期刊在线咨询服务,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

期刊咨询 杂志订阅 购物车(0)

管道结构设计模板(10篇)

时间:2023-08-25 16:30:57

管道结构设计

管道结构设计例1

2屋面设备基础

屋面散热设备及管道总荷载达到约650t,屋面梁采用井字梁结构,梁间距3m,屋面板厚为200mm。考虑冷塔等散热设备属于带转动振动设备,为提高楼顶住户的舒适度,设计时增加了散热设备基础的刚度和配重,采用条形基础,若设备设计安装标高大于条基高度,采用钢筋混凝土短柱支撑设备地脚。

管道结构设计例2

随着社会的发展与经济的进步,城市的工业及人口规模不断扩大,需水量呈现出日益增长的趋势。在供水需求不断增长的趋势下,供水水源不断向外拓展,因此市政给排水管道的输水距离逐渐加长。在这样的形势下,市政给排水管道工程结构设计面临着更严峻的考验。

1工程概况

山西省朔州市神头电厂泉水置换供水管线工程位于朔州市东北约2km处耿庄水库至神头电厂段。属于国家战略引黄北线工程的重要部分,对解决晋西北地区长期的缺水状况有重要的意义。本地区属海河流域桑干河水系桑干河上游,区内属干旱半干旱气候,四季分明,夏季干热,春秋刚多风沙。本工程由万家寨引黄工程北干线耿庄水库取水,经供水管道供水至水厂,再由水厂供水至神头电厂。拟采用PCCP供水管,管直径1.0~1.5m,管线长11.85km

2工程地质条件

为准确反应给排水管道沿线的水文地质情况、地形地貌,必须要具备完整的地形勘探资料与水文地质勘探资料。经地勘单位勘探,主要成果如下:供水管线地处山前倾斜平原区,地形起伏不平,出露地层为第四系上更新统洪冲积低液限粉土、低液限粘土,结构较松散,其中上部低液限粉土厚6~15m,下部低液限粘土厚度大于10m,局部分布人工堆积物,主要为杂填土、建筑和生活垃圾等。供水管线改线段供水管道持力层为为上更新统洪冲积上部低液限粉土,据该层土的物理力学性质指标及标准贯入试验指标等,地基土承载力地质建议值为80~90kPa,临时开挖边坡为1∶0.75~1∶1.0。地基存在的主要工程地质问题为湿陷性土,地基土湿陷厚度为6.0m,湿陷等级为Ⅰ级。建议管基底部增设3∶7灰土垫层,厚0.5~1.0m,以减弱地基土的湿陷性。区内地下水位埋深大于15.0m,对工程无影响。供水管线区地基土对混凝土及钢筋混凝土结构中的钢筋具微腐蚀性。

3市政给排水管道结构设计的主要内容

3.1管道结构形式

一般来说,由给排水专业来确定管道材料及结构形式,与此同时,也要综合、全面考虑管道的用途、口径、流量、工作环境、覆土深度、敷设方式以及经济指标、水文地质情况等因素。自来水厂的原水及输水管道通常属于承压管,往往会采用以下几种结构:钢、铸铁、玻璃钢、PCCP管、现浇钢筋混凝土箱涵以及PE管等;而污水厂等重力流管道通常属于非承压管道或者压力较小,出于经济性考虑,往往会采用以下几种结构:砌体盖板涵、混凝土、钢筋混凝土以及现浇钢筋混凝土箱涵;在遇到铁路、公路、过河渠等特殊地段或特殊情况的时候,局部地段的管道压力较大时也可以采用钢管形式。本文工程原水主管采用PCCP管,接口形式为承插口。

3.2管道结构设计及基础选型

以管道规格、地面荷载、覆土深度以及试验压力、工作压力、地下水位为主要根据,对管道的刚度、管道的强度进行复核、计算,最终确定管道结构配筋率、管道壁厚。而对于一些必须通过进行加固才能满强度要求、刚度要求的管道来说,可以根据计算结果,选择合理的加固措施,比较常用的加固措施主要包括管廊包管、混凝土包管以及钢筋混凝土包管。本文工程采用北京河山引水管业有限公司朔州分公司设计生产的PCCP标准管,采用美国压力管协会ACPPA为ASNI/AWWAC304编制的专用软件UDP1.6对管道进行结构计算,其中:钢筒厚度:1.5mm;钢丝强度:1570MPa;活荷载:汽-20级重载车;缠丝应力:75%×1570MPa。计算结果如表1所示。因此,为了减少管子覆土规格的种类,加快管子安装进度,保证管子由于覆土而造成的质量隐患,路面下清水管路的DN1200直径PCCP管采用120°基础包角。

3.3管道敷设方式

应综合考虑管道地面障碍物、地下障碍物以及覆土深度等因素合理选择敷设方式。一般情况下,管道敷设方式主要包括架空、顶管以及沟埋这三种,其中沟埋式是最常用的一种管道敷设方式。在利用沟埋式难度较大的情况下,可以选择架空、顶管等方式。管道敷设方式方式不同,管道结构设计也会有所不同。本文工程局部有穿越铁路线障碍处采用大直径混凝土顶管(内径2m,原水管从其中穿过),由铁路部门单独设计。

3.4抗震设计

在确定管线走向时,应尽量规避不利于抗震的地基、场地,若是必须要经过液化土地基、地震断裂带,则应根据管道的使用条件、重要性进行综合考虑。对于给水管道来说,应当选择延性良好、抗拉强度高以及抗折强度高的钢管,此外还要密切注意进行防腐;对于排水管道来说,应当选择钢筋混凝土形式的管道,并采取构造措施,以尽量避免出现严重的损害。本文工程实例中,区域地震动峰值加速度为0.15g;本区地震动反应谱特征周期为0.4s;工程区地震抗震设防烈度为7度。综上,在进行结构设计时,也要适当加强抗震设计。根据历年管道地震灾害调查,管道地震灾害破坏绝大部分位于管道接口位置,PCCP管承插口具有较好的抗剪和变形能力,抗震性能较好。

3.5构造措施

首先,地基处理。应当将地基处理的平面图、纵断面图、横断面图包含在设计图中,扫描矢量化要进行处理的地段的地勘资料纵断面,并选择合适的参考点,以给排水专业的平面图、纵断面图、横断面图为主要根据,在地质纵断面上放置管道基底轮廓线,然后再划分地质单元,注明桩号、基底高程,并将地下水位以及基底以下、沟槽范围内的土层构造标明。根据桩号划分,确定需要处理的部分,再针对地质情况、厚度,采取相应的处理方法。本文实例工程中,桩号0+000~1+382.05地段、桩号1+382.05~11+850地段以及供水管线改线段的水管道持力层为上更新统洪冲积上部低液限粉土,地基土承载力地质建议值为80~90kPa,临时开挖边坡为1∶0.75~1∶1.0。地基存在的主要工程地质问题为湿陷性。因此,建议管基底部增设3∶7灰土垫层,厚0.5~1.0m,以减弱地基土的湿陷性。其次,支墩与镇墩。对于承插接口的压力管道来说,应当设置水平支墩、垂直支墩。根据试验压力、工作压力、土的参数以及管道转角,计算所需支墩的大小。本工程根据10S505柔性接口给水管道支墩的相关要求进行设计。

3.6预防浮管

管道施工期间多雨或者管道敷设地段的地下水位比较高,在这样的情况下,比较容易出现浮管现象,结构设计人员需要充分考虑到这两点因素,加强对管道抗浮稳定的重视。在进行结构设计,根据管道结构计算结果,采取抗浮措施,以预防出现浮管问题。同时,在混凝土包封管道施工过程中,应该计算混凝土对管道的浮力影响,并采取措施固定管道。

4结语

综上所述,随着经济的发展,城市居民用水、商业用水不断增加,市政给排水管道工程逐渐增多。市政给排水管道工程在建成之后,能否长期有效的充分发挥其应有效益,结构设计是否合理是非常关键的因素,结构设计的质量直接关系到市政给排水管道工程的经济效益,因此,必须加强对管道结构设计的重视。

作者:刘崇武 张云飞 单位:中国市政工程西南设计研究总院有限公司

管道结构设计例3

湖北省孝感市大悟县芳畈水库至城区应急供水工程包括取水工程和引水工程两部分。其中取水工程采用泵船取水,配备三台水泵,两用一备;引水工程采用DN700(k9级T型接口)球墨铸铁管和碳钢管,输水管道从水源地芳畈水库开始,沿芳新线、S243省道、城关镇长征南路、澴河西路进入大悟县老水厂,通过已铺设界牌水库至大悟县城引水管道进入二水厂。管道总长约23公里,沿线多次穿越河道、S243省道和复杂地形及不良地质地段等,存在诸多结构安全问题,现就本工程设计施工过程中遇到的主要结构问题予以探讨。

1. 管道抗浮验算

2. 水平弯管支墩设计

上式中,为支墩抗推力侧的被动土压力标准值;为支墩迎推力侧的主动土压力标准值;为水平向支墩滑动平面上摩擦力标准值;为支墩抗滑稳定性抗力系数,不小于1.5;为水平向支墩承受截面外推力对支墩产生的水压合力标准值;为土壤内摩擦角;和分别为地下水位以上的原状土重度和回填土重度;和分别为支墩底和支墩顶在设计地面下的深度;和分别为支墩被动土压力和主动土压力侧支墩长度;为支墩的重量;为支墩顶部覆土的重量;为土对支墩底部的摩擦系数;为管道接口设计内径;为管道设计内水压力;为弯管角度。

3. 复杂环境下的管道基础处理

3.1. 含淤泥层的管道地基处理

管道底部淤泥层不厚时,可将淤泥层挖除而换以砂砾石、砂垫层;淤泥层较厚时,不宜采用换填法,在流砂现象不严重的情况下,可采用抛填块石的方法。块石挤入淤泥中,以增大淤泥的密度,增强地基承载力;同时,块石在管沟内形成一个整体,增大了支承管道的面积,使单位面积基础受管道传来的压力大大减小,能有效防止基础和管道沉降。块石宜采用大块和坚硬的,杜绝采用风化石。这种地基处理方法的优点是可不清理管底淤泥,能避免塌方,施工简单。本工程遇到的淤泥地基为原来的水田、水塘被人工填土覆盖,淤泥层厚度为1m~3m。现场采用人工抛填块石铺满整个沟底,然后进行夯实,同时在沟槽边开挖集水坑,将块石夯实挤出的泥浆水用人工或水泵排走,块石之间的缝隙则以砂砾石或砂填充,最后在块石上浇筑一层厚度为0.15m的C20混凝土,待混凝土凝固后即可铺设管道。

3.2. 斜坡路堤上的基础处理

本工程管道很多地方埋设在省道的路堤上,局部地方的路堤比较狭窄且坡度较陡,路堤边缘也没有护坡,直接开槽埋管可能存在安全问题,特别是在雨季,路面上的积水冲刷路堤上的管道基础,可能出现管道架空甚至滑移等,对输水管道的安全产生严重不利影响。对于这种局部不利情况,本工程采用人工挖孔灌注桩作为基础架设钢管,每隔10~12m设置一支墩,明敷钢管采取适当的保护措施。

本工程在各方的共同努力下历时百余天基本完工,在全线管道水压试验合格后,于2013年1月底正式通水,为大悟人民春节用水提供了有力保障,受到了建设方和大悟人民的一致好评。通过管道水压试验和正常供水期间的观测并未出现结构安全问题,说明在本工程中采用的结构设计方案是实用可行的,为长距离给水管道设计和施工提供了可靠的经验。

参考文献

[1] 《给水排水工程结构设计手册》(第二版)中国建筑工业出版社,2007.

[2]《给水排水工程埋地钢管管道结构设计规程》CECS141:2002 中国工程建设标准化协会,2003.

[3] 《柔性接口给水管道支墩》10S505 中国计划出版社,2010.

管道结构设计例4

中图分类号:TU99文献标识码:A

市政排水管道是城市基础设施非常重要的组成部分。在城市的日常运行和发展建设中有着举足轻重的作用。近些年来,由于降雨造成的突发事件渐渐引起了人们的关注,比如2012年7月的北京暴雨,造成的损失非常严重,引起了全国对排水设施的思考。

1排水体制的选择

排水体制主要有合流制和分流制两种。排水体制的选择,应根据城镇的总体规划,结合当地的地形特点、水文条件、水体状况、气候特征、原有排水设施、污水处理程度和处理后出水利用等综合考虑后确定。同一城镇的不同地区可采用不同的排水体制。除降雨量少的干旱地区外,新建地区的排水系统应采用分流制。现有合流制排水系统,有条件的应按照城镇排水规划的要求,实施雨污分流改造;暂时不具备雨污分流条件的,应采取截流、调蓄和处理相结合的措施。

2现场踏勘

给排水管道距离相对较长,或穿越城镇密集区,或敷设在农田,或跨越山丘和河流,还有可能横跨铁路、公路及桥涵。一项管道工程同时会遇到上述几种或所有的地形和地貌,其复杂的地形和地貌若不现场查看,则很难全面完成设计。结构设计人员应会同给排水、概预算等专业设计人员共同进行现场踏勘和选线,了解管道线路拟通过的沿线地带地形地貌、地质概况,必要时应在施工图阶段对个别疑难地段重新踏勘。

3测量和地勘要求

要准确地反应管道沿线的地形地貌和水文地质情况,必须有测量和勘探部门提供的准确的地形和水文地质资料。

3.1勘探点间距和钻孔深度

勘探点应布置在管道的中线上,并不得偏离中线3m,间距应根据地形复杂程度确定的30~100m,较复杂和地质变化较大的地段应适当加密,深度应达到管道埋设深度以下1m以上,遇河流应钻至河床最大冲刷深度以下2~3m。

3.2提供勘探成果要求

划分沿线地质单元;查明管道埋设深度范围内的地层成因、岩性特征和厚度;调查岩层产状和分化破碎程度及对管道有影响的全部活动断裂带的性质和分布特点;调查沿线滑坡、崩塌、泥石流、冲沟等不良地质现象的范围、性质、发展趋势及其对管道的影响;查明沿线井、泉的分布和水位等影响;查明拟穿、跨河流的岸坡稳定性,河床及两岸的地层岩性和洪水淹没范围。

4结构设计内容

4.1结构形式

管道的结构形式主要由给排水专业确定,结构专业应根据管道的用途(给水还是排水,污水还是雨水)、工作环境(承压还是非承压)、口径、流量、埋置深度、水文地质情况、敷设方式和经济指标等从专业角度提出参考意见。一般情况下,承压管道常采用预应力钢筋混凝土管、钢管、铸铁管、玻璃钢管、UPVC管、PE管、现浇钢筋混凝士箱涵。非承压管常采用混凝土管、钢筋混凝土管、砌体盖板涵、现浇钢筋混凝土箱涵等。当污水管道口径较大时应采用现浇钢筋混凝土箱涵,特殊情况、特殊地段(过河渠、公路、铁路等)、局部地段非承压管也采用钢管等形式。大型给排水管道工程也有采用盾构结构形式的。

4.2结构设计

根据管道规格、埋置深度、地面荷载、地下水位、工作和试验压力对管道的刚度和强度进行计算及复核,提供管道壁厚、管道等级、或结构配筋图。对于一些必须采取加固方法才能满足刚度和强度要求的管道,应根据计算采用具体的加强加固措施。通常采用的加固措施有管廊、混凝土或钢筋混凝土包管等,当钢管计算出的壁厚不经济时,应采用加肋的方法处理。加固的具体方式和方法应根据实际情况和经济指标来确定。

4.3敷设方式

敷设方式的选择应根据埋置深度、地面地下障碍物等因素确定,一般有沟埋式、上埋式、顶管及架空,较为常用敷设方式采用沟埋式,当沟埋式有一定的难度时,可选择顶管和架空等敷设方式。不同的敷设方式,其结构设计亦不同。

4.4抗浮稳定

有些管道敷设的地段地下水位较高或者施工期间多雨,因而管道的抗浮稳定应引起结构设计人员的重视。设计时应根据计算采取相应的抗浮措施,避免浮管现象的出现。

4.5抗震设计

4.5.1场地和管材的选择

确定管线走向时应尽量避开对抗震不利的场地、地基,如不可避免而必须通过地震断裂带或可液化土地基时,应根据工程的重要性、使用条件综合考虑。给水管道应选择抗拉、抗折强度高且具有较好延性的钢管,并要求做好防腐措施。有抗震要求的排水管道应采用钢筋混凝土结构,并有相应的构造措施,尽量避免严重破坏。

4.5.2构造措施

承插管设置柔性连接;砖石砌体的矩形、拱形无压管道,除砌体材料应满足砖石结构抗震要求外,一般可加强整体刚度(顶底板采用整体式)、减少在地震影响下产生的变形,提高管道的抗震性能;圆形排水管应设置不小于l20度的混凝土管基,管道接口采用钢丝网水泥带,液化地段采用柔性接口的钢筋混凝土管;管道穿越构筑物时应在管道与套管的缝隙内填充柔性填料,若管道必须与墙体嵌固时,应在墙外就近设置柔性连接;管道附属构筑物应采用符合抗震要求的材料和整体刚度好的结构型式。

(1)地基处理。出图时应包含地基处理的平、纵断面图。扫描矢量化需要处理的地段的地勘资料纵断面,选择参考点并根据给排水专业的平、纵断面将管道基底轮廓线放在地质纵断面上,划分地质单元并注明桩号和基底高程,标明沟槽范围内和基底以下土层构造以及地下水位。根据纵断面地质单元的划分(桩号划分),确定需处理的范围,针对不同的地质情况和厚度分别采取相应的处理方法。具体的处理方法有:换填、抛石挤淤、砂石挤密、水泥搅拌桩、灰砂桩、木麻黄桩等方法。具体设计按地基处理规范规程执行。

(2)管道支墩及镇墩。对承插接口的压力管道,应设置水平和垂直支墩。设计时应根据管道转角、土的参数、工作压力和试验压力计算所需支墩的大小。埋地钢管可不设管道支墩。

5给排水管道设计中的其他问题

5.1在用户管线出口建立格栅中纤维、塑料等沉积物、悬浮物和漂浮物的大量存在,给管道的清掏和疏通维护作业带来了很大困难。特别是抽升泵站的格栅间,每天都会拦截到大量的漂浮物。有的漂浮物通过格栅进入泵房后,常导致水泵叶轮堵塞、磨损损坏现象的发生。尽管格栅栅条的间距一再减小,但仍有大量的漂浮物进入泵站造成堵塞。为了解决上述问题,建议在庭院或住宅小区的管道出口处设置简易人工拦污格栅,定期进行清理、清掏,从源头上控制漂浮物进入市政管网,以减轻市政管网维护管理的工作量。

5.2在检查井井底设置沉淀池中的沉积物在管道内水流量小、流速慢时会发生沉淀,造成管道淤积堵塞、通水不畅,而管道的疏通工作又费时费力。因此,针对传统的检查井做法,建议将其井底改为沉淀式的,井底下沉3O~50cm。这样中的沉积物多数会沉积在检查井中,不至于流人下游管段,只要定期清掏检查井内的沉积物即可,减少了管道维护作业的工作量。这种做法也可用于雨水检查井。

5.3在检查井内设置闸槽干管中的流量和流速均较大,有的检查井内的水位较高,管道维护作业或户线管接头时,需将管道内的水位降低或断流。为了方便维护作业,建议在干管的管道交汇处检查井、转弯处检查井或直线段的每隔一定距离的检查井内根据需要设置闸槽,通过闸槽的开闭控制水流,便于维护作业。同时为方便户线支管接头时的施工,建议能研制一种较轻便、实用的管道阻水设备。

6结束语

总之,市政排水管道工程结构设计应严格按照现行相关规范、标准、规定进行。设计人员应当掌握专业技能,了解行业动向,研究存在的问题,积极创新,尽可能地把设计做到经济、合理、适用、安全。

管道结构设计例5

中图分类号: TU318 文献标识码: A 文章编号:

引言

绝热是保温和保冷的统称。为了防止生产过程中设备和管道向周围环境散发或吸收热量,绝热工程已成为生产和建设过程中不可缺少的一部分。我国已制订绝热工程的各种标准及规定,以便统一和应用。正确的选择绝热结构,直接关系到绝热效果,投资费用,能量耗损,使用年限及外观整洁美观等问题。

1.绝热结构的设计要求

①保证热损失不超过国家规定的允许最大热损失值,热损失取决于保温材料的热导率,热导率越小,保温厚度就越薄。.

②绝热结构应有足够的机械强度,能承受自重及外力的冲击,在受风力、雪载荷、空气温度波动及雨水的影响下不致脱落,以保证结构的完整性。

③要有良好的保护层,使外部的水蒸气、雨水以及潮湿泥土的水分不能进人绝热材料内,否则会使绝热材料的热导率增加,还会使其变软、腐烂、发霉,降低机械强度,破坏绝热结构的完整性,同时也增加了散热损失。

2.绝热结构的种类

化工、医药生产中所用的各类装置,其管道、容器、反应器、塔器、加热炉、泵和鼓风机等的绝热结构组成如下。根据采用保温材料的性质、保温层的结构形式和安装方法不同,保温结构通常有:胶泥涂抹结构、填充结构、包扎结构、复合结构、浇灌式结构、喷涂结构、预制块结构等。

3.绝热结构设计的规定和要求

(1)防锈层设计

对碳钢、铸铁、铁素体合金钢管道和设备,在清除其表面铁锈、油脂及污垢后,保温时应涂1~2道防锈底漆,保冷时应涂两道冷底子油。在使用非腐蚀性绝热材料和大气中不含腐蚀性气体的环境下,常年运行介质温度T0 >120℃时,可不涂防锈底漆(施工期超过一年者例外)。不锈钢、镀锌钢管、有色金属及非金属材料表面,不涂防锈漆。

(2)绝热层设计

绝热层厚度一般按10mm为单位进行分档。硬质绝热材料制品最小厚度为30mm,硬质泡沫塑料最小厚度可为20mm。

①绝热层分层规定

除浇注型和填充型外,绝热层应按下列规定分层。

a.绝热层总厚度大于80mm时,应分层敷设,当内外层采用同种绝热材料时,内外层厚度宜大致相等。

b.当内外层为不同绝热材料时,内外层厚度的比例应保证内外层界面处温度不超过外层材料安全使用温度的0. 9倍(以℃计算)。

c.需要蒸汽吹扫的保冷设备和管道的保冷层,其材料应在高温区及低温区内均能安全使用;在不能承受吹扫介质温度时,应在内层增设保温层,保温层与保冷层的界面温度应低于保冷材料的最高使用温度,在经济合理前提下,超高温和深冷介质管道及设备的绝热,可选用异材复合结构或异材复合制品。

d.采用同层错缝,内外层压缝方式敷设。内外层接缝应错开100~150mm;水平安装的管道和设备,最外层的纵缝拼缝位置应尽量远离垂直中心线上方,纵向单缝的缝口朝下。

e.保冷管道和设备的支座等凸出物,应按上述分层规定进行保冷,其保冷层长度为保冷层厚度的4倍或至垫座底部。

②绝热结构支承件对立式设备,管道和平壁面以及立卧式设备的底面上的绝热结构,应设支承件。支承件应符合下列规定。

a.支承件的支承面宽度应控制在小于绝热层厚度10~20mm以内。

b.支承件的间距立式设备和管道(包括水平夹角大于45°的管道)支承件的间距,保温时,平壁为1. 5~2m;保温圆筒,在高温介质时为2~3m,在中低温介质时为3~5m;保冷时,均不得大于5m。卧式设备应在水平中心线处设支承架,承受背部及兜挂腹部的绝热层。

c.立式圆筒绝热层可用环形钢板、管卡顶焊半环钢板、角铁顶焊钢筋等做成的支承件支承。

d.底部绝热层支承底部封头可用封头与圆柱体相切处附近设置的固定环或设备裙座周边线处焊上的螺母来支承绝热层,对有振动或大直径底部封头,可用在封头底部点阵式布置螺母或带环、销钉来兜贴绝热层。

e.保冷层支承件应选冷桥断面小的结构形式。若管卡式支承环的螺孔端头伸出绝热层外,应把外露处的保冷层加厚,封住外露端头。

f.支承件的位置应避开法兰、配件或阀门,对立管和设备支承件应设在阀门、法兰等的上方,其位置应不影响螺栓的拆卸。

g.不锈钢及有色金属设备、管道上的支承件,应采用抱箍型结构。

h.设备上的焊接型支承件,应在设备制造厂预焊好。

③绝热层用的钩钉和销钉设置保温层用钩钉、销钉,用直径6mm的低碳圆钢制作(软质材料用下限)。硬质材料保温钉的间距为300 ~600mm,保温钉宜根据制品几何尺寸设在缝中,作攀系绝热层的柱桩用。软质材料保温钉的间距不得大于350mm。每平方米面积上钉的个数:侧面不少于6个,底部不少于8个。保冷层不宜使用钩钉结构。对有振动的情况,钩钉应适当加密。

(3)防潮层设计

①保冷设备与管道的保冷层表面,埋地设备或管道的保温表面,以及地沟内敷设的保温管道,其保温层外表面应设防潮层。

②防潮层的材料应符合选材规定,防潮层在环境变化与振动情况下应能保持其结构的完整性和密封性。

③防潮层外不得再设置铁丝钢带等硬质捆扎件,以免刺破防潮层。

(4)保护层设计

绝热结构外层,必须设置保护层。保护层的设计必须切实起到保护绝热层作用,以阻挡环境和外力对绝热材料的影响,延长绝热结构的寿命。保护层应使绝热结构外表整齐、美观。

保护层结构应严密和牢固,在环境变化和振动情况下不渗雨(室内例外)、不裂纹、不散缝、不坠落。

4.结语

化工设备和管道结构的绝热设计涉及到的知识有很多,方方面面的问题需要考虑。如何才能设计出建设成本低、运行起来节约能源的好方法,是我们一直的追求。相信只要我们认真对待,总能设计出既节约成本又运行经济的好办法。由于本人知识的局限,文中难免会有不对的地方,还请读者指正。

参考文献:

管道结构设计例6

市政给排水工程的质量直接关系着整个城市的给排水系统,对于城市的正常运行、道路建设、交通运输安全的作用巨大。因此,相关的从业单位要重视市政给排水管道工程的重要性,在设计结构方案时,综合考虑实际的工程状况,尤其是场地周围、气候变化、地下管线和电缆的情况,在保证工程施工质量的同时,避免其他因素影响给排水管路工程设计方案的实施。

一 现场踏勘

市政给排水管路工程的建设距离相对较长,需要穿过城市密集区,施工场地周围的周围车辆对施工带来了极大的不便,如果施工之前现场勘察工作不到位,就会对管道工程建设中可能面临的困难估计不足,进而影响了施工质量和施工进度。在市政给排水管路工程中,要综合考虑复杂的交通状况和城市地下电线的分布,结构设计人员应当和给排水施工人员、专业预算人员、市政交通人员一同进行实地的工程概况勘察,了解管道线路的通过地带的交通状况和地质概况,必要时在施工图上对于个别的疑难地段重新踏勘。

二 测量和地勘要求

测量和地勘要求是要准确的了解给排水管路沿线的地质状况、地形外貌和地下水水文状况,另外提供准确的地形和水文地质资料。

2.1 勘探点间距和钻孔深度

勘探点的应均匀的分布在管道的中线上,不得偏离中线,同时根据的地质的变化和施工现场的状况确定合理的间距,一般采用的间距是30到100米,对于地形较为复杂的地段,适当的缩小间距。此外钻孔的深度要达到管道埋设深度的1m以下,到管道周围的水位较高或者是河流周围时,要增加钻孔的深度,一般要求钻孔深度在河床冲刷深度以下2―3m。

2.2 提供勘探成果要求

查明管道埋设深度内的土层的特性、地层成因、岩石厚度等,并明确划分不同地质的分界线,同时调查的岩石强度和分化破碎程度对于给排水管道的影响,判断岩石是否会破坏管道的结构,调查管路沿线发生土层断裂、滑坡、崩塌、泥石流的概率以及发展趋势,并判断对于给排水管路的威胁指数;查明管道沿线的地下水位的水文状况,查明垮河流岸坡的稳定性,河床两侧的底层岩石和洪峰淹没范围。

三 结构设计内容

3.1结构形式

管道结构的设计形式应当由给排水专业机构完成,同时在结构设计汇总参考管道的用途,对于管道中输送的不同液体,确定是给水还是排水工程,选用不同的设计标准。而且管道的工作环境、管道的规格、输送液体的流量、埋设深度、地下水文状况、经济指标等方面的因素也是结构设计中必须要考虑的因素。铸铁管、玻璃钢管等;而非承压管道采用混凝土管、钢筋混凝土管、砌体盖板涵、现浇钢筋混凝土箱涵等;污水管路的结构设计选用的是大口径的管路,而且优先使用抗腐蚀能力强的管道,如玻璃钢管、UPVC 管、PE 管等。对于特殊的负荷承载较大的路段,要采用抗压能力强的管道,如桥梁、河渠、公路段等局部地段非承压管也采用钢管等形式。

3.2结构设计

根据管道施工中管道规格、埋设深度、地面承载力等工程条件,严格计算管道的强度和刚度,同时提供管道壁厚、管道等级、结构配筋图,对于特殊要求的管道,要进行加固处理,保证其强度和刚度符合实际的工程使用,并根据实际情况选用加固措施,确定加固的位置和程度,在给排水管道中,常采用的加固措施是混凝土包管。

3.3敷设方式

敷设方式的选择应当结合埋置深度、地面地下障碍物确定,通常采用的敷设方式有:沟埋式、上埋式、顶管及架空等,当工程的不便于采用沟埋式敷设方式时,可以用顶管和架空方式,总之,施工方式的选择要参照实际工程状况。

3.4抗浮稳定

部分市政给排水管路施工中,会出现地下水位较高的情况,尤其是在施工期间降水较多或者施工地区的气候多雨等,管道敷设的地段会出现漂浮现象,严重影响了管路施工的质量。因此在结构设计中要重视抗浮措施,避免这一现象的出现。

3.5抗震设计

3.5.1 场地和管材的选择

在结构设计中,管路基线的选择要尽量避开抗震性能不足的场地、地基,减少对管路结构完整性的破坏,如果是不可避免,则必须要对这一地段的地基进行特殊处理,同时选用抗震性强、抗拉性强、延展性强的管道,并做好管道的防腐蚀工作,避免由于土层振动、位移对管路结构产生影响。

3.5.2 构造措施

在管道结合处设置柔性连接,砌体材料要满足管道结构要求的抗震强度,增强整体的抗震性能和结构刚度,减少地震的影响形变。对于圆形给排水管设置不小于120度的混凝土管基,管道接口采用钢丝网水泥带,管道穿越构筑物时应在管道与套管的缝隙内填充柔性填料。

3.5.3 地基处理

对于特殊地段的地基处理至关重要,首先要测定地段的工程参数,画出地基处理的平、纵断面图,注明桩号、基底高程、沟槽范围、地下水位等,确定需要处理的地基范围,然后根据测量的数据,根据不同的地质情况和厚度采用合理的处理方法,如:换填、抛石挤淤、砂石挤密、水泥搅拌桩、灰砂桩、木麻黄桩等方法。

四 给排水管道设计中的其他问题

除了加强市政给排水管路的结构设计工作,还要采取一些措施,避免给排水管路中出现堵塞现象,具体的措施如下:

4.1在用户管线出口建立格栅

工程建设中出现的纤维、塑料等沉积物、悬浮物、漂浮物的存在给管道建设、维修、疏通等作业带来了极大的困难,特别是抽升泵站中如果进入漂浮物就会造成水泵叶轮堵塞、磨损损坏现象的发生,虽然已经采取了减小格栅条之间的间距 ,但是还是不能避免更小的杂质进入。为了解决上述问题,建议在庭院或住宅小区的管道出口处设置简易人工拦污格栅,定期进行清理、清掏,从源头上控制漂浮物进入市政管网,以减轻市政管网维护管理的工作量。

4.2在检查井井底设置沉淀池

要革新传统的检查井方法,将井底改为沉淀式,井底下沉 30~50 cm。这样中的沉积物多数会沉积在检查井中,不至于流入下游管段,只要定期清掏检查井内的沉积物即可,减少了管道维护作业的工作量。这种做法也可用于雨水检查井。

4.3在检查井内设置闸槽

给排水管路中的流量和流速均较大,对管道的维修工作带来诸多不便,为了方便维护作业,建议干管的管道交汇处检查井、转弯处检查井或直线段的每隔一定距离的检查井内根据需要设置闸槽,利用闸槽控制水流的流量,当有施工需要时,便利用闸槽切断给排水管路的水流,为维修施工带方便。

五 总结

市政给排水工程质量好坏直接影响到了整个城市的发展状况,对城市运作、道路建设、交通安全等多个方面都有显著的作用,但是在实际的工程中,市政给排水管道建设中存在着较多的结构问题,所以在工程结构设计中,要综合考虑施工周围环境、地下电网铺设等因素,保证管道结构设计的科学性,全面性。以上是本人的粗浅之见,由于本人知识水平有限,文中如有不当之处还望不吝赐教。

[参考文献]

管道结构设计例7

在普遍工业设备和天然气等设备中,运输材料最便捷的途径就是管道运输,这种运输方式已经在此领域被多出运用起来。在普遍工业中每天对管道的应用不计其数,因此极易导致管道生锈、出现裂缝等情况,为了有效解决这一现象必须对管道进行定期的检查和修理。本文提到的管道机器人就是为管道检修量身定做的机械,它能够准确的找到生锈和出现裂缝的位置。能源自给式机器人分为两种,一种是有缆一种是无缆。其中有缆式管道机器人,这种管道机器人行程范围小,精准度不高,而无缆式管道机器人其能量主要来自于蓄电池,虽然行程范围广泛,但是蓄电池的电量有限,因此,无缆式机器人的行程范围仍然有限。

针对这一问题,本篇文章根据现实中的一些创意来将这些想法应用到新型管道机器人的设计上,根据此创意设计出的机器人主要是靠其管道中含有的流体不断流动来产生能源。当机器人停止运动时,这种流体就开始发电,为蓄电池补充能量。

二、管道机器人的设计方案阐述

(一)管道机器人设计时应注意的事项

能源自给式管道机器人与有缆机器人和无缆机器人不同,以下是在传统管道机器人设计基础上对能源自给式管道机器人设计的一些要求。

(1)维持能源自给式管道机器人正常运动的动力是其内部流体流动产生的能量,这些能量的产生能够保障机器人的运动。

(2)在管道机器人的设计中必须要对其运动速度加以控制,要设计控制速度的机械装置。

(3) 能源自给式管道机器人是在无缆式管道机器人的基础上加以改进,无缆式管道机器人不能自己为蓄电池充电,而能源自给式管道机器人可以将管道中的流体运动转换成电能,为蓄电池充电。

(4) 在设计机器人的过程中要对其设置自主更换前进方向的能力。这种能力能够在机器人行进到分叉管道时被有效运用起来,它能使机器人自主找到能够前进的管道,并且自主调节前进方向。

(二)管道机器人的总体方案设计

下面是管道机器人的总体方案设计,假设管道中的流体成分为气体,那么可以以上文的设计要求为依托,将机器人的机械结构设计成具有自给功能优势的管道形式,如下图1所示。能源自给式机器人从本质上来看,就是能够进行能源的自动生产及运转,因此此结构组成必然要设有发电、本体、及导向结构,而发电实际上就是将气体运转环节产生的动能转化成电能,从而为机器人本身的能动性提供电能基础。由图1所示发电部分涵盖着风轮、变速齿轮和发电机。机器人内的本体结构能够其系统运行及电能存储提供基础条件,导向部分主要是由电磁铁和导向头共同组成,其主要是帮助机器人顺利调转方向。根据图1可以看出三部分之间主要是靠一组弹簧来链接,弹簧外部包有蒙皮,该设计能够最大化的减少第七题与机器人之间存在的摩擦,使机身保持相对稳定的状态。与此同时还在发电部分和主体部分安装三个支撑轮组件。

三、新型能源自给式管道机器人发电部分的设计

本小结重点阐述了新型能源自给式管道机器人的发电部分。主要器件有叶轮、发电机、齿轮机构和充电电池等。其中叶轮是管道机器人中发电部分的关键部件,主要作用是在叶轮中有流体流入时,能够带动叶轮转动,同时还能够为管道机器人提供推力。另一点,当流体与叶轮表面发生接触时,压力降也会伴随而来,而压力降在机器人的机械结构中是主要的推动力来源。因此,将发电机外壳设计成流线型,方便流体的顺畅流入。此外为了使机器人能够在窄小的管道中顺利运行,特此选择面积小,体积小的发电机。这种发电机的转子直径为30mm,与之相对应的配套有齿轮传动机构。

四、支扮轮组件的设计

管道结构设计例8

报警阀自动喷水灭火系统现在已经大规模地在工程建设中应用起来,因为技术水平发展的原因, 该系统可以更快地对火灾做出反应, 在安全上具有更高的可靠性。经过大量的实践, 现已对这种系统的应用情况逐渐掌握清楚。想要使系统具有更高的可靠性, 实施起来更加经济合理, 本文就从最初的设计工序开始,结合生活中的工程实践,对自动喷水灭火系统喷头和管网的设置对整个系统的影响进行分析和探讨。

1 喷头的布置

布置喷头的时候要以建筑的实际情况为基础, 可以采取多种多样的方式,但是一定要以《自动喷水灭火系统设计规范( GB50084-2001) 》 (以下简称《喷规》 )作为规范标准。喷头选用不同的方式进行布置, 可以给自喷系统许多方面都产生不同的影响。

1. 1 喷头的布置原则

《喷规》第7.1.1 条中规定: 喷头一定要在顶板或吊顶下进行布置,这样才容易和火灾热气流进行解除,并且该位置一定要有利于发生火灾时进行喷水。当喷头附近存在障碍物时, 一定要与本规范7.2节的规定相一致,或者增加可以使喷水强度得到补偿的喷头的数量[ 1 ] 。

以上就是在对喷头进行布置的时候要遵守的原则, 还需要注意下列几点:不要出现过多的未覆盖或者是重复覆盖的面积;喷头间不要互相发生影响; 其它规范对喷头布置的影响要尽可能地满意, 还要综合实际情况进行考虑。

1.2 喷头的布置形式

实际工程建设里面, 喷头的布置形式大多数选用的是正方形或者是矩形的方式。《喷规》7.1.2中, 依靠喷水强度和布置方式的不同, 对边长、喷头及其最大的保护面积详细地做出了规定。

喷头的布置通常要受到许多因素的影响, 在进行实际设计的时候,喷头往往无法按照计划好的位置来进行布置。不可以将规定值直接作为间距,不论被保护对象及建筑平面尺寸具有怎样的构造要求,全部选用3.6m (中危险级)或4.4m(轻危险级)间距来进行布置,则会使喷头在喷水时候出现受阻的情况, 梁柱周围也会出现无法被喷水覆盖的空白,不利于出现火灾时的灭火工作。

比如说办公楼、公共场所等的走廊,成行喷头的布置位置和走廊中线之间存在着很远的距离, 十分不美观;又比如说地下车库强行使用3.4m 作为间距布置,许多喷头就无法遵照结构梁进行设置, 或者没有办法在停车位上方进行布置;再比如说,大型商场经常会出现规模和商品的变化,功能分区也经常发生变化,喷头一定要与布局紧密结合进行布置,这样一方面可以满足规定的喷水强度,又另一方面又可以灵活地满足建筑分区所需要的变化。

对于没有设置吊顶的场所,首先要根据所需要的喷水强度来对喷头间距进行综合考虑,可以将喷头在主次梁分格中进行布置,这样一来,建筑可利用的空间就大大提高起来。部分位置没有办法遵循结构梁格来对喷头进行布置时,可以将集热板于局部进行布置。

1. 3 喷头的间距与系统工作压力的关系

根据公式可以得知, 喷头工作具有的压力越大, 喷水的数量就越大, 保护的范围就越大, 喷水半径也随之变大, 喷头的布置间距随之加大。所以, 在满足规范喷水强度要求下, 可以根据实际情况对喷头布置间距做出适当的调整, 达到安全与经济双赢的局面。

1. 4 喷头选型

《喷规》对喷头的选型进行了明确的规定,许多施工队与无吊顶场所进行安装时, 常常把不同的喷头进行混装, 热气流便无法与加热喷头的热敏元件在第一时间内进行接触,当火灾发生时,无法及时报警。

1. 5 工程实例

( 1)图1是某小区地下汽车库局部图, 和结构专业进行商议后,制定如下计划: 车位内进行一字梁的布置, 车行道要安装双十字梁, 管道必须要与梁底紧贴安装, 喷头均匀选用直立型的方式按梁格进行布置。

按《喷规》第9.1.2条规定: 水力计算先去的最不利点处,应该具有面积为矩形的覆盖面积, 长度应该和配水支管保持平行, 长度不能比作用面积平方根的1.2倍小。

图2 为某高层地下室汽车库局部图, 结构最初在计划时确定的是十字型的宽扁梁。为了使规范间距达到要求, 必须在宽扁梁下设置起一排喷头位置。应该思考以宽扁梁来对集热板进行取代,梁的两侧还要保证不可以挡烟, 所以梁的两侧一定要设置可以对热气流起到围合作用的铁皮挡板。

按照图纸施时,结构方案往往会出现变动, 次梁宽会变成普通梁,同意按水专业对井字梁进行重新布置, 见图2 右图。喷头于梁格中间进行均匀分布, 选用直立型的方式。这是地下室汽车库喷头布置时选用率最高的一种方法。少量地下室选用的为无梁楼盖, 喷头可以任意进行布置。

2 管网的布置

管网布置要以喷头布置作为基础, 有着极大的随意性,比值通常也比较高, 所以, 管网的布置对系统的造价而言有着很大的影响。以此同时,管网还肩负将水传送到喷头的任务, 做到安全供水。

2. 1 干管布置

干管布置时选取居中进水的方式还是边侧进水的方式, 哪种方式所需要的成本最低, 要对管网进行水力计算比较之后再行确定。

2.2 报警阀的设置

报警阀可以对管网和喷头进行控制, 是整个管网最为重要的组成部分。按《喷规》规定的要求: 一个报警阀组所控制的喷头数, 湿式系统不可以多于800只。配水管道工作时所承受的压力不可以比1.2MPa大;轻中危险场所各配水管,入口出所承受的压力不可以比0.40MPa大。上述就是管网进行分区和划片时要遵循的原则。高度在100m左右的高层自喷系统,在工作时产生的压力最大的时候可以大过1.6MPa, 已经超过了湿式报警阀最大的工作压力值, 现在就要与竖向分区情况进行结合, 将报警阀向楼层上方移动, 使报警阀出口处的工作压力始终低于1.2MPa, 这样系统才可以安全稳定地进行运行。

这个例子说明喷水系统中报警阀要按照建筑功能来进行设计, 不能以喷头数目当做参考来进行设计。每一层要划分出不同的区域, 每层相同的地方要由同一个报警阀控制,也就是在竖向上进行控制。通常而言,竖向控制要比水平控制具有更多的优点, 因为水平控制系统中, 各报警阀需要不相同的工作压力,喷洒的时候往往是不均匀的,灭火效果时常会受到影响。所以, 报警阀后控制喷头选择分层水平控制还是竖向控制,要根据实际情况来进行具体分析。

3 结 语

自喷系统的喷头和管网合理布置是一项极其重要的工作, 设计人员必须要熟悉相关的规范, 然后再进行详细水力计算来选取最为合适的实施方案, 再结合实际情况进行灵活、合理的设计, 这样才能让系统保持稳定的运行。

管道结构设计例9

塑像材料由于其性能良好、无污染、施工高效特特点,目前被广泛的应用于排水管道防结露工程中,它已逐步的代替了矿棉板、玻璃棉管壳等传统的排水管道防露材料。在实际施工中由于缺乏相关的操作规范与技术标准,使得操作人员在操作过程中随意操作,过程处理不到位,导致塑像材料极度的浪费和防结露效果不良的现象出现。针对这一情况和塑像保温材料在施工中的特点,本文提出采用一种新型的高效的防结露设计,该设计能完善排水管道防结露工程中的施工措施、步骤和方法,使管道防露工程在操作上、工艺上和效果上都得到了极大的提高。

一、分析排水管道结露原因

在施工中如果操作不当或者塑像材料选择不合理,那么就极易造成裂口,管道就会露出在空气中形成结露。该裂口通常在塑像材料的对接面出现,至于对接面发生裂口多半出现在管道的弯头、三通、管卡等主节点位置,由于管道的弯头、三通和管卡等位置在构造方面比较特殊,使得塑像材料很容易弯曲褶皱,从而出现粘接不良的情况,导致裂口出现影响管道的防露效果。

二、施工工艺的分析

整个施工流程如下图所示:

(一)塑像保温材料的下料

1、选料

根据具体施工要求设计防结露的厚度来选择板材厚度或者保温材料管壳,然后根据管道管径大小来决定使用板材还是管壳。如果工程中的管道的材质是塑料材质或者是黑铁材质的,那么塑像保温管壳的规格应该与防结露管道的规格相同,如果是钢管管道,那么保温管壳的规格就应该要大于防结露管道的规格。

2、顺序

通常的下料顺序为管道弯头,然后三通处,最后是直线管道。如果该保温管路中存在很长的直线管道并且该管道没有很多的其他管件,那么可以先行安装。

3、管道弯头处的下料

在对管道的弯头处下料,塑像材料应该向弯头的两端延长一段直线距离,这是为了抵消材料间的挤压力,防止出现褶皱。如果两个弯头的连接间的距离不超过10cm,则需要给每个弯头一端延长一段直线距离,另外一端是它们之间连接距离的一半。如下图:

4、三通处的下料

对管道三通处的下料,要求塑像材料分为两个直线管段,一是主管段,一是抽头段,两个管段的接口应该和三通管相同,下料时应特别注意两个直线段都要延长一段距离。如下图:

5、直线段的下料

对于直线段的下料,直接根据管道的长度进行下料就可以了,在条件允许的情况,尽量少切断保温壳,减少接口的数量,其中直线段的弯头、三通和其他管道部件应该要扣除延长直线距离。

6、管卡处的下料

对于管卡处下料,当管道中的壁卡或者吊卡和管道的材质相同的塑料卡,那么管卡部位就可以不需要塑料衬垫或者木衬垫,如果壁卡或者吊卡为金属卡,那么就必须在下料时保证塑像保温管壳和壁卡或者吊卡隔开。

7、直线管道变径处的下料

对于直线管道变径处的管件是大小头,这时我们采用大口径的塑像保温材料同时对大小接头直接保温。

8、塑像保温材料接口面的处理

当管道为直线性时,塑像保温壳管的开口呈一条直线,当两段塑像管壳进行对接时,塑像管壳的最后部分在纵向剖面上是务必要垂直;如果是运用的塑像板,那么板材卷起来成管状,它的切口是很均匀的,切口面也是以一个角度来进行切割的。

(二)塑像保温材料的正确安装

1、安装顺序

在安装中,一般是先安装管道,然后是阀门,先弯头,后三通等节点,最后是管道直线部分的防结露。

2、塑像保温材料的安装

塑像保温材料的安装可以分为以下几个部分来进行:

一是把已经整理好的塑像保温管壳放在要施工的管道正下方,并且塑像保温管壳的切口面朝上对准管道,然后双手托住塑像保温管壳向上扣进管道上,最后对安装的塑像保温管壳进行检查,查看是否和管道吻合,如果塑像保温壳的内径大于管道外径时,则塑像保温材料在扣入管道中时会有多余的剖开面,这时就需要按照管道的外径进行合理的裁剪剖开面,然后再进行安装。

二是在给三通管道安装塑像保温材料时,我们一般的顺序先安装主段,再者安装三通抽头段。

三是给管道安装时运用的是塑像保温板材,那么应该把塑像板材放在管道正下方,垂直向上贴住管道的底部,然后根据管道的弧度轻微用力时板材贴住管道,直到管道被全部封住为止。

四是安装完毕后,应当对安装的管道进行及时的检查,查看塑像保温材料规格、贴合部分是否符合规范,着重查看塑像保温材料的重叠和褶皱情况,如有不符合规范的需拆下处理后重新安装。

(三)结合口的定位和封闭问题

安装后需要把塑像保温壳或者板材的剖开面的剖开线在同一条直线上,封闭的的顺序先是材料的的剖开面,然后是各材料间的对接面。具体的步骤是把防结露的封口处适度的拨开,用毛笔或者软刷蘸取适量的胶水均匀的涂抹在两边的对口面上,让胶水涂抹完毕后,应当使其自然风干几分钟,这里的风干时间取决去当时环境的温度与湿度,然后把两边的对口面进行粘贴,同时用手挤压几分钟。

(四)胶带的结合口封闭

在对胶带的选择上,一般采用宽3cm,颜色和塑像保温材料相同,粘性也比较适中的胶带。在对管壳或者板材的剖开面进行封闭时,任选管路一端作为开端,把胶带顺着剖开线进行轻压粘接,在粘接过程中保持管壳和板材剖开线两边距离相同,防止出现褶皱。封闭完后,检查管壳和板材的剖开面是否有褶皱和是否有缝隙。

三、结语

本文对管道的防结露保温材料进行了详细的分析,从材料的特性和施工的工艺上以及管道各部位的安装进行了全面的探讨,形成了比较完善的塑像保温材料防结露工程施工工艺,对建筑中的金属管道、塑料管道保温防结露工程都有重要的意义。

参考文献:

管道结构设计例10

中图分类号:P618.13 文献标识码:A 文章编号:

一、工程概况

该石化装置为我公司总承包,沙特一家大型公司投资,项目场地位于沙特境内。本人主要参与管廊结构的设计。管廊总长276.75m,主要柱距6 m,局部柱距14 m;跨距6m;高9 m,主要结构3层,局部错层并附带悬挑构件,见图1。

图1管廊现场照片

二、设计规定

1.设计依据:由于该项目为涉外项目,主要按照业主指定的标准(SBAIC ENGINEERING STANDARDS)及美国相关规范进行设计,同时兼顾我公司统一规定及国内行标《石油化工管架设计规范》(SH/T 3055-2007)、《化工、石油化工管架、管墩设计规定》(HG/T 20670-2000)等。

2.管廊结构方案:依据工艺管线布置及管线自身挠度要求,选用纵梁式管廊。

(1)横向管架:梁柱及柱脚均采用刚接,基础承担柱底弯矩,梁柱均采用W型钢。

(2)纵向管架:梁柱为铰接连接,每个温度区段长度不大于100m,温度区段间的连接采用滑动连接,并在温度区段中部设置柱间支撑,承担管道的纵向水平推力(由固定管架推力和中间滑动管架摩擦力共同组成);采用铰接柱脚,柱底无弯矩;柱间支撑采用T型钢

3.管廊布置要求:

(1)管廊纵向平行于道路是,路边与管廊外边柱中心线间距不小于1.5m。

(2)管廊跨马路时,路边与管廊外边柱中心线间距不小于1.5m;跨越主要道路时,管廊梁底高于道路最高点不小于6.5m,跨越二级道路时,管廊梁底高于道路最高点不小于5m.

4.水平支撑系统的设置(采用T型钢):

(1)管廊纵向跨度不小于7.6 m时,须设置水平支撑。

(2)管道的固定支座支撑梁承担平面外弯矩和扭矩时,须设置水平支撑。

5.结构变形控制:

(1)结构顶点水平侧移限制:H/150 (H为管架高度)

(2)管道支撑梁允许挠度比:L/300 (L为梁跨度)

三、荷载计算

1.管道竖向荷载:

(1)根据管道专业提供的管道荷载信息,同时确定管道支座位置,按以上信息计算管道传至支撑梁的荷载。管径不大于300mm时,按均布荷载传至支撑梁,否则,按集中荷载考虑。

(2)由于业主要求后期可能会增加管线,考虑1.20kn/m2的预留荷载,按均布荷载作用于管架横梁上。

2.电缆桥架竖向荷载:

根据电气专业提供的电缆桥架位置、荷载及跨距要求,确定管架横梁上的荷载。

3.风荷载:管廊纵向刚度较大,且纵向迎风面较小,所以可以仅考虑管架横向风荷载。分三部分计算管架所受横向风载,并分层作用于每层节点上。

计算公式(依据SBAIC ENGINEERING STANDARDS,与国标GB5009-2012原理相同):

qz ——设计风压;G ——阵风影响系数;Cf —— 压力系数;Ae ——每层结构投影面积。

(1)管架结构部分:

计算Ae时,考虑两根纵梁和两根柱面积之和,并考虑防火涂层引起的构件外形尺寸的增加。

(2)管道部分:

计算Ae时,按最大管道直径并考虑保温层厚度。

(3)电缆桥架部分:

计算Ae时,按最大桥架高度计算

4.管道摩擦力(沿管道方向):

管道在开车及停车时,热力管道因温度变化而产生膨胀和收缩,管道与管道支撑梁之间发生相对运动时,产生作用于管道支撑梁的水平摩擦力。当管道布置较密时,按均布荷载作用。

5.管道固定推力(沿管道方向):

管道固定推力经管道应力分析后提出,并确定管道固定支撑位置,相应设置水平支撑以传递较大的水平力,同时在管廊纵向设置柱间支撑。

6.地震作用:

根据管廊的布置形式,仅考虑管架横向地震作用,采用底部剪力法计算。通过比较美国与我国标准,两国对地震作用计算(底部剪力法)基本一致。

7.该项目典型横向管架计算,见图2:

图2典型管架计算简图示意

四、荷载组合

一般有正常操作状态、安装状态及试压状态三种工况,该装置管廊结构设计时仅考虑正常操作状态下的组合(针对构件强度设计)。

组合序号

五、计算模型

根据该项目规定,本工程采用STAAD-PRO软件进行计算分析,按美国规范验算各构件强度。对于较为规则管廊结构,可以采用平面建模,也可以采用三维建模。本工程分别按平面、三维建模,对两种受力分析情况进行比较,按最不利情况进行构件设计及基础设计。模型见图3。

图3局部管廊模型示意

六、结束语

本文主要结合实际工程实例,对大型石油化工装置管廊结构设计思路进行分析,特别是结构方案的要求和荷载计算部分。从工程中可以看到,影响管廊结构方案的基本因素很多,主要是根据总图及管道专业所提的条件,同时要兼顾周边构筑物的位置,以免上部结构不碰,下部基础打架。对于荷载计算部分,一定要勤与管道专业进行沟通,搞清不同工况下的作用荷载,防止出现荷载漏算情况,这是管廊结构是否安全的关键步骤。希望本文能给要做管廊设计的同仁带来帮助,特别是对于涉外项目。