础的抗震设计

基础是实现高层建筑安全性的重要条件。我国高层建筑通常采用钢筋混凝土连续地基梁形式,在基础梁的设计中,为充分发挥钢筋的抗拉性和混凝土的抗压性的复合效应,把设计重点放在梁的高度和钢筋的用量上,在钢筋的布置上采用主筋、腹筋、肋筋、基础筋、基础辅筋5种钢筋的结合。为防止基础钢筋的生锈,一方面采用耐酸化的混凝土,另一方面是增加钢筋表面的保护层厚度,以抑止钢筋的腐蚀。高层建筑基础处理的另一个特色是钢制基础结合垫块的应用,它是高层建筑上部结构柱与基础相连的重要结构部件。它的功能之一是使具有吸湿性的混凝土基础和钢制结构柱及上部建筑相分离,有效防止结构体的锈蚀,确保部件的耐久性。

5.2钢结构骨架的抗震设计

采用钢框架结合点柱壁局部加厚技术来提高结构抗震性能。一般钢框架结构,梁和柱结合点通常是柱上加焊钢制隅撑与梁端用螺栓紧固连接。在这种方式下,钢柱必须在结合部被切断,加焊隅撑后再结合,这样做技术上的不稳定性和材料品质不齐全的可能性很大,而且遇到大地震,钢柱结合部折断的危险性很大。鉴于此,可以首先该结构的梁柱采用高密度钢材,以发挥其高强抗震、抗拉和耐久性。柱壁增厚法避免断柱形式,对二、三层的独立住宅而言,结构柱可以一贯到底,从而解决易折问题。与梁结合部柱壁达到两倍厚,所采用的是高频加热引导增厚技术。在制造过程中品质易下降的钢管经过加热处理反而使材料本来所具有的拉伸强度得以恢复。对于地震时易产生的应力集中,柱的增厚部位能发挥很大的阻抗能力,从而提高和强化了结构的抗震性。

5.3墙体的抗震设计。“三合一”外墙结构体系,首先是由日本专家设计应用的,采用外墙结构柱与两侧外墙板钢框架组合。

6、高层建筑抗震分析和设计的趋势

6.1基于位移的结构抗震设计

我国现行的结构抗震设计,是以承载力为基础的设计。即:用线弹性方法算结构在小震作用下的内力、位移;用组合的内力验算构件截面,使结构具有一定的承载力;位移限值主要是使用阶段的要求,也是为了保护非结构构件;结构的延性和耗能能力是通过构造措施获得的。为了实现基于位移的抗震设计,第一步需要研究简单结构(例如框架及悬臂墙)的构件变形与配筋关系,实现按变形要求进行构件设计;进而研究整个结构进入弹塑性后的变形与构件变形的关系。这就要求除了小震阶段的计算外,还要按大震作用下的变形进行设计,也就是真正实现二阶段抗震设计,这是结构抗震设计的发展趋势。

6.2动力时程响应分析的状态空间迭代法

该种方法把现代控制理论中的状态空间理论应用到高层建筑结构动力响应问题,根据结构动力方程,引人位移与速度为状态变量,导出状态方程,给出非齐次状态方程的解,进而建立状态空间迭代计算格式。经工程实例验算,具有较高精度。特别对多自由度体系的多输入、多输出等问题的动力响应解法,效率较高。

6.3材料参数随机性的抗震模糊可靠度分析

该种方法从结构整体性能出发,改变过去对结构抗震可靠度的研究只考虑荷载的不确定性而忽略了其他多种不确定因素,综合考虑了材料参数的变异性,地震烈度的随机性及烈度等级界限的随机性与模糊性对结构抗震可靠度的影响。其研究成果可用于对现有的结构进行抗震可靠度评估,并可用于指导基于可靠度理论的结构抗震设计。

6.4隔震和消能减震设计的推广和应用

目前我国和世界各国普遍采用的传统抗震结构体系是“延性结构体系”,即适当控制结构物的刚度,但容许结构构件(如梁、柱、墙、节点等)在地震时进入非弹性状态,并目具有较大的延性,以消耗地震能量,减轻地震反应,使结构物“裂而不倒”。这种体系,在很多情况下是有效的,但也存在很多局限性。随着社会的不断发展,对各种建筑物和构筑物的抗震减震要求越来越高,使“延性结构体系”的应用日益受到限制,传统的抗震结构体系和理论越来越难以满足要求,而由于隔震消能和各种减震控制体系具有传统抗震体系所难以比拟的优越性,在未来的建筑结构中将得到越来越广泛的应用。

7、结束语

高层建筑已经逐渐成为当前时代建筑发展的主流建筑形态之一,对于高层建筑,其抗震效能的分析一直是国内外建筑抗震设计分析的研究热点,而最直接最有效的抗震措施就是在建筑设计阶段进行结构抗震设计,只有从高层建筑物内部实施结构抗震,才能够从根本上提高高层建筑的抗震效能。

参考文献:

[1]李忠献.高层建筑结构及其设计理论[M].北京:科学出版社,2006.

高层建筑抗震结构设计例2

高层建筑结构设计应符合抗震概念设计的要求,不应采用严重不规则的设计方案。合理的建筑布置在抗震设计中是头等重要的,提倡平、立面简单对称。 “建筑结构的规则性”包含了对建筑的平立面外形尺寸,抗侧力构件布置、质量分布,承载力分布等诸多因素的综合要求。“规则建筑”体现在体形简单;抗侧力体系的刚度承载力上下变化连续、均匀;平面布置基本对称

1 高层建筑结构设计

1.1 高层建筑结构设计的概念及内容:

结构设计简而言之就是用结构语言来表达建筑师及其它专业工程师所要表达的东西。结构语言就是结构师从建筑及其它专业图纸中所提炼简化出来的结构元素。包括基础,墙,柱,梁,板,楼梯,大样细部等等。然后用这些结构元素来构成建筑物或构筑物的结构体系,包括竖向和水平的承重及抗力体系。把各种情况产生的荷载以最简洁的方式传递至基础。

1.2 高层建筑结构设计的阶段:

结构设计的阶段大体可以分为三个阶段,结构方案阶段,结构计算阶段和施工图设计阶段。方案阶段的内容为:根据建筑的重要性,建筑所在地的抗震设防烈度,工程地质勘查报告,建筑场地的类别及建筑的高度和层数来确定建筑的结构形式。确定了结构的形式之后就要根据不同结构形式的特点和要求来布置结构的承重体系和受力构件。

结构计算阶段的内容为:

1.2.1 荷载的计算。荷载包括外部荷载和内部荷载,上述荷载的计算要根据荷载规范的要求和规定采用不同的组合值系数和准永久值系数等来进行不同工况下的组合计算。

1.2.2 构件的试算。根据计算出的荷载值,构造措施要求,使用要求及各种计算手册上推荐的试算方法来初步确定构件的截面。

1.2.3 内力的计算,根据确定的构件截面和荷载值来进行内力的计算,包括弯矩,剪力,扭矩,轴心压力、拉力等等。四:构件的校核。根据计算出的结构内力及规范对构件的要求和限制来复核结构试算的构件是否符合规范规定和要求。

2 高层建筑结构设计的基本要求

2.1 结构的规则性

2.1.1 不应采用严重不规则的结构体系。建筑设计应符合抗震概念设计的要求,应采用规则的设计方案,应符合下列要求:

(1)具有必要的承载能力、刚度和变形能力;

(2)避免因部分结构或构件的破坏而导致整个结构丧失承受重力荷载、风荷载和抗地震作用的能力;

(3)对可能出现的薄弱部位,应采取多重措施予以加固。

2.1.2 高层建筑的结构体系宜符合下列要求:

(1)结构的竖向和水平布置宜具有合理的刚度和承载力分布,避免因局部突变和扭转效应而形成薄弱部位;

(2)应具备多道抗震防线。

2.2 规则结构的主要特征

高层建筑及其抗侧力结构的平面布置应该规则、对称,并应具有良好的整体性;建筑的立面和竖向剖面宜规则,结构的侧向刚度宜均匀变化,竖向抗侧力构件的截面尺寸和材料强度宜自下而上逐渐减小,避免抗侧力结构的侧向刚度和承载力突变。

2.3 规则平面布置需满足的要求

结构平面布置必须考虑有利于抵抗水平和竖向荷载,受力要明确,传力要直接,均匀对称,减少扭转的影响。在地震作用下,建筑平面要力求简单规则,风力作用下则可适当放宽。抗震设防的建筑,平面形状宜简单、对称、规则,以减少震害。

3 高层建筑结构设计中的抗震设计

3.1 高层建筑抗震结构设计的基本原则

3.1.1 结构构件应具有必要的承载力、刚度、稳定性、延性等方面的性能

(1)结构构件应遵守强柱弱梁、强剪弱弯、强节点弱构件、强底层柱的原则;

(2)对可能造成结构的相对薄弱部位,应采取措施提高抗震能力

(3)承受竖向荷载的主要构件不宜作为主要耗能构件。

3.1.2 尽可能设置多道抗震防线

(1)一个抗震结构体系应由若干个延性较好的分体系组成,并由延性较好的结构构件连接协同工作。

(2)强烈地震之后往往伴随多次余震,抗震结构体系应有最大可能数量的内部、外部冗余度,有意识地建立一系列分布的屈服区,主要耗能构件应有较高的延性和适当刚度,以使结构能吸收和耗散大量的地震能量,提高结构抗震性能,避免大震时倒塌。

(3)适当处理结构构件的强弱关系,同一楼层内宜使主要耗能构件屈服后,其他抗侧力构件仍处于弹性阶段,使“有效屈服”保持较长阶段,保证结构的延性和抗倒塌能力;

(4)在抗震设计中某一部分结构设计超强,可能造成结构的其他部位相对薄弱,因此在设计中不合理的加强以及在施工中以大带小,改变抗侧力构件配筋的做法,都需要慎重考虑。

3.1.3 对可能出现的薄弱部位,应采取措施提高其抗震能力

(1)构件在强烈地震下不存在强度安全储备,构件的实际承载能力分析是判断薄弱部位的基础;

(2)要使楼层的实际承载能力和设计计算的弹性受力的比值在总体上保持一个相对均匀的变化,一旦楼层的比值有突变时,会由于塑性内力重分布导致塑性变形的集中。

(3)要防止在局部上加强而忽视了整个结构各部位刚度、承载力的协调;

(4)在抗震设计中有意识、有目的地控制薄弱层,使之有足够的变形能力又不使薄弱层发生转移,这是提高结构总体抗震性能的有效手段。

3.2 提高短柱抗震性能的应对措施

3.2.1 提高短柱的受压承载力

提高短柱的受压承载力可减小柱截面、提高剪跨比,从而改善整个结构的抗震性能。减小柱截面和提高剪跨比,最直接的方法就是提高混凝土的强度等级,即采用高强混凝土来增加柱子的受压承载力,降低其轴压比;但由于高强混凝土材料本身的延性较差,采用时须慎重或与其他措施配合使用。此外,可以采用钢骨和钢管混凝土柱以提高短柱的受压承载力。

3.2.2 采用钢管混凝土柱

钢管混凝土是套箍混凝土的一种特殊形式,由混凝土填入薄壁圆形钢管内而形成的组合结构材料。由于钢管内的混凝土受到钢管的侧向约束,使得混凝土处于三向受压状态,从而使混凝土的抗压强度和极限压应变得到很大的提高,混凝土特别是高强混凝土的延性得到显著改善。同时,钢管既是纵筋,又是横向箍筋。当选用了高强混凝土和合适的套箍指标后,柱子的承载力可大幅度提高,通常柱截面可比普通钢筋混凝土柱减小一半以上,消除了短柱,并具有良好的抗震性能。

3.2.3 采用分体柱

由于短柱的抗弯承载力比抗剪承载力要大得多,在地震作用下往往是因剪坏而失效,其抗弯强度不能完全发挥。因此,可人为地削弱短柱的抗弯强度,使抗弯强度相应于或略低于抗剪强度,这样,在地震作用下,柱子将首先达到抗弯强度,从而呈现出延性的破坏状态。人为削弱抗弯强度的方法,可以在柱中沿竖向设缝将短柱分为2或4个柱肢组成的分体柱,分体柱的各柱肢分开配筋。在组成分体柱的柱脚之间可以设置一些连接键,以增强它的初期刚度和后期耗能能力。

现阶段,高层建筑结构抗震设计理论的研究与发展使建筑抗震分析在概念上进一步走向完善,如果可以在结构材料特性,动力响应,计算理论,稳定标准诸方面得到符合实际的发展,自然会在建筑结构抗震领域内起到重要的作用。

参考文献:

[1]都凤强,高层建筑结构设计的实践探讨[J]。科技创新导报,2009,(21)

[2]谭文锐,李达能。高层建筑结构设计中问题之探究[J]。广东科技,2007,(6)

[3]杨琦,高层建筑结构特点及其体系[J]。沿海企业与科技,2007,(1)

高层建筑抗震结构设计例3

Abstract: using the modern science and technology to reduce and prevent earthquake disaster, the structure aseismatic design is a kind of effective method. So here is the author of the current structural seismic design Suggestions to explore.

Keywords: construction project, the structure, the seismic design

中图分类号:S611文献标识码:A 文章编号:

建筑物本身又是一个庞大复杂的系统,在遭受地震作用后其破坏机理和破坏过程十分复杂。且在结构分析方面,由于未能充分考虑结构的空间作用、非弹性性质、材料时效、阻尼变化等多种因素,也存在着不确定性。因此,建筑结构抗震设计就显得尤为重要。

1.有关抗震设计的若干概念

为了保证结构的抗震安全,根据具体情况,结构单元之间应遵守牢固连接或有效分离的方法。高层建筑的结构单元宜采取加强连接的方法。尽可能设置多道抗震防线,强烈地震之后往往伴随多次余震,如只有一道防线,在首次破坏后在遭受余震,结构将会因损伤积累而导致倒塌。适当处理结构构件的强弱关系,使其在强震作用下形成多道防线,并考虑某一防线被突破后,引起内力重分布的影响,是提高结构抗震性能,避免大震倒塌的有效措施。合理布置抗侧力构件,减少地震作用下的扭转效应。结构刚度、承载力沿房屋高度宜均匀、连续分布、避免造成结构的软弱或薄弱部位。结构构件应具有必要的承载力、刚度、稳定性、延性及耗能等方面的性能。主要耗能构件应有较高的延性和适当的刚度,承受竖向荷载的主要构件不宜作为主要耗能构件。合理控制结构的非弹性(塑性铰区),掌握结构的屈服过程,实现合理的屈服机制。框架抗震设计应遵守“强柱、弱梁、结点更强”的原则,当构件屈服、刚度退化时,结点应能保持承载力和刚度不变。采取有效措施,防止钢筋滑移、混凝土过早的剪切破坏和压碎等脆性破坏。考虑上部结构嵌固于基础结构或地下室结构之上时,基础结构或地下室机构应保持弹性工作。高层建筑的地基主要受力范围内存在较厚的软弱黏性土层时,不宜采用天然地基。采用天然地基的高层建筑应考虑地震作用下地基变形对上部结构的影响。为了充分发挥各构件的抗震能力,确保结构的整体性,在设计的过程中应遵循以下原则:①结构应具有连续性。结构的连续性是使结构在地震作用时能够保持整体的重要手段之一。②保证构件间的可靠连接。提高建筑物的抗震性能,保证各个构件充分发挥承载力,关键的是加强构件间的连接,使之能满足传递地震力时的强度要求和适应地震时大变形的延性要求。③增强房屋的竖向刚度。在设计时,应使结构沿纵、横2个方向具有足够的整体竖向刚度,并使房屋基础具有较强的整体性,以抵抗地震时可能发生的地基不均匀沉降及地面裂隙穿过房屋时所造成的危害。

2.抗震设计一般规定

2.1多层和高层现浇钢筋混凝土房屋的结构类型和适用的最大高度应符合要求。平面和竖向均不规则的结构或建造于Ⅳ类场地的结构,适用的最大高度应适当降低。合相应的计算和构造措施要求。

2.2钢筋混凝土房屋应根据烈度、结构类型和房屋高度采用不同的抗震等级,并应符合相应的计算措施要求。

2.3钢筋混凝土房屋抗震等级的确定,尚应符合下列要求:框架一抗震墙结构,在基本振型地震作用下,若框架部分承受的地震倾覆力矩大于结构总地震倾覆力矩的50%,其框架部分的抗震等级应按框架结构确定,最大适用高度可比框架结构适当增加:裙房与主楼相连,除应按裙房本身确定外,不应低于主楼的抗震等级;主楼结构在裙房顶层及相邻上下各一层应适当加强抗震构造措施。裙房与主楼分离时,应按裙房本身确定抗震等级;当地下室顶板作为上部结构的嵌固部位时,地下一层的抗震等级应与上部结构相同,地下一层以下的抗震等级可根据具体情况采用三级或更低等级。地下室中无上部结构的部分,可根据具体情况采用三级或更低等级;抗震设防类别为甲、乙、丁类的建筑应结合有关抗震设防标准的规定和确定抗震等级;其中,8度乙类建筑高度超过规定的范围时应经专门研究采取比一级更有效的抗震措施。

2.4高层钢筋混凝土房屋宜避免采用规定的不规则建筑结构方案,不设防震缝。

3. 建筑防震设计方法

建筑抗震的概念设计指在进行建筑结构抗震设计时,应着眼于建筑物结构的总体地震的震动反应,按照建筑结构的破坏机制和破坏过程,灵活应用建筑抗震的设计准则,全面而合理地解决建筑结构设计中出现的基本问题。

钢结构建筑有许多优良的特性。有很好的抗震、抗风性能。钢结构整体刚性好、强度高、重量轻、变形能力强,建筑物自重仅为砖混结构的1/5,抗震性能却是砖混结构的2倍以上,并有很强的抗风性能,有效的保护人民生命和财产安全。建筑钢结构都是由多层水平的楼盖和竖向的柱、墙等组成。楼盖主要承受竖向荷载,而建筑竖向的柱、墙等构件因为建筑高度的变化,其组成方式和受力变形.特性结构体系也有明显的变化。框架、剪力墙及筒体是结构中抵抗竖向及水平荷载的基本单元,由它们及其变体组成了各种结构体系,如框架结构体系、框架一支撑结构体系、框架-剪力墙体系、框架一简体结构体系、交错析架结构体系等。

建筑设计应设置多道抗震设防体系。由于地震的震动往往会持续一定时间,而且震动是往复的。根据对地震的大量研究可以看出,建筑物的倒塌通常是由于地震的持续往复作用,使建筑物的结构造到破坏,从而丧失了对建筑物重力荷载的承载能力。所以,建筑抗震规范提出“强柱弱梁、强剪弱弯”的抗震设计思想。建筑柱桩是建筑主要承受重力荷载的构件,通过科学、合理处理柱与梁之间的强弱关系,使建筑框架梁在地震中先于柱子屈服,出现了塑性铰,从而耗散一定的地震能量,柱桩在建筑抗震中退居到第二道抗震设防体系。剪切破坏属于力学的脆性破坏,而弯曲破坏是材料力学中的延性破坏,破坏后出现塑性铰,建筑结构还能够继续承载。“强剪弱弯”的设计思想则使剪切破坏退居到第二道抗震设防体系。

建筑抗震设计要具备合理的刚度和承载力分布以及与之匹配的延性。结构构件必须具备足够大的承载能力和刚度(刚度包括抗侧刚度和抗扭刚度),结构构件的承载能力和刚度是相关的,一般来说,建筑刚度越大,其承载能力也越大。增大建筑结构构件的承载力,可以推迟地震时构件的屈服能力,减轻地震对构件的屈服程度,降低对构件延性的要求,但这提高了建筑工程造价。要实现经济合理的建筑抗震结构体系,使建筑物在遭受大地震侵袭时,仍具有很强的抗倒塌能力,最理想的是建筑物部分结构构件破坏,通过延性耗散地震能量,避免建筑物的倒塌。

建筑延性系数设计方法。该方法的实质是通过建立建筑构件的位移延性系数或建筑截面曲率延性系数与塑性铰区混凝土极限压应变的关系,由结构约束箍筋来保证核心混凝土能够满足所要求的极限压应变,从而使建筑构件具有所需要的延性系数。建筑延性包括建筑结构延性、构件延性和截面延性三个方面。结构延性可以用顶点位移延性和层间位移延性来表达;构件位移延性与塑性铰区长度和截面延性等有关;截面延性与建筑物的几何形状、混性土强度、轴压比、纵筋含钢率、含箍特征值等因素有关。

采用能力谱方法进行建筑抗震设计。该方法是通过地震反应谱曲线和建筑结构能力谱曲线的叠加来评估建筑结构在给定地震作用下的反应特性。反应谱是指单自由度体系在给定地震输入下的加速度谱;能力谱是指通过对建筑结构进行静力推的分析,转换得到等效单自由度体系的加速度和位移之间的关系曲线。能力谱方法由Freeman等提出,经过不断的完善和革新。《日本建筑标准法》和美国ATC-40都采用能力谱法作为基于性能,位移抗震设计方法。Chopra提出了将能力谱方法和结构损伤指数评定相结合的屈服位移能力谱的地震损伤分析方法,增加并强化了能力谱法的实用性。因此,能力谱法的实质是采用的基于承载力的设计方法加位移、变形的能力校核,并依据能量的设计方法。对抗震设计的研究表明地震动瞬时能量在大多数情况下对结构最大位移反应具有决定性作用。但要建立基于能量的有效建筑抗震设计框架还需更深入的研究。

4.结束语

随着建筑结构抗震相关理论研究的不断发展,结构抗震设计思路也经历了一系列的变化。最初,在未考虑结构弹性动力特征,也无详细的地震作用记录统计资料的条件下,经验性的取一个地震水平作用用于结构设计。结构抗震设计思路经历了从弹性到非线性,从基于经验到基于非线性理论,从单纯保证结构承载能力的“抗”到允许结构屈服,并赋予结构一定的非弹性变形性能力的“耗”的一系列转变

高层建筑抗震结构设计例4

Abstract: The split-level floor elevation is greater than 600mm or more, and more than high beam, split-level area must be greater than or equal to 30% of the entire floor area. This structure belongs to the irregular structure of the building program. The first is flat on each floor a different elevation, which is equivalent to the floor to open a big hole, so the plane is irregular; followed by vertical slab split-level, the stiffness of the vertical elements will vary greatly, so the vertical nor the rules . Trials and studies show that poor seismic performance of the split-level structure should be avoided, but there are market demand, to resolve this contradiction in the actual design process, it is necessary to pay attention to be taken to strengthen measures. This paper discusses the seismic design of high-rise building split-level structure.Key words: high-rise buildings; split-level; structure; seismic design

中图分类号:TU97文献标识码:A 文章编号:

引言

随着楼市的发展,人们传统的居住习俗正逐渐受到新潮理念的挑战,旧式的居住观念已被迅速发展的现代都市生活理念所替代,在住宅的品位和生活质量上人们已提出了一个相当高的要求,这种要求的提高也势必引起房型的变化,人们要求现在的房型功能更完善、分割更合理、私密性更强。也就是人们对住宅的要求已从以前传统的实惠型向舒适性、小康性、超前性、休闲性、温馨型发展。为此错层式住宅作为一种新概念房型在各地层出不穷,甚至有愈演愈烈的趋势,已经从独立式、联立式的低层住宅发展到多层,又由多层蔓延到高层。

所谓错层, 就是楼板标高大于600mm以上,且超过梁高。光有了这样的元素还不能构成错层结构,错层的面积必须大于等于整个楼层面积的30%。这种结构,属于建筑方案不规则的结构形式。首先是平面,每层的楼板由于标高不同,相当于楼板开大洞,所以平面不规则; 其次是竖向,由于梁板错层,竖向构件的刚度会相差很大,所以竖向也不规则。在试验和研究中均表明,错层结构的抗震性能较差,应尽量避免,但是又有市场需求,为解决好这个矛盾,在实际的设计过程中,就要注意采取加强措施。

一、高层建筑错层结构的特点

错层结构属于复杂高层结构,之所以定义为复杂高层结构主要是因为以下特点。

1、错层结构属于竖向布置不规则结构,在错层部位竖向抗侧力构件因计算高度不同而引起刚度突变;剪力墙结构错层后因建筑使用功能原因易形成错洞或叠合错洞剪力墙使洞口布置不规则;框架结构错层后形成长短柱混合的不规则结构,更加不利。

2、由于楼板错层,故相当于错层楼板开大洞,楼板会受到较大的削弱而形成平面不规则结构。

3、错层附近竖向抗侧力构件受力复杂,易形成许多应力集中部位。且限于目前计算软件的能力尚无法进行精准计算,应根据结构概念进行构造加强。

二、错层布局方式

错层住宅的布局方式很多(常见的有左右错(图1),前后错(图2)、双层错(无论哪一种错层方式(建议每次错层高差控制0.3m-0.45m之间.

图1

图2

三、高层建筑错层结构抗震设计

1、设计要点

高层错层建筑结构由于在错层短柱存在很大的内力集中,且错层框架结构在错层处的短柱要协调相互错开的楼盖的变形,特别是在地震作用下,更易发生破坏。为改善普通错层框架结构的受力性能,主要采取以下措施来解决:

( 1) 在普通错层框架结构的错层处根据实际需要增设若干撑杆,用撑杆的轴力来转移普通错层框架结构错层处短柱受的剪力。

( 2) 在普通错层框架结构的适当位置增设若干剪力墙,用剪力墙来承担大部分的结构水平剪力。

( 3) 错层不宜沿建筑通高设置,错层中应设置一定数量的贯通层,将错层分为几个区段,且每个错层区段包含的错层层数也不宜太多,通层要重点加强。

( 4) 对于电算结果给出的超筋、超限的连梁,在提高其混凝土强度等级,截面调整仍无效果的情况下,可采用钢骨混凝土连梁加以解决,采用钢骨时要注意钢骨和墙体暗柱的连接构造。

( 5) 在对复杂高层建筑进行设计时,运用概念设计的思想确定结构方案、进行结构布置是十分重要的。在此基础上还要有充分的计算分析手段例如采用二种不同计算程序进行分析对比、相互验证,并采用结构动力分析方法进行补充分析。

( 6) 对高层错层建筑在错层处应在纵横向布置剪力墙,并使其互相形成扶壁,错层处布置单独的框架柱是不可取的。

2、错层结构设计注意事项

错层结构应用较广,如何保证结构安全,采取有效措施正确处理错层结构就显得尤为重要。在设计时应具体问题具体分析,充分考虑各种不利因素,针对错层结构可能出现的薄弱部位从建筑平面布置、理论计算及抗震构造措施等方面出发,增强结构的整体受力性能,提高结构的延性。

( 1) 结构的共用柱大多为短柱,而短柱的延性很差,在建筑遭受本地区设防烈度或高于本地区设防烈度的地震影响时,很容易发生剪切破坏而造成结构破坏甚至倒塌,因此对因错层形成的短柱,应该尽量提高短柱的承载力,减小短柱的截面尺寸,采取各种有效措施提高短柱的延性,改善短柱的抗震性能。

( 2) 尽可能使结构平面布置合理化,使错层部位两层的竖向构件刚度相等,对结构平面布置不对称的结构,地震的扭转效应将十分显著,可能造成角部抗侧力构件开裂,在设计中应加强这些部位的配筋,增强抗震构造措施。

( 3) 加强错层结构中错层柱及其上连梁的抗扭能力,同时使错层柱与相邻普通柱的长细比控制在1 ~ 2 之间。

( 4) 在高层建筑中,竖向体型应避免过大的外挑和内收,立面收进部分的尺寸比值应满足≥0. 75 的要求。

( 5) 对设防烈度较高、抗震等级较高的高层钢筋混凝土结构,应尽可能限制使用错层结构,如不可避免,则应用剪力墙结构,并尽量避免上下层楼面刚度突变。

四、结语

1、错层结构受力复杂, 抗震性能较差, 应尽量回避错层结构的设计方案。一旦确定为错层结构, 尽量减少错层的范围和错层的楼层数, 错层的两侧尽量采用结构布置和侧向刚度相近的结构体系, 并尽量选择抗震性能好的剪力墙结构。通过选择合理的结构形式, 采用较规则的平面布置体系, 加强抗震构造措施, 可以满足规范抗震设计的要求。

2、对于错层结构的结构设计, 应更注重于概念设计, 既很好的保证结构的安全性, 又确保收到良好的经济效果。

3、 根据建设部令第111 号的精神, 对复杂的高层错层结构应进行专项审查, 这也是保证错层结构设计质量的重要措施。

参考文献:

[1] 王超,张华丽. 高层剪力墙局部错层结构抗震设计[J]. 工程建设与设计, 2011,(04) .

[2] 王春伟. 浅谈带错层的高层建筑结构抗震设计[J]. 中国新技术新产品, 2011,(13) [3] 任华. 某高层建筑结构设计的分析与探讨[J]. 建材与装饰(中旬刊), 2007,(12)

[4] 黄宁峰. 结合实践对高层建筑结构设计若干问题的分析[J]. 四川建材, 2009,(06)

[5] 杨光明. 对高层建筑结构设计中提高短柱抗震措施的探讨[J]. 建材与装饰(中旬刊), 2008,(06) .

高层建筑抗震结构设计例5

对于高层建筑结构设计,要遵守抗震设计规范,从抗震概念设计应用入手,结合工程实际情况,提出定量控制要求。值得注意的是,开展高层建筑结构抗震设计,要在概念清晰且技术可靠的基础上,合理的设计建筑结构,以确保建筑的抗震性能。通常情况下,高层建筑结构抗震设计,需要从概念设计、抗震计算、抗震措施等方面加以把控,以确保设计的合理性。

1高层建筑结构抗震性设计的意义

贵州省位于我国南北地震带南段的东侧,省内西部部分区域位于地震带上。贵州地震的频度与强度为中等水平,地震平面分布不均。若发生地震,会造成极大的损失,以尼泊尔大地震为例,涉及到多个多家,地震造成近4000人死亡,约7000人受伤,对尼泊尔国造成超过50亿美元的经济损失,由此可见地震的损失性。在地震中,建筑既是人们的保护工具,也是威胁人们安全的物体,若能够提升建筑的抗震性,对保护人们的财产与安全,有着积极的作用,因此加强高层建筑结构抗震性设计研究,有着必要性。

2抗震概念设计应用的基本要点

2.1合理选择建筑结构

高层建筑结构抗震性设计,最为重要的是建筑体形和结构设计,占据着重要地位,多数倒塌建筑主要是因为规划不合理造成的,所以要科学的选择水平面与垂直面,提升建筑的抗震性能。一般来说,建筑平面形状规则,直接影响着建筑的抗震性,平面形状平整度越高,则建筑的抗震性能就越强,图1为水平地震作用。规则平面能够承担荷载作用,建筑结构的整体性较为突出。在高层建筑结构设计中,于高度方向,需要保证结构布置的连续性,实现侧向刚度保持连续,以免出现薄弱层。

2.2合理选择传力路线

高层建筑结构抗震设计多利用计算机程序,来确保计算的准确性,建筑结构设计人员只需要掌握简单的计算方法即可。利用计算机,在获取受力状态下,形成建筑结构件计算简图。接着利用力学模型和数学模型,从地震反应入手,做好详细的分析,明确计算结果,合理选择建筑结构路径,提高传力路线选择的效率。

2.3合理选择建筑位置

通过相关研究发现,建筑物损毁与建筑所处的地形,有着直接的关系。除此之外,建筑损坏和地基、断层等,也有着紧密关系。以覆盖土因素为例,建筑破坏率和此因素呈现的是正相关,覆盖土层厚度小,证明土质偏硬,具有较强的稳定性,当遇到地震时,不易发生倒塌情况,因此在设计高层建筑时,要选择硬质地基,降低地震效应,确保建筑结构的稳定性[1]。

2.4设置多条抗震防线

高层建筑结构抗震设计时,需要设置多条抗震防线。考虑到地震时间存在差异,伴随多次余震,受到地震反复冲击,会给建筑结构的稳定性造成损坏,若高层建筑物设置一道防线,当建筑受到一次破坏后,难以抗衡后续破坏,因此需要设置多道保护,确保高层建筑结构的稳定性。

3抗震概念设计在高层建筑抗震设计中的具体应用

3.1提升结构延性

高层建筑抗震设计水平低于地震等级,极易因为脆性破坏,造成建筑倒塌,所以在建筑结构抗震设计中,要提高结构延性,增强建筑结构抵抗能力。可以从以下方面入手:①材料。选择延性材料,此类材料的应用,当发生非弹性变形,或者发生反复弹性变形时,其延性不会明显下降。②杆件。通过控制杆件的延性,包括塑性变形与能量收纳与耗散等,提高结构延性,通常从墙肢与框架的柱等方面捂手。③构件。构件的延性指的是某个构件的塑性变形与能量消耗的能力,通过控制墙体或者框架延性,来提高建筑结构整体延性。总得来说,建筑结构延性指的是抗倒塌能力与塑性变形能力。在设计时,可以采取以下措施:①在平面上,增强突变处与转角处等构件的延性;②对于竖向,则可以加强薄弱楼层的延性,比如体型突变处、主楼与裙房相接的楼层等;③增强首道抗震防线部分的构件延性[2]。

3.2提升结构的整体性

高层建筑结构的整体性较强,能够确保建筑结构在地震力的作用下,处于协调运行的状态,可避免建筑倒塌。采取以下措施:①选用钢结构支撑结构。钢结构作为建筑行业的新技术,其市场份额不断扩大,贵州地区已经逐步引入钢结构,比如贵州钢结构发展中心楼,楼层高24层,建筑面积为26000m2,建筑承板使用的是钢筋线桁架工艺,建筑整体性较好,抗震性能较好。高层建筑结构设计中,采取钢结构支撑体系,对提升高层建筑框架结构中的侧向刚度,有着积极的影响,可以抵抗水平荷载,提升高层建筑整体强度。与纯框架架构相比,支撑结构稳定性较好,将窗台下方-下层窗户顶部区域位置,作为支撑位置,合理设置支撑,能够达到结构支撑要求。采取环向封闭同一平面,能够提高建筑钢结构侧向刚度,在强震区应用,其效果更为凸显。②抗侧力结构。若高层建筑结构为多种框架结构形式,应用钢结构,可以承载建筑物竖向负载与部分横向负载。采用抗侧力结构,可以按照建筑的各类要求,来选用抗侧力结构。若高层建筑中桁架高度和单楼层相同,可以利用交错桁结构,来设置上下楼层,确保各单元设置的灵活性。应用此结构,在钢结构平面内,梁柱弯矩较小,侧向位移也较小。

3.3准确计算结构抗震

开展高层建筑结构抗震设计前,需要准确的计算建筑结构的地震作用,接着计算结构与构件的地震作用效应,并且和其它载荷效应,做好相互结合,检验建筑结构抗震承载力与变形,确保能够达到新《建筑抗震设计规范》(GB50011-2001)规范相关要求。需要做好以下计算:①地震作用计算。建筑结构抗震承载力主要考虑水平地震作用,高层建筑结构设计,还需要注意竖向地震作用。②抗震验算。主要包括截面抗震验算、弹性变形验算、薄弱层弹塑性变形验算等[3]。

3.4做好非结构部件设计

非结构部件指的是建筑结构分析中,不考虑侧向荷载与重力荷载的建筑部件,包括内隔墙与墙等。虽然建筑结构设计时,此类部件不参与荷载分析,但若发生地震,此类部件会起到作用,极有可能会改便建筑结构承载力,或是提升建筑抗震性,或是增加破坏性,因此需要做好非结构部件的处理。可以采取以下措施:①加强建筑框架和填充墙之间的联系,使得填充墙可以成为建筑主体抗震结构的组成部分。对于墙体连接,可以采取柔性连接方式,削弱墙柱的联系,避免发生嵌固作用。②对于附着在建筑楼与屋面结构的,需要做好此类非结构构件和主体结构的连接处理,以免发生地震时,造成人员伤亡。③加强幕墙和装饰贴面等和建筑主体结构的有效连接,避免贴面损坏。

3.5做好倒塌分析

开展高层建筑结构设计时,采取倒塌分析法,做好建筑倒塌分析,以优化建筑结构抗争性设计,达到抗震标准。可以借鉴超高层建筑经验,譬如:某超高层建筑为Ⅷ度抗震设防烈度建筑,在建筑结构设计时,利用倒塌分析法,进行结构设计方案分析,发现采取内嵌钢支撑剪力墙方案,能够有效的增强建筑结构强度。基于倒塌分析,明确此工程采取全支撑方案建设总材料用量可节约11.2%,建筑结构抗倒塌储备能力可以增加14.8%,建筑的抗震性能较好。采取对比各种最小地震剪力系数调整方案,能够明确采取调整地震剪力,开展刚度验算,设计建筑构件承载力,能够获得较好的效果,此方案和提高刚度缩短建筑结构自振周期的方案相比,具有较强的经济性。对于建筑结构倒塌关键位置,能够提高建筑结构整体的抗倒塌能力,此方案的实施,增加钢用量约0.1%。总而言之,在建筑结构设计时,做好倒塌分析,能够准确衡量各类结构设计方案的效果,明确各类抗震措施对建筑结构抗震性能的影响,发挥着积极的作用[4]。

4结束语

应用概念设计,开展高层建筑结构抗震设计,需要充分的借鉴工程经验,严格按照建筑抗震设计相关规范,采取相应的措施,提升建筑结构的整体性能,提高结构的抗震性能。

参考文献

[1]陆新征,杨蔚彪,卢啸,齐五辉,刘斌,张万开,叶列平.倒塌分析在某500m级超高层建筑抗震设计中的应用[J].建筑结构,2015(23):91~97.

[2]刘均伟.高层建筑结构设计中抗震概念设计的运用研究[J].山西建筑,2016(20):43~44.

高层建筑抗震结构设计例6

引言

随着建筑行业的快速发展,我国建筑逐渐向高层建筑和超高层建筑结构发展。高层建筑的结构复杂,层数比较高,建筑地基承受的荷载比较大。地震发生时,震源对高层建筑结构会产生冲击力,容易造成建筑梁、柱断裂,建筑倒塌等现象,严重威胁到人民群众的安全。我国是地震灾害比较频繁的国家,高层建筑抗震设计一直是社会关注的重点,抗震设计的好坏直接关系到高层建筑的质量。因此高层建筑抗震设计的时候要根据高层建筑的实际情况,提高建筑结构抗震性能。

1超限高层建筑结构基于性能抗震设计与常规抗震设计的比较

1.1基于性能的抗震设计的概念

概念设计是目前一种比较先进的设计理念,与传统建筑设计相比,概念设计不需要精准的计算或参考建筑设计规范相关的目录,而是设计者根据实践经验,按照建筑结构体系的力学关系、结构破坏机理,从建筑结构整体进行把握设计。传统的建筑设计思想无法满足人们对建筑结构抗震功能的要求,为了提高建筑结构抗震安全性能要求,抗震设计已经发生了较大变化。比如建筑结构以力分析为主并兼顾力与变形,考虑到建筑结构变形、耗能和损失,以及非线性分析和可靠性分析。基于性能的抗震设计是20世纪90年代美国建筑设计师提出来的一个全新的设计理念。它的主要核心是将抗震设计从保护居民生命财产安全为基本目标转移到不同风险水平地震作用力下满足人们对建筑的性能要求,通过多层次、多目标的抗震安全设计,保障建筑安全,最终实现经济效益和投资效益的平衡,满足人们对建筑的个性需求。

1.2我国常规抗震设计方法

当前大部分国家的抗震设计规范为“小震不坏、中震可修、大震不倒”的原则,我国采用二阶段抗震设计方法满足工业建筑和民用建筑实现以上三个原则的抗震要求,并在这个基础上根据建筑物抗震重要性分成甲、乙、丙、丁四类建筑物,根据建筑物的类别设置相应的抗震防烈要求。二阶段抗震设计方法如下:第一阶段是对建筑结构强度进行验算,也就是小震的地震洞参数,通过弹性模量计算建筑结构的弹性地震作用力,并与建筑物风荷载、雪荷载、水平荷载等进行组合,计算建筑结构截面的抗震承载力,确保建筑结构的强度,并通过合理的平面结构布置,确保建筑结构的抗拉力。第二阶段则是验算建筑结构的弹塑性,也就是对地震作用下很容易倒塌的建筑结构按照大震标准进行设计,处理好建筑结构的薄弱环节,以免地震发生时首先冲击建筑结构的薄弱环节,影响到整个建筑结构的安全性和稳定性。

1.3常规抗震设计方法与基于性能抗震设计方法的比较

基于常规抗震设计方法与基于性能抗震设计方法在设防目标、设计实施方法和检验方法、实现性能和工程应用方面都有所不同,具体见表1。通过比较发现,基于性能抗震设计方法是未来建筑抗震设计的发展方向,它适应了社会新技术和新工艺发展需求,能够满足建筑业务单位和使用单位对建筑结构安全性、经济性等相关要求。

2超限高层建筑结构的抗震性能目标

某酒店塔楼的高度是168.9m,结构计算高度为176m,建筑结构为B类钢筋混凝土高层建筑。建筑场地类别为III类,建筑抗震等级为二级。

2.1结构的抗震性能水准

按照相关规定,酒店的塔楼高度、平面扭转不规则等不能超限,所以在第一、二阶段抗震设计过程中,必须采取有效的方法满足建筑工程国家以及地方相关的标准,并将基于性能抗震设计目标概念进行设计。按照《建筑抗震设计规范》给出的抗震性能设计方法以及《高层建筑混凝土结构技术规范》中的相关规范进行设计,确定该酒店的性能水准为C类,具体控制目标如下:

2.2建筑结构的性能目标

超限高层建筑结构规则性、高度等方面超出了建筑工程规范中的适用限值,使得抗震设计缺乏相应的参考依据。基于性能目标设计方法在设计的时候,需要综合考虑到建筑场地实际设防裂度、超高限值以及建筑结构不规则等经济因素,对超高建筑的薄弱环节、主抗侧力构件等结构变形能力和抗震承载能力有具体的性能目标。按照建筑工程设计中相关内容,建筑结构关键构件由建筑结构工程师根据工程实际情况分析。比如水平转换构件和支撑竖向构件、大悬挑结构的主要悬挑构件、长短柱在同一楼层的数量相当于在该层各个长短柱等要求。这其实是将过去常规抗震设计中的“小震不坏、中震可修、大震不倒”的抗震设计原则进行量化和细化。比如将A级性能目标设计要求建筑结构小震不坏、中震和大震不坏,就是要求建筑结构在中震和大震中依然保持一定的弹性。

3结语

随着建筑行业的快速发展,常规的建筑工程抗震设计方法已经无法满足当下建筑设计的要求,基于建筑结构性能抗震设计理念对抗震结构的目标进行量化,明确抗震目标性能,能够提高建筑结构抗震性能,必将成为建筑行业的发展趋势。

高层建筑抗震结构设计例7

中图分类号:TU318 文献标识码:A 文章编号:1672-3791(2012)06(b)-0076-01

高层住宅建筑结构的抗震设计是建筑工程设计以及施工重点,高层建筑的发展与城市的发展具有密切的联系,城市人口的密集、用地紧张,从而促进人们对高层住宅建筑的要求。为了保证高层建筑结构在地震的作用下不被受到严重破坏以及保证人们的生命财产安全通过对高层住宅建筑结构的抗震优化设计,保证建筑具有良好的抗震性能以及安全性。

1 高层住宅建筑结构的抗震设计原则

高层住宅建筑结构的抗震设计应该选择合适的结构形式,做到刚柔相济,保证建筑结构的抗震性能,并且应该达到建筑物“小震不坏、中震可修、大震不倒”的抗震目标。由于建筑物在地震的作用力下,其结构会发生很大的变化,所以高层住宅建筑设计人员应该根据不同的建筑类型以及地震强烈程度采用不同的建筑构造和结构类型,保证设计的建筑结构达到安全性和效益相统一的原则。所以在对高层住宅建筑结构设计的过程中首先应该认真进行抗震设计,综合考虑建筑结构构件的稳定性、承载能力以及刚度和延性等建筑性能,并且对于结构中相对比较薄弱的部位应进一步加强抗震措施。并且在抗震设计使,应该设有多道防线,使建筑结构形成一个完整的抗震结构体系,从而达到高层住宅建筑良好的抗震效果,并且在进行处理建筑结构之间的关系时,应该保证“有效屈服”能够保持较长的阶段,从而可以保证建筑结构的抗倒塌能力和延性[1]。

2 优化策略

对高层建筑结构抗震设计时,首先可以从高层住宅建筑结构的结构体系、建筑结构的规则性等方面着手,在将抗震和消震相结合的基础之上,建立建筑结构延性和结构设计的地震力要求相互影响的双重指标和设计方法,从而可以通过建筑结构形式达到减震消震的效果,从而使高层住宅建筑在地震中具有良好经济的抗震性能。

2.1 建筑结构的抗震设计应重视建筑结构的规则性

(1)在高层住宅建筑抗震设计中建筑主体抗侧力结构应该沿着竖向断面构成变化比较均匀,并且不能出现突变的现象,这种均匀的高层建筑结构能够避免因为结构薄弱层的破坏而造成整个建筑结构破坏,特别是对于强震区的高层住宅建筑应该特别注意。

(2)建筑主体的抗侧力结构的两个主轴方向变形特性以及刚性应该比较相近,这主要是因为高层建筑结构是三维形式,实际的地震作用以及风荷载具有任意的方向性,在设计中使建筑主体抗侧力的两个主轴方向的刚度比较均匀,这就可以保证建筑结构具有良好的抗风能力和抗震性。

(3)在高层住宅建筑抗震设计时,主体抗侧力结构的平面布置应保证同一主轴方向的抗侧力结构刚度应该均匀,这样可以有效避免在主体结构的布置设置中刚性大而延性小的结构,比如长窄的实体剪力墙,这种结构虽然能够满足刚度以及对称性的要求,但是由于在建筑结构中一些结构刚度比较大,所以在地震发生时,将会吸收非常大的能量,造成应力的集中的地方首先受到破坏,从而造成正整体结构的损坏。因此在设计的过程中保证高层住宅建筑同一主轴方向的抗侧力结构刚度的均匀性,对建筑结构的抗震延性具有重要作用。

2.2 抗震结构体系的优化设计

高层住宅建筑结构体系的设计是建筑结构设计中最为重要的问题。建筑结构设计方案的合理性,对建筑结构的经济性以及安全性具有重要的作用。而抗震结构体系是高层住宅建筑抗震设计中关键问题,在抗震结构体系设计的过程中应该设计多道抗震防线,并且还应该根据建筑的类型以及因素进行设计,这样不仅可以避免因为建筑中某些部分的构件的破坏而造成整个建筑体系的抗震能力失效的现象,而且还可以保证建筑设计的安全性。在设计中结合建筑特点、经济条件等因素综合考虑,并且在建筑抗震结构体系的设计中应该选择不承受重力载荷的构件。抗震结构体系必须具有合理的地震作用传递途径,设计中不适合采用轴压比较大的钢筋混凝土框架作为抗震结构体系设计的第一道防线,在抗震设计中设计多道防线主要是为了减少建筑主体结构的地震能量,必要的强度分布以及刚度能够减轻主体结构的破坏[2]。

2.3 层间位移的控制

高层住宅建筑都具有非常大的高宽比,并且在地震以及风力的作用下会产生非常大的层间位移的现象,严重情况会超出结构位移的限制数值,位移限值的大小与建筑结构体系和结构材料、侧向荷载以及装修等多方面因素有关。所以在高层住宅建筑结构设计的过程中应该根据建筑的具体情况以及地理位置等进行设计,不仅应该具有足够的刚度,而且诶还应该有效避免水平载荷作用下造成的位移现象,而影响建筑结构的稳定性、承载能力和舒适度。

高层建筑抗震结构设计例8

一、我国高层建筑发展的历史回顾

我国高层建筑在设计计算及施工技术各方面迅速发展的阶段是在上个世纪80年代,当时各大、中城市普遍兴建高度在100m左右或100m以上的以钢筋为主的建筑,建筑层数和高度不断增加,功能和类型越来越复杂,结构体系日趋多样化。比较有代表性的高层建筑有上海锦江饭店,全部采用框架一芯墙全钢结构体系,深圳发展中心大厦是我国第一幢大型高层钢结构建筑。进入90年代我国高层建筑结构的设计与施工技术进入了新的阶段。不仅结构体系及建筑材料出现多样化而且在高度上长幅很大有一个飞跃。现阶段,土与结构物共同工作理论的研究与发展使建筑抗震分析在概念上进一步走向完善,如果可以在结构与地基的材料特性,动力响应,计算理论,稳定标准诸方面得到符合实际的发展,自然会在建筑结构抗震领域内起到重要的作用。

二、从理论上分析高层建筑的抗震设计

高层建筑抗震工作一直建筑设计和施工的重点,概述高层建筑的发展,对建筑抗震进行必要的理论分析,从而来探索高层建筑的设计理念、方法,从而采取必须的抗震措施。建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计,包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容的法定性文件。它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。

1、拟静力理论。拟静力理论是20世纪10~40年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数即地震系数。

2、反应谱理论。反应谱理论是在加世纪40~60年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。

3、动力理论。动力理论是20世纪70-80年广为应用的地震动力理论。它的发展除了基于60年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

三、高层建筑结构抗震设计的理念、方法和措施

1.高层建筑的抗震设计理念

高层建筑的抗震要能做到:当遭遇第一设防烈度地震即低于本地区抗震设防烈度的多遇地震时,结构处于弹性变形阶段,建筑物处于正常使用状态。建筑物一般不受损坏或不需修理仍可继续使用。因此,要求建筑结构满足多遇地震作用下的承载力极限状态验算,要求建筑的弹性变形不超过规定的弹性变形限值。当遭遇第二设防烈度地震即相当于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物可能出现一定程度的破坏。但经一般修理或不需修理仍可继续使用。因此,要求结构具有相当的延性能力不发生不可修复的脆性破坏。当遭遇第三设防烈度地震即高于本地区抗震设防烈度的罕遇地震时,结构虽然破坏较重,但结构的非弹性变形离结构的倒塌尚有一段距离。不致倒塌或者发生危及生命的严重破坏,从而保障了人员的安全。因此,要求建筑具有足够的变形能力,其弹塑性变形不超过规定的弹塑性变形限值。

对建筑抗震的三个水准设防要求,是通过“两阶段”设计来实现的,其方法步骤如下:第一阶段:第一步采用与第一水准烈度相应的地震动参数,先计算出结构在弹性状态下的地震作用效应,与风、重力荷载效应组合,并引入承载力抗震调整系数,进行构件截面设计,从而满足第一水准的强度要求;第二步是采用同一地震动参数计算出结构的层间位移角,使其不超过抗震规范所规定的限值;同时采用相应的抗震构造措施,保证结构具有足够的延性、变形能力和塑性耗能,从而自动满足第二水准的变形要求。第二阶段:采用与第三水准相对应的地震动参数,计算出结构(特别是柔弱楼层和抗震薄弱环节)的弹塑性层间位移角,使之小于抗震规范的限值。并采用必要的抗震构造措施,从而满足第三水准的防倒塌要求。

2.高层建筑结构的抗震设计方法

我国的《建筑抗震设计规范》(GB50011-2010)对各类建筑结构的抗震计算应采用的方法作了以下规定:⑴高度不超过40m,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法等简化方法。⑵除1款外的建筑结构,宜采用振型分解反应谱方法。⑶特别不规则的建筑、甲类建筑和限制高度范围的高层建筑,应采用时程分析法进行多遇地震下的补充计算,可取多条时程曲线计算结果的平均值与振型分解反应谱法计算结果的较大值。

3. 高层建筑结构的抗震措施

高层建筑抗震结构设计例9

引言

随着经济社会的不断发展,高层建筑也不断涌现出来,但是由于近些年频繁发生的地质灾害,也给高层建筑的结构设计敲响了警钟。高层建筑也越来越多,在这种情况下必须做好抗震设计,设计人员在高层建筑抗震设计中,都是按照抗震结构设计规范进行的,他们希望设计的结构能够达到强度、刚度、延性及耗能能力等方面达到最佳,从而经济地实现“小震不倒、中震可修、大震不倒”的目的,但是在实际设计中,却不能达到这种效果。本文将从抗震结构设计的基本原则,我国高层建筑抗震设计常见的问题以及提高抗震性能措施三个方面对高层建筑的抗震结构进行阐述。

1.高层建筑抗震结构设计的基本原则

(1)结构构件应具有必要的承载力、刚度、稳定性、延性等方面的性能。①结构构件应遵守“强柱弱梁、强剪弱弯、强节点弱构件、强底层柱(墙)”的原则;②对可能造成结构的相对薄弱部位,应采取措施提高抗震能力;③承受竖向荷载的主要构件不宜作为主要耗能构件。

(2)尽可能设置多道抗震防线。由于每次强震之后都会伴随多次余震,因此在建筑物的抗震设计过程中若只有一道设防,则其在首次被破坏后而余震来临时其结构将因损伤积累而倒塌。因此,建筑物的抗震结构体系应由若干个延性较好的分体系组成,在地震发生时由具有较好延性的结构构件协同工作来抵挡地震作用。当遭遇第二设防烈度地震即低于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物可能出现一定程度的破坏,但经一般修理或不需修理仍可继续使用。

2.我国高层建筑抗震设计常见的问题

2.1工程地质勘查资料不全

在设计初期,设计人员应该及时掌握施工场地的地质情况,但是往往在设计过程中,却没有建筑场地岩土工程的勘察资料,就不能很好的进行地基设计,给建筑物的结构带来安全隐患。

2.2建筑材料不满足要求

对于材料而言,我们要明确这样一个道理:地震对结构作用的大小几乎与结构的质量成正比。一般说在相同条件下,质量大,地震作用就大,震害程度就大,质量小,地震作用就小,震害就小。所以,在建筑物的楼板、墙体、框架、隔断、围护墙以及屋面构件中,广泛采用多孔砖、硅酸盐砌块、陶粒混凝土、加气混凝土板、空心塑料板材等轻质材料,将能显著改善建筑物的抗震性能。

2.3建筑物本身的建筑结构设计

建筑物如果平面布置复杂,致使质心与刚心不重合,在地震作用下产生扭转效应,则会加剧了地震的破坏作用,海城地震和唐山地震中有不少这样的震害实例。台湾9.21地震中,一栋钢筋混凝土结构由于结构平面不规则,在水平地震作用下,结构产生严重扭转效应而破坏倒塌,同时撞坏相邻建筑上部的阳台。

2.4平面布局的刚度不均

抗震设计要求建筑的平、立面布置宜规正、对称,建筑的质量分布和刚度变化宜均匀,否则应考虑其不利影响。但有的平面设计存在严重的不对称:一边进深大,一边进深小;一边设计大开间,一边为小房间;一边墙落地承重,一边又为柱承重。平面形状采用L、π形不规则平面等,造成了纵向刚度不均,而底层作为汽车库的住宅,一侧为进出车需要,取消全部外纵墙,另一侧不需进出车辆,因而墙直接落地,造成横向刚度不均。这些都对抗震极为不利。

2.5防震缝设置不规范

对于高层建筑存在下列三种情况时,宜设防震缝:①平面各项尺寸超过《钢筋混凝土高层建筑结构设计与施工规程》(JGJ3- 91)中表2.2.3 的限值而无加强措施;②房屋有较大错层;③各部分结构的刚度或荷载相差悬殊而又未采取有效措施;但有的竟未采取任何抗震措施又未设防震缝。

2.6结构抗震等级掌握不准

有的提高了,而有的又降低了,主要是对场地土类型、结构类型、建筑高度、设防烈度等因素综合评定不准造成。

上述这些问题的存在,倘若不能得到改正,势必对建筑物的安全带来隐患。上述这些问题的原因是多方面的,这就需要设计人员从设计的角度避免这些问题的出现,防止将这种问题带入施工中,应该高层建筑的抗震性能。

3.提高抗震性能措施

3.1选择合理结构类型

在高层建筑中,其竖向荷载主要使结构产生轴向力,而水平荷载主要使结构产生弯矩,随着高度的增加,在竖向荷载不变的情况下,水平荷载作用力增加,此时竖向荷载所引起的建筑物侧移很小,但是水平荷载参数的侧移就非常大,与高度层四次方变化,因此在高层建筑中,主要对水平荷载进行控制,在设计过程中,应该在满足建筑功能及抗震性的前提下,选择切实可行的结构类型,使其具有良好的结构性能。目前大多数的高层建筑都采用了钢混结构,这种结构具有较大的刚度,空间整体性好,材料资源丰富,可组成多种结构体系。但是其变形能力差,造价相对较高,当场地特征周期较长时,容易发生共振现象。

3.2减小地震能量输入

具有良好抗震性能的高层建筑结构要求结构的变形能力满足在预期的地震作用下的变形要求,因此在设计过程中除了控制构件的承载力外还应控制结构在地震作用下的层间位移极限值或位移延性比, 然后根据构件变形与结构位移的关系来确定构件的变形值,同时根据截面达到的应变大小及分布来确定构件的构造要求,选择坚硬的场地土来建造高层建筑等方法来减小地震能量的输入。

3.3减轻结构自重

对于同样的地基条件下进行建筑结构设计若减轻结构自重则可相应增加层数或减少地基处理造价,尤其是在软土基础上进行结构设计这一作用更为明显,同时由于地震效应与建筑质量成正比,而高层建筑由于其高度大重心高等特点,在地震作用时其倾覆力矩也随之增加, 因此, 为了尽量减小其倾覆力矩应对高层建筑物的填充墙及隔墙尽量采用轻质材料以减轻结构自重。

3.4尽可能设置多道抗震防线

当发生强烈地震之后往往伴随多次余震,如只有一道防线,则在第一次破坏后再遭余震,将会因损伤积累导致倒塌。抗震结构体系应有最大可能数量的内部、外部冗余度,有意识地建立一系列分布的屈服区,主要耗能构件应有较高的延性和适当刚度,以使结构能吸收和耗散大量的地震能量,提高结构抗震性能,避免大震时倒塌。

4.结语

总之,面对中国的高层建筑抗震结构存在的诸多问题,限于我国作为一个发展中国家的财力、物力,探讨、研究有效的建筑抗震措施的任务仍然十分艰巨。于此同时,我国政府相关部门也应该加强规范力度,发挥好对高层建筑防震措施的检查、检验效力。

参考文献

[1]罗联训. 浅论高层混凝土建筑抗震结构设计[J]. 中华民居(下旬刊),2014,06:25.

高层建筑抗震结构设计例10

中图分类号:TU241.8文献标识码:A文章编号:

引言:

随着我国钢产量、成型制造工艺以及经济政策等方面的支持,我国房地产业的迅猛发展。进入上世纪 90 年代后,高层钢结构成为高层建筑的发展趋势。高层建筑不仅在材料和结构体系上逐渐多样化,而且在优化建筑结构设计上也越发受到业界普遍关注和重视。由于我国处于地震多发区,结构抗震分析和设计已提到各国建筑设计的日程。房地产业的高速发展将成为趋势,国内虽有一些高层钢结构设计理念,但可靠性仍值得商榷。因此,住宅高层建筑结构抗震的优化设计处于非常重要的地位。

1.住宅高层建筑结构抗震设计原则

抗震设计要刚柔相济,选择合适的结构形式,在增加结构刚度的同时也要增强地震作用,需要确定合理的抗震措施。保证结构的抗震性能主要是确保建筑物满足“小震不坏、中震可修、大震不倒”的抗震目标。在地震力作用下,要求结构保持在弹性范围内正常使用。建筑物的变形破坏性态后不能发生很大的变化,经简单的修复后可正常使用。随着建筑物高度的增加,允许结构进入弹塑性状态,但必须保证结构整体的安全。因此,六级以上必须进行抗震设计。每次强震之后都会伴随多次余震,在建筑抗震设计过程中如果若一味的提高结构抗力,就会增加结构刚度。若只有一道设防,则会导致结构刚度大。所以,建筑物在地震过程中既能满足变形要求,又能减小地震力的双重目标。因此,只有这样才能使建筑物抗震设计过程中防止造成建筑物局部受损。建筑物的抗震结构体系如果刚度太柔,首次被破坏后而余震来临时其结构将因损伤,结构构件协同工作来抵挡地震作用容易导致建筑物过大形变而不能使用。延性较好的分体系组成,地震发生时不会发生整体倾覆。因此,由若干个在地震发生时由具有较好延性。

2.高层建筑结构抗震设计要点

2.1 结构规则性

建筑在结构方案设计的初期,结合抗震设计的要求,对建筑平面及使用功能进行合理优化和布局,特别是高层住宅建筑,应保证建筑物有足够的扭转刚度以减小结构的扭转影响,要求建筑物平面对称均匀,柱网剪力墙布置合理。因为该种结构建筑容易估计出其地震反映,对建筑进行合理的布置,以尽量减小结构内应力和竖向构件间差异变形对建筑结构产生的不利影响。并应尽量满足建筑物在竖向上重力荷载受力均匀,体型简单,结构刚度。大量的地震灾害表明,在地震时,只有建筑物受力均匀,平立面布局简洁对称合理,这样的结构才能满足抗震设防的设计要求。

2.2 层间位移限制

我们在进行高层建筑物结构设计时要注意建筑的高宽比,位移的限制和结构材料、结构体系甚至装修标准以及侧向荷载等问题。其中钢筋混凝土结构的位移限值要求严格,以及所处的地理位置进行设计,稳定性以及正常使用功能等。其在风力和地震作用下往往能够产生较大的层间位移,满足其具有足够的刚度又要避免超过结构的承载力,位移限值风荷载作用下的限值比地震作用下的要求严格,在水平荷载的作用下产生过大的位移而影响结构的承载力。

3.抗震设计中的注意事项

3.1基本设计信息的确定

根据当地的抗震设防烈度和建筑类别等确定抗震等级。值得注意的是,高层住宅建筑一般为丙类建筑,是不需要调整设防烈度的,而甲、乙类建筑要按照《建筑抗震设防分类标准》来调整设防烈度。设计时要明确该场地土类别、地面粗糙度和地震加速度,使设计更加合理。建筑越高,风荷载的影响越大,因此对基本风压也要更加重视,当建筑高度超过60 m 或者对风荷载敏感的建筑,就要按照一百年重现期的风压采用,并应根据建筑的形状、高宽比等选择合适的体形系数。

3.2概念设计与设计参数的正确选择

在方案设计阶段,要进行概念设计,使结构体系的地震作用传递途径明确以及使结构具有多道抗震防线。结构最大适用高度要控制在规范允许范围内,使结构具有足够的延性。剪力墙的布置应均匀、对称,在纵横两个方向上都有布置,使两个主轴方向的刚度尽量接近;墙体要尽量减少开洞,如果要开洞,洞口应均匀对齐,避免任意开洞。砼结构构件应控制截面尺寸和受力钢筋、箍筋的设置,防止剪切破坏先于弯曲破坏、砼的压溃先于钢筋的屈服、钢筋的锚固粘结破坏先于钢筋破坏。结构各之间的连接应做到构件节点的破坏,不应先于其连接的构件;预埋件的锚固破坏,不应先于连接件;装配式结构构件的连接,应能保证结构的整体性;预应力砼构件的预应力钢筋,宜在节点核心区以外锚固。

4.优化策略

对高层建筑结构抗震设计时,首先可以从高层住宅建筑结构的结构体系、建筑结构的规则性等方面着手,在将抗震和消震相结合的基础之上,建立建筑结构延性和结构设计的地震力要求相互影响的双重指标和设计方法,从而可以通过建筑结构形式达到减震消震的效果,从而使高层住宅建筑在地震中具有良好经济的抗震性能。

4.1 建筑结构的抗震设计应重视建筑结构的规则性

4.1.1在高层住宅建筑抗震设计中建筑主体抗侧力结构应该沿着竖向断面构成变化比较均匀,并且不能出现突变的现象,这种均匀的高层建筑结构能够避免因为结构薄弱层的破坏而造成整个建筑结构破坏,特别是对于强震区的高层住宅建筑应该特别注意。

4.1.2建筑主体的抗侧力结构的两个主轴方向变形特性以及刚性应该比较相近,这主要是因为高层建筑结构是三维形式,实际的地震作用以及风荷载具有任意的方向性,在设计中使建筑主体抗侧力的两个主轴方向的刚度比较均匀,这就可以保证建筑结构具有良好的抗风能力和抗震性。

4.1.3在高层住宅建筑抗震设计时,主体抗侧力结构的平面布置应保证同一主轴方向的抗侧力结构刚度应该均匀,这样可以有效避免在主体结构的布置设置中刚性大而延性小的结构,比如长窄的实体剪力墙,这种结构虽然能够满足刚度以及对称性的要求,但是由于在建筑结构中一些结构刚度比较大,所以在地震发生时,将会吸收非常大的能量,造成应力的集中的地方首先受到破坏,从而造成正整体结构的损坏。因此在设计的过程中保证高层住宅建筑同一主轴方向的抗侧力结构刚度的均匀性,对建筑结构的抗震延性具有重要作用。

4.2 抗震结构体系的优化设计

高层住宅建筑结构体系的设计是建筑结构设计中最为重要的问题。建筑结构设计方案的合理性,对建筑结构的经济性以及安全性具有重要的作用。而抗震结构体系是高层住宅建筑抗震设计中关键问题,在抗震结构体系设计的过程中应该设计多道抗震防线,并且还应该根据建筑的类型以及因素进行设计,这样不仅可以避免因为建筑中某些部分的构件的破坏而造成整个建筑体系的抗震能力失效的现象,而且还可以保证建筑设计的安全性。在设计中结合建筑特点、经济条件等因素综合考虑,并且在建筑抗震结构体系的设计中应该选择不承受重力载荷的构件。抗震结构体系必须具有合理的地震作用传递途径,设计中不适合采用轴压比较大的钢筋混凝土框架作为抗震结构体系设计的第一道防线,在抗震设计中设计多道防线主要是为了减少建筑主体结构的地震能量,必要的强度分布以及刚度能够减轻主体结构的破坏。

4.3 层间位移的控制

高层住宅建筑都具有非常大的高宽比,并且在地震以及风力的作用下会产生非常大的层间位移的现象,严重情况会超出结构位移的限制数值,位移限值的大小与建筑结构体系和结构材料、侧向荷载以及装修等多方面因素有关。所以在高层住宅建筑结构设计的过程中应该根据建筑的具体情况以及地理位置等进行设计,不仅应该具有足够的刚度,而且诶还应该有效避免水平载荷作用下造成的位移现象,而影响建筑结构的稳定性、承载能力和舒适度。

5.结语

随着新型结构、高性能材料的出现人类建筑也势必再上新台阶,理顺结构与建筑,使得新型结构建筑要求同时能满足建筑物的使用功能和外观要求。提高结构与设备的关系,需要从目前抗震设计现状出发,设计者应根据工程抗震概念各方面的知识和经验,作出正确的工程判断,找出结构安全与经济合理的最佳结合点,探求处一种实用可行的二步或三步设防的合理有效的抗震设计方法,以更好地适应社会经济和科学技术的发展。