期刊在线咨询服务,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

期刊咨询 杂志订阅 购物车(0)

交通的智能化模板(10篇)

时间:2023-12-18 11:34:20

交通的智能化

交通的智能化例1

突破困境

交通量的持续增长是造成堵车的最根本原因。传统的解决方法主要有两个:一是加大交通基础设施建设的投入,但资金、土地等稀缺资源的有限性又是不可回避的问题,道路基础设施不可能无限制地扩展;二是对交通流量进行限制,主要通过法制和行政手段来实现。例如控制车辆出行,鼓励和发展公共交通,控制汽车保有量,以高额的税、费甚至控制上牌等,来限制汽车数量的增长。但是这些方法短期可以奏效,从长远的角度来看,是治标不治本。那么如何更有效地使用现有的道路,就成为更好地解决上述问题的重要途径。人们希望将高科技运用于交通管理系统,从而提高现有道路的利用率,提高道路交通的安全程度和道路使用的舒适性,于是智能化交通系统便应运而生。

所谓智能化交通系统,就是将信息处理、通讯、自动控制、电子技术等最新的科研成果,应用于交通运输网络中。它与传统的交通管理的一个最显著的区别是,将服务对象的重点由以往的管理者转向道路的使用者,即用先进的科技手段向道路用户提供必要的信息和便捷的服务,以减少交通堵塞,从而达到提高道路通过能力的目标。同时,它将道路管理者、用户、交通工具及设施有机地结合起来,并纳入系统之中,从而大大提高了交通运输网络的运行效率。

绿波交通:让车辆通行一路绿灯

智能交通系统的功能包括:信息提供、安全服务、计收使用费和顺畅通行等。系统向道路管理者和用户提供的信息有:路况、交通事故情况、交通管制、停车泊位等;安全服务包括危险警告、人车事故预防、行车辅助等,目的是通过不同方式来帮助减少交通事故;费用收取是以电子方式自动向用户收取道路使用费和车辆停放费等。

专家们发现,如果用先进的电子设备来控制交通,可以最大限度地利用好城市的每一寸道路和交叉道口的空间,既提高了道路利用率,又保证了交通安全。从这个要求出发,专家们提出了“绿波交通”概念。

绿波交通是指信号灯智能化设计和控制,以求车辆一路连过多个路口都是绿灯,畅行无阻。这种信号灯的“绿波”优化控制看似简单,实际是一个高深的理论问题。每一个交叉路口的信号优化控制都需要针对左传、右转、直行这3个运动量乘以4,即12个运动量的优化过程,连续5个交叉路口就会有60个运动量,对这60个交通流运动量的优化控制,是一个基于统计学、模糊数学、最优控制等理论的复杂数学计算问题。目前,绿波交通控制系统在国外已投入应用。

将来,一种实时交通信息系统的“远程信息处理器”在车载系统中投入使用后,司机只要向车载电脑输入出行的目的地,电脑通过信患处里,就能及时地向司机提供最佳的出行路线,让司机躲开拥堵地段。行车途中,你可以通过自动控制系统而不是加速器换档来控制车速,同时;不可以预订停车位。

磁卡与电子收费系统

如何减少中心城区车流量,解决交通拥堵问题,收“买路钱”是一个好办法。1998年,新加坡采用电子道路收费系统来代替人工收费。这种方式是先让车主在银行购买磁卡,当司机驾驶车辆进入中心城区时,将磁卡插入车辆的读卡器中,路边的电子收费系统就会自动读取相应的信息,从卡上扣除一定的费用。

这种卡与普通IC卡的区别在于它超强的信息传递功能。普通IC卡必须经过刷卡机才能进行识别,但这种磁卡加上了类似于现在“蓝牙”一样的装置,有效识别距离可达数十米远。这种“非接触式”卡极大地方便了使用者和管理者。

电子收费系统由四部分组成:一是在道路入口处装设能对路过车辆进行扫描的高架装置;二是可识别多种智能卡的车载读卡器;三是一个计算机通讯子系统;四是中央控制中心,它把获得的每辆车的信息进行汇总和记录。这种系统的工作原理是:载有特定装置的车辆进入收费区后,收费区的信号探测器发出扫描信号,检测并获取该车的有关信息,然后根据不同方式计费。

有了这样的磁卡和金自动电子收费系统,缴费工作仅在几秒钟内完成,车辆甚至无需减速通过便能实现。目前这种系统的功能日益多样和先进,如信号探测系统能获得并记录车辆的尺寸、重量、车型等数据,还能将那些违规或不符合要求的车辆用摄像机记录车牌号,从而大大减少或避免因收费、车检而带来的交通堵塞。

自动汽车与自动化公路

目前,随着GPS卫星导航系统的广泛应用,开发一种无人驾驶的智能化自动汽车的工作提到了汽车制造厂家的议事日程上来。

日本最新推出的概念车HSR-VI,该车可以手动驾驶,也可以完全自动驾驶。在自动驾驶时,车载电脑搜集激光雷达、立体图像传感器、多用途通讯系统和交通管理方面发出的各种信息,以操纵汽车行驶,能够自动转向、刹车和换档。这种装置还可以将外部情况及时提供给司机,以避免发生交通意外。

开发这种自动汽车的关键技术有两点:一是要研制能正确选择车道、感应障碍物、自动避免冲撞的技术。如德、法等国研制的“自动智能巡航控制系统”就是这样一种装置,它可以用来选择最佳行车路线,防止与前面的车辆靠得太近,还能自动控制本车相对于其他车辆的速度。车上的红外激光不断地扫描前面的道路,寻找障碍物,同时把所获得的数据在挡风玻璃上显示出来;遇有危险情况时,会自动降低车速,或紧急刹车,处理时间仅为300毫秒。

交通的智能化例2

前言

交通运输是我国经济发展的重要组成部分,交通运输的发展促进了我国经济的发展,丰富了人类的生活方式,随着加入世贸组织后,交通运通的重要性越来越大,发挥的作用也越来越重要,因而,交通运输管理工作也是重要的,需要更加完善的、科学的管理体制和管理系统。交通运输管理体制还包括公路交通运输管理系统和铁路交通运输管理系统两部分,两者相辅相成,有各自独立,最终统一于我国交通运输管理体制的整体,两部分的交通运输管理系统的发展都促进了我国交通运输管理的发展,因而要逐渐改善提高交通运输管理系统的可靠性、科学合理性

一.对交通运输管理网络提出新的认识

现代智能化信息技术需要具备一定的基础设施建设,通过加强“信息化”基础设施建设来形成现代交通运输管理网络,这是运用现代信息技术加强交通运输管理的重要基础。尽管目前我国交通运输管理的现代科技信息应用水平不断提高,但由于传统管理网络的改造和提升需要大量的资金投入,不可能一步到位。特别是由于我国交通运输站点较多、信息管理系统功能不全等因素制约,对运用现代信息技术进行系统整合具有一定的难度,必须采取有效措施逐步解决。

二.对交通运输管理理念提出新的理念

随着现代信息技术的快速发展,“智能化”具有革命特性。在现代信息技术飞速发展的新形势下,交通运输管理部门的思想观念和发展理念还不适应形势发展的需要,对现代信息技术在交通运输管理方面还有一定的局限性。一些交通运输部门在交通运输管理“智能化”建设方面资金投入还不到位,导致对现代信息技术应用不够,“智能化”管理系统建设严重滞后,在一定程度上制约了现代信息技术在交通运输管理上的应用。

三.现代信息技术有利于打造智能化交通

运用现代信息技术实施交通运输管理,特别是随着自动识别系统(RFID)和智能交通系统(ITS)的广泛应用,能够将先进的信息技术应用于交通运输管理,能够将交通运输、道路、出行者三者紧密结合起来,形成信息化、数字化、智能化、社会化的新型交通运输管理系统,有效解决交通堵塞和车辆拥堵问题,有利于打造“智能化交通”,不仅缩小了信息传递空间,而且能够提高信息传递、分析、处理速度和效率,对于实现交通运输管理“智能化”具有十分重要的意义,同时也是“智慧城市”的重要组成部分。

四.现代信息技术有利于缓解运输压力

随着我国经济社会的快速发展,对交通运输的需求日益增大。特别是随着我国人民收入和生活水平的显著提高,城市车辆显著增加,对交通运输管理提出了新的更高的要求,如果不能有效对城市交通进行科学化管理,就会阻碍交通事业发展,特别是我国目前交通拥堵问题已经成为“城市病”。将现代信息技术应用于交通运输管理,能够通过信息化、智能化管理系统对整体运输能力、运输需求以及交通承载能力等进行全方位、系统化、多层次的分析和管理,能够很好的解决承载力不足与运力过剩的矛盾,进而提高交通运输效率,缓解交通动力压力。

五.应用现代信息技术加强交通运输管理的策略

(1)转变管理模式

理论是行动的先导,应用现代信息技术加强交通运输管理必须首先在理念上狠下功夫,牢固树立“信息化”管理理念,不仅要推动各级政府转变理念,同时也要推进各级交通运输管理部门的领导人员、管理人员转变理念,只能这样才能更好的推动交通运输管理“智能化”建设。

(2)建设融资渠道

应用现代信息技术加强交通运输管理,“信息化”基础设施是关键。必须着眼于破解现代信息技术应用的资金瓶颈,抢抓我国新一轮“市场化”改革机遇,积极探索和创新交通运输管理“信息化”建设融资渠道,既要加强政府投资,又要激活民间资本,实行政府扶持、部门自筹、社会参与、市场融资相结合的方式,多元化、多渠道、多层次筹措建设资金,破解资金瓶颈。

(3)加强交通运输信息化技术管理

交通的智能化例3

随着计算机技术的不断发展,以及道路交通监控领域中国家系列规范的颁布和实施,“高清监控”愈来愈受到人们的重视和青睐。具有图像清晰、信息量丰富、色彩逼真、视角宽广等重要特征的“高清监控”被运用到实际工程当中,带来了不可低估的经济和社会效益。100万、200万、500万像素的高清摄像机,CCD或者是CMOS的感光材料,全嵌入式、工控式、混合式结构等,都在这样的大背景下竞相登场,呈现出一派“百舸争流”的景象。笔者将通过本文,与读者分享对当下高清卡口、电警工程技术发展新特点的认识。

2前端采集环节趋于采用全嵌入式、智能化、工业级别的高清抓拍、控制、采集系统

(1)高清抓拍摄像机采用以TI公司的DM6467为核心的嵌入式主板,功耗低;采用无风扇设计,耐75℃高温;内置硬件看门狗电路,能够在系统异常后自动重启、恢复工作。软件方面,高清抓拍摄像机采用专门针对DM6467设计的嵌入式Linux系统,避免遭受网络攻击和病毒侵袭。相对于工控机模式或者是嵌入式的工控机,以上改进显然提高了系统的整体稳定性。(2)高清抓拍摄像机内部集成高清抓拍系统软件和号牌定位识别软件;植入自动控制模块,将线圈触发、视频触发、雷达触发与启动补光无缝地集成;直接把图像数据上传到远端服务器的数据库中。(3)前端存储采用嵌入式网络硬盘盒,以固态电子硬盘为存储介质。相对于采用SD卡或者使用工控机而言,此举可使存储的稳定性和可靠性得到大幅的提升。(4)采集设备防护罩采用特殊设计。护罩的窗口采用透光率达99.5%的特殊光学防尘玻璃(普通玻璃透光率为80%左右),减少了反射干扰,使采集的图像色彩更加扎实、细节更加丰富。另外,护罩还引入了对承受高温、低温、雨淋、盐雾、粉尘等各种气候环境压力的考虑;具有一定的机械强度且达到适应应用环境的防尘、防水密封的要求,长期使用不会有严重锈蚀,符合IP66的防护要求。

3前端采集设备通过集成多功能应用软件实现更完善的智能化

交通的智能化例4

1引言

路试检验行车制动性能与制动距离、充分发出的平均减速度(MFDD)、制动协调时间(t)与制动稳定性有关。传统的路试检验行车制动性能的仪器是五轮仪,尽管其测量精度较高,但是使用起来较为繁琐,不够便捷,测试的工作量也较大,在实际工作中并不适用。这就需要一种便携式能够直接测定制定动协调时间和充分发出的平均减速度的仪器,也就是笔者将在下文中介绍的MBK-01型便携式制动性能测试仪。

2工作原理和技术方案

2.1测量传感器

该测试仪的主要探测元件是加速度传感器,利用对车辆的加速度、减速度的测量,从而达到对车辆制动性能所需的各项参数检验的目的。该测试仪选用的传感器属于目前世界顶尖水平的硅微电容式固态加速度传感器,其主要材料由硅组成,并使用微光刻和蒸汽沉积技术制作而成,其温度飘逸不大,适合用于车辆制动检测。传感器的工作原理在于通过电容和位移的关系,让惯性元件与两个固定电极组成可变电容器,惯性元件会在车辆经过振动时通过电容测量电路转化成加速度量输出,得到测量结果。

2.2智能化信号处理单元

智能化信号处理单元是测试仪整个仪表的关键所在。制动性能测试仪在工作时,是对车辆在行驶过程中的动态测量,由于测试仪的性能限制以及汽车加速度较快,使得整个过程的极快,要想使测量结果更加精确,就需要仪表对汽车行驶的响应时间够快,同时需要具备较大的数据存储量。所以,当加速度传感器的信号传输到AD转换器后就被送入到微处理端实施数据处理,接着再进行数据存储工作,最后按照交通管理中心按照实际需求把所得数据利用RS232串行通讯输送到计算机终端。在制动测试模式下,微处理机在接收到汽车刹车踏板的信号后,就马上把AD转换器所取得的减速度数据存储到仪表内部,接着通过微处理机处理数据,得到测试汽车制动性能所需的各项参数。在加速测试模式下,微机会把收集到的加速数据存储到仪表中,然后当车辆行驶速度加速到预定的数值后,就通过仪表内的微机处理数据,得到平均加速度、加速过程所花费的时间。

3交通管理领域智能化仪表的应用前景和性能指标

3.1性能指标

笔者在这里将MBK-01便携式制动性能测试仪和目前国内外常用的先进设备VC2000PC刹车测试仪性能指标做一个对比

3.2应用前景

从目前国内交通管理的实际情况来看,传统使用的五轮仪由于安装繁琐、费时,和目前的交通管理工作不相适应;而MBK-01便携式制动性能测试仪由于特点突出,优势显著,适用于对机动车制动性能的检测,能够在全国的车检所、汽车修理厂乃至于交通事故勘察单位中都推广使用,从而及时地检测出制动性能存在问题的汽车。

4交通管理中使用智能化仪表的必要性

传统的路试检验仪器尽管有着测量精度高的优势,不过从安装到操作到计算都不够简捷,对于每天都需要检测大量机动车的车检所、技术监督部门以及机动车修理厂等各个单位而言明显不实用。新形势下,智能化设备在各领域都开始推广使用,智能化设备的使用能够减少人工操作的失误,加强工作效率和精准度,是我国各种电子产品和机械设备未来发展的主要方向。现阶段中,该测试仪已经通过专家鉴定,开始大规模生产,用来取代传统的测试仪表。笔者相信,这种组装方便、操作智能、测量精准的仪器很快就能在国内机动车检验工作中推广使用。

参考文献

交通的智能化例5

[DOI]1013939/jcnkizgsc201623157

1研究背景及意义

现有的交通设施已不能完全适应交通需求的增长,而新建交通设施又会带来新的交通需求,因而单纯依靠道路建设,难以从根本上全面解决城市的交通问题。在不断加快道路基础设施建设的同时,必须加快城市智能运输系统建设,对ITS(智能交通)的系统研究才能从根本上改善城市交通状况,促进人口、资源、环境与经济社会的协调发展。

2可视化智能货运交通系统的设计方案

ITS可视化技术在货运运输体系的应用首先通过车载信息收集装置实时传输信息,调度中心收集到信息后对信息进行分析评级,再将得出的策略反馈给使用者。在此过程中对司机操作进行监督,并运用停车熄火装置,最近路线规划等来实现节能减排。通过车载软件“求车求货”根据货车内的剩余空间装载货物,降低空载率,提高运载效率的同时降低燃油消耗。

(1)通过汽车的车载电脑或智能手机终端等系统,把货车装载率信息通过该平台,实现“求车求货”网络共享可视化。实现货车司机,有货物运输需求的货主,管理调度中心之间的信息互联,使货车空间充分利用。

(2)通过车载系统实时收集监控货车耗油量、行车轨迹、行车速度、胎压、装载率及整车运行状况、载货量与排气比值、货车尾气信息等,来对登录的货车进行长期监控管理并评级。通过所获取信息的统计、分析和归纳,来对司机进行监督。通过实时发送的车量情况、将数据发送到终端数据库,通过软件的算法对数据进行分析处理,与标准进行对比,进而分析出车况中应该更改的内容,进而对驾驶模式以及路线进行优化。

(3)在各货运卡车上安装刹车熄火装置,使货车减少在怠速运转期间的尾气排放。实现节能减排,并降低运输成本。

(4)实现实时车内外影像视频信息的反馈。车内影像可以监控司机操作规范性及货物状态;外部影像在提高行驶安全性的同时还能掌握交通线路的行驶拥堵状况,此类信息的共享可为其他车辆出行、了解道路信息提供参考,及时调整优化出行线路,减少道路拥堵等待时能源的消耗。图1可视化智能交通系统架构

如图1所示,卡车内部架构主要体现了卡车在线实时数据传输,通过汽车内置的评价系统对汽车量自身情况进行系统评价,并直观反映到中央控制室以及车载显示屏。本系统依托车载通信来实现与调度中心的连接。包括针对不同汽车的不同分类,以及体现出智能的车载设备,数据通过统计收集后发送到终端服务器。信息汇总到调度中心后,进行数据的采集,运用云计算将数据储存起来。将储存的信息与标准进行对比,将实时的道路交通信息发送到调度中心,通过已存多条行车路线匹配,进行合理选择,随时优化出行路径。最后将这些信息汇总反馈到驾驶者,降低道路拥堵率,提高出行效率的同时减少尾气排放。这个体系的应用不仅能改善城市综合交通拥堵问题,还能为货运物流企业降低运输成本提高企业的综合竞争力,达到双赢目的。

3货运车辆与调度中心的联动机制

本系统依托车载通信来实现与调度中心联网对行驶轨迹、行车速度、燃油使用量、胎压、装载率及整车运行状况等信息对登录的货车进行长期监控管理。对所获取的信息进行统计、分析和归纳,然后对货车进行评级。还会对货车司机的操作进行标准规范化的监控,减少违规操作、疲劳驾驶等问题的同时,有效控制货车尾气排放量,实现节能减排。货车内部架构主要体现了信息的在线实时数据传输,通过汽车内置的评价体系对货运车辆运行的合理性及经济收益进行综合分析,在作出评价后直观反映到中央控制室以及车载显示屏。图2货车与调度中心联网示意

信息汇总到调度中心后,进行数据的采集,运用云计算将数据储存起来。将储存的信息与标准进行对比(尾气排放量对比,百千米耗油量对比,道路交通状况、货仓装载率及温度等),并通过车载视频及GPS定位系统,将实时的道路交通信息发送到调度中心,通过已存多条行车路线,进行选择,随时优化出行路径。最后将这些信息汇总反馈到驾驶者后进行有效的调整来完善问题。例如,当装载率不合理时可以对货箱安装可调节插板,随时根据货物情况来调节车厢空间,减少货物损坏,减少货车空车率,提高货车运输效率,实现节能减排。将ITS应用到卡车的行驶中,通过网络平台实现信息智能可视化。利用车载信息收集装置实时传输信息,调度中心收集到信息后对信息进行分析评级,最后再将改变后的策略反馈给使用者。在此过程中对司机操作进行监督,通过停车熄火装置,达到节能减排的效果。并与仓储中心联动,通过车载软件“求车求货”,根据货车内的剩余空间装载货物,降低空载率,提高运载效率。

4研究总结

本研究所设计的系统可以让货主通过网络平台查询车辆位置、发车时间,以调整自己的出货时间,减少等待时间,提高运输效率,从而使货车保持高效率运输,绿色出行。另外,调度中心收集货车信息安排调整出最佳的出车频率、时间还有路线。在满足货物运送需求的同时,通过调整车辆批次来降低能源消耗,节能减排,减少不必要的能源消耗,实现节能减排,减少环境污染。

参考文献:

交通的智能化例6

现有的交通设施已不能完全适应交通需求的增长,而新建交通设施又会带来新的交通需求,因而单纯依靠道路建设,难以从根本上全面解决城市的交通问题。在不断加快道路基础设施建设的同时,必须加快城市智能运输系统建设,对ITS(智能交通)的系统研究才能从根本上改善城市交通状况,促进人口、资源、环境与经济社会的协调发展。

2可视化智能货运交通系统的设计方案

ITS可视化技术在货运运输体系的应用首先通过车载信息收集装置实时传输信息,调度中心收集到信息后对信息进行分析评级,再将得出的策略反馈给使用者。在此过程中对司机操作进行监督,并运用停车熄火装置,最近路线规划等来实现节能减排。通过车载软件“求车求货”根据货车内的剩余空间装载货物,降低空载率,提高运载效率的同时降低燃油消耗。

(1)通过汽车的车载电脑或智能手机终端等系统,把货车装载率信息通过该平台,实现“求车求货”网络共享可视化。实现货车司机,有货物运输需求的货主,管理调度中心之间的信息互联,使货车空间充分利用。

(2)通过车载系统实时收集监控货车耗油量、行车轨迹、行车速度、胎压、装载率及整车运行状况、载货量与排气比值、货车尾气信息等,来对登录的货车进行长期监控管理并评级。通过所获取信息的统计、分析和归纳,来对司机进行监督。通过实时发送的车量情况、将数据发送到终端数据库,通过软件的算法对数据进行分析处理,与标准进行对比,进而分析出车况中应该更改的内容,进而对驾驶模式以及路线进行优化。

(3)在各货运卡车上安装刹车熄火装置,使货车减少在怠速运转期间的尾气排放。实现节能减排,并降低运输成本。

(4)实现实时车内外影像视频信息的反馈。车内影像可以监控司机操作规范性及货物状态;外部影像在提高行驶安全性的同时还能掌握交通线路的行驶拥堵状况,此类信息的共享可为其他车辆出行、了解道路信息提供参考,及时调整优化出行线路,减少道路拥堵等待时能源的消耗。图1可视化智能交通系统架构

如图1所示,卡车内部架构主要体现了卡车在线实时数据传输,通过汽车内置的评价系统对汽车量自身情况进行系统评价,并直观反映到中央控制室以及车载显示屏。本系统依托车载通信来实现与调度中心的连接。包括针对不同汽车的不同分类,以及体现出智能的车载设备,数据通过统计收集后发送到终端服务器。信息汇总到调度中心后,进行数据的采集,运用云计算将数据储存起来。将储存的信息与标准进行对比,将实时的道路交通信息发送到调度中心,通过已存多条行车路线匹配,进行合理选择,随时优化出行路径。最后将这些信息汇总反馈到驾驶者,降低道路拥堵率,提高出行效率的同时减少尾气排放。这个体系的应用不仅能改善城市综合交通拥堵问题,还能为货运物流企业降低运输成本提高企业的综合竞争力,达到双赢目的。

3货运车辆与调度中心的联动机制

本系统依托车载通信来实现与调度中心联网对行驶轨迹、行车速度、燃油使用量、胎压、装载率及整车运行状况等信息对登录的货车进行长期监控管理。对所获取的信息进行统计、分析和归纳,然后对货车进行评级。还会对货车司机的操作进行标准规范化的监控,减少违规操作、疲劳驾驶等问题的同时,有效控制货车尾气排放量,实现节能减排。货车内部架构主要体现了信息的在线实时数据传输,通过汽车内置的评价体系对货运车辆运行的合理性及经济收益进行综合分析,在作出评价后直观反映到中央控制室以及车载显示屏。图2货车与调度中心联网示意

交通的智能化例7

中图分类号:G642.0;U491 文献标志码:A 文章编号:1674-9324(2016)41-0087-03

引言

随着社会的不断进步与发展,交通运输业得到了很好的发展,无论是从人们的日常生活还是整个国家发展的角度上来看,交通运输这个行业都扮演着日益重要的角色。可以说,构建一个安全、便捷、高效、经济的交通运输体系,已经成为一个国家能否实现又好又快发展的先决条件。

与大多数其他的行业发展轨迹类似,交通运输业的发展也是紧跟着时展的步伐,融入了各个时期最顶尖的科学技术。从最初的狭义的仅仅针对于人的交通,到人、车、路的结合,再到海陆空三位一体的全方位立体式的交通运输布局,交通运输不断的向前发展。当下的交通行业正在进行一场新的科技变革--智能化,这个全新的概念,正在逐步渗透进交通运输的各个方面。毫无疑问,智能化将是21世纪交通运输行业的发展方向,全面实现智能化将是所有交通人都为之努力奋斗的目标。正是在这样的背景之下,《智能交通运输系统》这个学科应运而生,并且很快就成为了各大高校以及研究所的研究热点。

北京航空航天大学作为国家重点的985、211高等院校,自然就该时刻把握住前沿的科学技术发展方向,而交通科学与工程学院作为北航专业于交通运输行业的院系,对于交通运输智能化的研究也自然也就责无旁贷了。《智能交通运输系统》这门课的开设也正是学院推崇智能交通的一个举措,是学院紧跟科学前沿,大力发展智能交通研究的一个缩影。

只是随着教学的深入,《智能交通运输系统》这门课的一些问题也逐渐暴露了出来,作为一门涉及了车辆、交通、运输、道路、通信、控制等多学科交叉的课程,它的特点可概括为“概念多、理论多、内容多、无法理论联系实际”,而由于国内的对于智能交通的研究起步相对较晚,各方面的技术与理论研究都不是很成熟,国内已有教材往往无法反映该领域国外发展的最新进展,且宏观研究介绍偏多,实用案例偏少,使学生无法直观的对课本内容进行理解。而在考核方式上,很多时候都过于单一,很多学生没有真正理解智能交通系统的核心。因此,传统的教学内容和教学手段以及考核方式已无法满足《智能交通运输系统》的教学要求,有必要对《智能交通运输系统》课程进行一次全方面的梳理。

“物竞天择,适者生存”,如果人总以固定不变的思维去思考不断变化的事物,是不适合生存在这个瞬息万变的社会的。高等教育的国际化是世界高等教育发展的三大趋势之一,其中最典型的例子就是美国,作为一个移民国家,国际化是美国研究生教育的一个显著特点,也是其研究生教育成功的关键因素。作为本方案的两大亮点,案例式教学以及学科国际化,具有很强的时代特征,有针对性地解决了如今的教学中脱离实际、无法与国际接轨的问题,符合智能交通运输系统的课程特点。

为此,本文从教材课件、教学方式、考核模式3方面入手,提出综合案例式教学以及国际化教学的课程改革方案。

一、智能交通教材及课件改革

前文提到,由于我国对于智能交通的研究起步要比国外晚,所以如果继续采用原有的国内的教材会导致教学内容与国际研究成果脱轨,这对于一门新兴的学科来说,影响是巨大的。所以,在原有的教材之外,应该不定期的给学生印发最新的关于智能交通运输系统的研究成果,与课本相互配合,让学生在学习基本知识的同时也能时刻把握住该行业最新的前进方向,激发学生探索知识的热情。

同时,由于智能交通运输系统是一个综合的平台,融合了很多当下最前沿的科学技术以及新的概念,这些是这门课的重点与难点所在。因此,在教学中,需要强调交通大数据、车联网及人工智能等先进技术及概念在智能交通系统中的地位以及作用,同时在日常的教学中可以常穿插这些新技术实际运用的视频资料,让学生能够对这些新技术新概念有一个更加直观的认识,有利于教学的开展。

除此之外,为了使学生能更加准确的对国外的研究成果进行学习,课程中应该加大英语教学的比重,采用全英文的PPT对课程进行讲授,同时在讲课中穿插口语,加强学生对各个专业术语的熟悉程度,实现双语教学,这无论是对于学生英语水平的提高还是课程的深入开展都有很大的好处。

二、教学方式的改革

完整的智能交通运输系统,由很多不同的模块组成,涵盖了大量的软硬件设施,而实现智能化的关键就在于对产生的海量的数据的收集、处理以及分析。传统的教学模式中,仅仅从宏观的角度对整个数据处理过程进行概括性的介绍,学生很难真正理解智能化的含义,教学显得过于机械化,降低了学生的求知欲望,教学效果大打折扣。因此,对于教学方式的改革就变得很有必要。

首先,教学内容不要仅仅拘泥于课本,可以采用已经结题或者正在进行的一些项目为例,结合课本的知识进行案例式教学,这是整个课程改革最为核心的部分。每堂课上,根据显示案例,让学生自己发现问题,讨论问题,直到最终解决问题,充分发挥学生的自主能动性。这样就弥补了课本上教学事例不足的缺陷,通过实例加深了学生对于很多基本概念以及技术应用的理解,实现了理论与实际的结合。案例式教学的整个教学流程如图1所示。

其次,作为一门工程性质的学科,《智能交通运输系统》更加强调的是学生的动手能力,而实验教学就是提高学生动手能力最好的方式。在平时的教学中插入实验课,让学生对一些软件进行学习,例如R语言、Java、TransCAD等,可以让他们亲身体会到很多数据的具体处理流程,有利于他们更容易的理解智能交通的内涵。

最后,在教学中可以充分利用学校的地缘优势,定期组织学生到各个与智能交通相关的单位以及企业进行参观学习,让学生在实践中学习,对比课堂知识与实践运用的共同点与差异,激发学生的学习以及研究热情。

三、优化课程考核模式

考核模式是检验学生对于课程掌握程度的重要手段,能否因地制宜地选择考核模式是课程能否成功开展的重要环节。

《智能交通运输系统》是一门新兴的大融合的学科,无论是教学内容还是教学方式都和以往的传统学科存在着很大的区别。而在考核模式上,传统的仅仅依托最终考试的考核模式对于这门学科是不适用的。首先是因为《智能交通运输系统》所涉及的知识面太广,它本身就是一门涉及多门学科的课程,如果仅仅依靠考试对最终的成绩进行评定,这会造成题目的跨度过大,题目的深度也不好把握,而若是主要针对于基本概念的考核的话,又不利于学生对智能交通的深层次的理解。其次,传统的考试方式很容易使学生死记硬背知识,带来的结果往往是“分数高,理解少”,不利于学生对于知识的掌握。而对于另外一种依托论文的考核模式,由于目前的网络检索很发达,容易造成抄袭的现象,使课程考核往往流于形式。因此,针对《智能交通运输系统》这门课的特点,尤其是增加了案例式教学内容后,对考核模式进行优化变得非常有必要。

在充分考虑了该门课程的特点之后,我们决定采取开放式课程设计形式,在传统考试的基础上,加上课堂展示以及课堂互动评分两部分,这样在考察了学生对于基础知识的掌握的情况下还能考察他们对于所学知识的应用水平,最大程度地提高了学生的自主能动性。具体的方案为:首先,在平时的案例教学中,老师根据同学对于所提问题给出的答案的正确与否以及讨论问题时的课堂参与程度给出相应的课堂分数;其次,最终的课堂展示,其实这也算是案例式教学的一种特殊的体现形式,教师把通用数据(如交通事故数据,交通流量数据)发放给学生,不对题目作过多的要求,学生可以自由发挥,运用所学的知识去完成一个小型的项目,例如利用统计方法找出事故成因,或预测交通拥堵,在项目完成时,每名学生都要通过做英文汇报的形式在课堂上展示其研究成果,并由老师及其他学生针对所作项目进行提问,指出其优缺点,并共同进行打分;最后,在课堂展示完成之后,再针对智能交通的一些重点知识点以及概念进行考试,题目形式可以相对开放自由,学生可以结合自己对于智能交通的理解以及所学的知识进行作答。最终的考核分数由以上几项综合评定,而其中的课堂展示的部分将是所有考核的重中之重。这样的开放式的课程设计模式不仅可以增强学生的学习积极性,使学生能将理论知识应用于实践,同时还可以培养学生的团队合作精神,提高学生专业英语能力。

四、结语

《智能交通运输系统》是一门综合性的工程性质的学科,传统的教学模式并不完全适用,结合课程的自身特点以及交通运输专业学生的知识结构特点对课程的教学模式进行改革是非常有必要的。基于此,本文提出了从智能交通教材及课件的改革、教学方式改革、优化课程考核模式3个方面着手的改革思路,其中的重点就在于提升课程的国际化水平以及大力实施案例式教学,在把握住整体知识架构的基础上,紧跟国际智能交通的发展潮流,充分将理论知识与实践相结合,最大程度发挥了学生的学习和思考问题的自主性与积极性,取得的教学效果符合预期。

参考文献:

[1]郑金洲.案例教学:教师专业发展的新途径[J].教育理论与实践,2002,22(7):36-41.

[2]罗尧成,束义明.我国高校研究生教育国际化:现状分析及对策建议[J].学位与研究生教育,2009,(11).

[3]陈林杰,赵宁雨,陈彬科.以案例式教学提升教学质量[J].当代教育理论与实践,2016,(1).

[4]檀慧玲.世界高等教育强国研究生培养质量保障机制研究[J].北京教育(高教)2014,(5).

[5]顾明远.世界高等教育发展的基本趋势和经验.北京师范大学学报(社会科学版),2006,(5).

[6]陈皓.通过互动式教学提升教学质量[J].教学论坛,2010,(12):158-159.

[7]蔡英凤,王海,陈小波.“智能交通系统”课程教学改革的思考[J].科教文汇旬刊,2015,(17):58-59.

[8]朱茵,王鹤飞.智能交通系统概论教学内容改革研究[J].中国人民公安大学学报:自然科学版,2009,15(2):99-101.

Making a Case-based and International-oriented Reform in an Lntelligent Transport Systems Course

MA Xiao-lei

交通的智能化例8

城市交通根据交通流状态,分为动态和静态交通道路交通系统。动态交通是指在道路上运动行驶的所有机动车的总体交通流情况;静态交通是指机动车由于不同原因在各个场所停止行驶的状态。静态交通和动态交通均是当前城市交通系统的组成部分,两者相互依赖相互影响。随着本市社会经济建设发展和人民收入改善,私家车保有量增长迅猛,静态交通问题已引发市民的广泛关注。停车泊位的有限数量和缓慢增长与持续增长的机动车保有量之间,存在明显的供需矛盾。静态交通建设滞后、管理落后,“行车难,停车更难”矛盾日益凸显。秉承“城市,让生活更美好”理念,如何推动静态交通智能化建设,改善城市静态交通问题,缓解停车难,打通舒适的交通出行环境,具有重要现实意义。

1 上海静态交通的现状及存在不足

(1)停车位缺口较大,停车矛盾日益凸显

最新统计数据显示,截止2014年底,全市机动车保有量为304万辆(不含外省市号牌车辆),年增幅7.2%。全市小客车219万辆,年增幅9.7%,其中沪C牌照的郊区小客车总量67万辆,年增幅16%,私人小客车注册量达181万辆,年增幅12%。与此同时,本市停车位总量并未相应增长,土地资源紧张的中心城区停车设施建设更为滞后,截止2014年5月,全市道路泊位数29751个,环比略增0.11%;公共停车场(库)443760个,环比微增0.84%,同比增长8.4%。停车矛盾同时衍生占道停车、损坏绿化等诸多问题。

(2)停车信息化尚未普及,区域发展差别较大。

总体来看,上海市停车智能化在国内尚属走在前沿,已经出台了一项上海地方标准和三项行业技术规范,并将停车智能化建设纳入上海市综合交通体系规划、停车十二五规划等规划中,明确提出停车信息平台建设,完善停车诱导系统,从而提升整个动静态交通功能。但从区域来看,停车区域发展差别较大。黄浦区、青浦区、嘉定区等已陆续实施停车诱导系统,而其他区县尚未推行,只有部分电子收费系统,信息化建设比较薄弱,造成部分公共停车场由于缺乏醒目的停车信息诱导,外来人员难以在短时间内找到停车泊位,增加绕行距离,间接增加道路交通流量,同时部分停车泊位闲置。从诱导形式上来看,主要以设置诱导路牌为主,尚未开发APP等应用软件查询模式。从诱导效果来看,相关信息与实际空位数误差较大,技术尚不成熟。

(3)占道停车现象严重,管理方式落后。

截止2014年5月,本市(崇明县除外)16个区设置了757条收费道路停车场,共计收费道路停车泊位29751个,按标准车位5.3米/个,估算停车收费道路里程约157.6公里,按全市(崇明县除外)城市道路4919条,总里程4363公里对比,停车收费道路里程约占总城市道路里程的3.6%。当月上海道路停放车数为1323226次,平均泊位周转率为1.43辆次/泊位/天。欧美、香港等日周转率均高于6,上海道路停车泊位周转率明显偏低,大量机动车实际占道随意停车。同时绝大多数停车场(库)仍使用取卡+人工收费模式,自动识别车牌的自主停车管理系统及支付系统尚未普及,停车管理模式比较落后。

(4)停车设施规划滞后,建设量小

经过上海世博、“十二五”等多轮市重大交通基础设施建设高峰期,上海市骨干路网、越江通道、轨道交通在量上均有了显著增长,而在静态交通基础设施建设方面则呈现短板。除商业、住宅等配建停车场(库)外,在P+R停车场、立体停车场等建设方面明显投入不足。一方面是由于对于停车需求预测不足,现有的停车配建标准在分类和指标等方面过于笼统、简单;另外一方面是地方政府在停车问题上未予以足够重视,采用相应措施和投入相应资金来缓解停车问题,住宅类、办公类等项目在土地出让、建设程序审批等环节中,对于停车位建设指标也过于放松,未结合区域停车需求预测及现实条件给予足够的指导要求。

(5)差异化定价制度不明显

部分郊区县缺乏合理的差异化定价制度,现行地下公共停车场高于道路停车收费,导致驾驶者倾向停放在路侧,影响道路通行,助长了乱停车现象,加重了执法压力。同时收费停车场利用率低,建设成本高,难以吸引社会资金投资停车场建设。

2上海市静态交通智能化建设思考

静态交通智能化建设对于上海市静态交通的系统管理和发展有着至关重要作用,利用停车诱导系统和停车信息平台对停车需求进行调控管理也是今后停车管理的重要手段和方式。

(1)静态交通智能系统化

静态交通智能网络化包括公共停车信息系统、停车诱导系统、道路停车自动收费系统(咪表或手持POS机收费系统)和停车场(库)信息系统。以公共停车信息系统为核心,集成停车诱导系统、咪表系统、停车场(库)信息系统,实现实时的停车场信息服务。

(2)停车诱导智能网络化

2002年,黄浦区率先建成上海首个区域停车诱导系统。2005年,黄浦区推出网上查询停车泊位、电话预定泊位、向驾驶员提供各项停车咨询等服务,在城市交通“排堵保畅”中起到了积极作用,其标准已作为上海市停车诱导系统地方标准,成为全国第一部停车诱导系统的地方标准。在停车诱导方面,可通过城市一级、二级引导屏、互联网网站、手机终端、车载GPS终端等方式各个停车场的实时车位信息,诱导驾驶员查找车位、停车场及路线,并对停车场车位信息进行实时监控、统计,规范停车场管理,提高车位利用率。

(3)管理系统智能自动化

2005年以来,上海在黄浦等四个中心区36条停车收费道路上试点安装了232台咪表,由于少数车主延时停车、拒不缴费等原因,不得不退回到“人机共守”模式。电子收费模式在准备计费、及时提供泊位信息等方面,具有不可替代的优势,因此,建议进一步总结吸取咪表使用过程中的经验,强化管理,同时推广手持POS机道路停费工作试点,真正发挥电子收费系统的作用。

(4)收费系统智能便捷化

在收费方面,可充分发挥公共交通卡功能,实现刷卡收费,简化收费时间,或推行不停车收费系统(ETC),可大幅减少车辆出入停车场所需要的时间。ETC系统成功应用于上海市普陀区海普苑小区停车场管理,实践证明,该系统具有良好的软件界面,识别率高,可有效提高停车场的智能化管理水平。

3 结束语

霍华德在《明日的田园城市》一书中提到“一座城市就像一棵花、一株草或一个动物,它应该在成长的每一个阶段保持统一、和谐、完整”。改善静态交通,以动制静―以静制动,动静相协调,实现动静平衡,关键落脚到应用科学技术手段,加快推进静态交通智能化、信息化发展,提高城市交通效率,并实现绿色节能环保,创造宜居的城市环境。

参考文献:

[1] 吴润元.上海静态交通信息化建设的实践[J].综合运输,2005(9):

交通的智能化例9

Research on intelligent traffic management system based on the network of vehicle

Abstract:With the increase of motor vehicle quantities,road traffic congestion and pollution is becoming increasingly serious. Traditional traffic management system has failed to meet the modern transportation system requirements in traffic information collection, vehicle inspection and supervision, violate the traffic management. Based on this, the paper studied intelligent traffic management system composition based on the network of vehicle ,the function of the system and the key technologies involved have also been analyzed, which could provide important theoretical basis for intelligent traffic management system construction .

Keywords:Network of vehicle;RFID;Traffic information collection;Traffic management system

中图分类号:C913文献标识码: A

1引言

随着我国城市化和机动化程度不断提高,机动车数量急剧增长,导致交通拥堵、交通事故、交通环境污染等问题日益严重,已成为制约城市社会经济发展的主要瓶颈之一,也是各级政府部门和社会公众关注的热点问题[1]。以武汉市为例,交通高峰期中心城区部分主干道的平均车速低于20km/h ,严重影响公众出行效率和成本,给人们的工作、生活带来了极大的不便[2]。

智能化交通管理系统就是应用先进的计算机、通信技术、传感技术、数据管理和融合技术,将车辆、道路和交通管理系统连结为一体,按照交通系统运行状况和特殊要求合理地引导、 限制和优化组织交通流, 为城市道路创造有序、 迅速、 安全舒适的行车环境。目前交通管理部门主要通过线圈检测器、视频检测器等对道路交通状况进行实时监测。受资金、人力等因素制约,交通管理部门仅在少数重要路段和交叉口布设了检测器,导致道路网上存在大量的信息“真空地带”。另外,现有检测器主要采集流量、车速和车流密度等参数,无法获取车辆的OD(起迄点)、行程时间、行驶路径等信息,难以实现道路交通管理的精细化和科学化[1,3]。在车辆监管和违章稽查方面,目前机动车主要通过车辆号牌进行标识,对于假牌车、套牌车、无牌车、肇事逃逸车、报废车等的监管和稽查,缺乏有效的技术手段。在道路交通管理方面,由于缺乏详实的基础数据和交通系统分析手段,目前交通管理方案主要依靠管理人员的实践经验来加以分析和确定,虽有其合理之处,但在决策的科学性、准确性等方面有待提高。随着城市交通系统日益复杂,这种经验式的管理模式不能适应新的发展需求。

随着现代信息技术的发展,国外学者提出了物联网的概念。自2009年8月总理提出“感知中国”以来,物联网被正式列为国家五大新兴战略性产业之一,写入“政府工作报告”[4]。车联网是物联网在交通领域的重要应用。通过射频识别技术、无线通信技术、传感技术等,实现在信息网络平台上对所有车辆的属性信息和静、动态信息进行提取和有效利用,并根据不同的功能需求对所有车辆的运行状态进行有效监管和提供综合服务,实现“人-车-路”的和谐统一。在车联网环境下,利用RFID电子标签对每辆机动车进行标识,为实现智能化的交通管理提供了技术手段。

2基于车联网的城市智能化交通管理系统组成及功能

2.1 车联网的概念

车联网是以车为节点的信息系统,它综合现有的电子信息技术,将每辆汽车作为一个信息源,通过无线通信手段连接到网络中来建立车联网,从而能够收集车辆的所有信息,并在特定区域内对车辆进行监控管理。其原理[5,6,7]是路侧基站发送加密数据信号给车载单元的电子车牌上,这时电子车牌的工作电路被激活。车载RFID电子标签通过天线把车辆本身基本信息(车牌号、车主、车辆类型、有无不良记录等)加密后发给路侧基站,基站记录下车辆基本信息以及通信的时刻,把这些信息与基站本身的ID信息和地理位置信息通过光纤、移动GSM网的GPRS方式或短信方式发送给交通信息中心,交通信息中心收集及统计相关车辆和车流动态信息,经数据分析处理后,在地图匹配的基础上,可以得到路段上实时交通状况,从而为交通疏导决策提供依据,并可以实时调整该路段信号灯或可变标志,对外相关交通信息。另外,交通信息中心收集到的交通流信息后,除用于提供实时路况信息外,还作为历史数据保存于数据库内,以便日后作为交通道路规划的依据。

2.2 系统组成

如图1所示,按照交通信息的采集与利用的逻辑流程,将基于车联网的智能化交通管理系统主要分为四层,分别是采集层,传输层、处理层、功能层。采集层主要是系统采集交通信息的物理实体,由分布在道路两旁的交通信息采集基站和车载RFID电子车牌组成。传输层即交通信息传输的介质。处理层主要负责信息的提取与处理,以生成一个包含各种数据的数据库,并针对不同部门或不同服务的要求提供不同的信息。功能层是智能化交通管理系统的主要应用。

图1基于车联网的智能化交通管理系统层次结构模型

2.3 系统功能

2.3.1交通信息采集与处理子系统

交通信息采集与处理子系统的功能实时采集和处理道路交通信息,包括静态信息和动态信息。静态交通信息是在一段时间内稳定不变的信息,主要有路网信息、交通管理设施信息等,动态交通信息主要是在空间和时间上不断变化的信息。RFID无线射频识别技术通过识别车辆身份的机制可以在很大程度上弥补传统交通检测器的缺点,主要可分为三个层次。在微观层面可以采集到的交通信息主要有路段交通流量、密度、车辆实时位置信息、车辆行驶轨迹、交叉口排队长度、行车延误等;中观层面上路段行程时间、平均速度等;宏观层面主要有,城市机动车整体出行量,出行动态OD、出租车运力分布等。

2.3.2 交通控制与诱导子系统

交通控制与诱导子系统通过交通信息采集基站实时采集各主要交叉口进口道的流量、占有率和排队长度等信息,结合历史交通信息数据库对各主要交叉口下一时段的交通流进行预测,在此

基础上实现对整个路网的交通流状态进行估计和分析。同时,可以利用可变情报板、广播电台、Internet等方式提供交通拥堵信息,通过制定合理的拥挤收费策略,来实现对城市道路交通网络流量的控制。另外还可以通过车路通信,对指定区域指定驾驶员提供交通诱导信息,实现交通诱导信息的精确化。通过实时动态监测交通流量、排队长度等信息并利用信息融合等方法实时调整交叉口的控制策略,最大限度提高交叉口的利用率。

图2 交通控制与诱导子系统

2.3.3 电子收费

电子收费系统也叫不停车收费系统,它的收费方式采用全自动电子收费方式,即通过安装在车辆上的电子标签自动完成通行付费交易、实现车辆不停车付费和区域内一卡通行。其过程是:将阅读器天线架设在距收费口约 50~100 m 的道路上方当车辆经过天线时,天线唤醒车上的电子标签,发射出车辆ID信息、发卡银行编号、车牌号、车类参数、电子标签号等。阅读器接收到车辆ID信息后,传送至车道控制器,后台计算机对进入收费车道的车辆进行电子标签的合法性校验,分析出车辆的相关信息,不用停车就可实现通行费用计算和自动扣费。

2.3.4 违章违法车辆监控子系统

违章违法车辆监控子系统是对交通违章行为以及涉嫌违法的车辆进行监控、定位查询、拍照取证以及违章、违法数据库的管理。由于RFID对车辆身份的识别,大大减少了因为传统交通检测工具识别不清而出现的各类纠纷,避免了发生漏查、错查等情况的发生,适用于对车辆不良现象的考查,如稽查假、套牌车辆,稽查违章、肇事逃逸车辆,稽查其他各类型的违法车辆。

2.3.5 交通管理决策支持子系统

交通决策支持系统是在采集大量交通信息的基础上,依托交通分析理论、方法和模型体系的技术支撑,为城市交通规划、交通管理与控制提供宏观、中观的和微观的决策支持分析[8]。在城市规划方面,目前使用比较多的是经典的四阶段法,即交通生成、交通分布、方式划分和交通分配。基于RFID无线射频技术可以实时动态采集城市交通小区之间的机动车的发生量和吸引量,以及出租车、货车、公共汽车等在整个城市的运力分布情况,为交通规划提供比较精确的交通信息,同时减少了调查这些交通基本交通信息所必须的人力、物力和财力。在交通管理与控制方面,车联网可以提供详细全面的交通信息,利用这些交通信息,通过交通仿真技术,对各种管理方案实时前后的道路交通状态进行对比,对管理方案的实施进行评价和比选,为道路管理决策提供依据。例如在车联网环境下,通过车--路通信技术,可以直接检测交叉口及路段上车辆个体的运动状态(如实时位置、速度等),通过vissim、synchor或paramics等仿真软件进行仿真,从而改进现有交通信号控制方法,提高交叉口的利用率。

3. 系统关键技术

3.1面向车联网的交通信息采集节点布设优化技术

城市道路网是典型的复杂网络,要实现全部车辆的动态监控和管理,需要布设大量的交通信息采集节点(RFID基站)。RFID采集到的交通数据能否正确反映当时的交通流,与基站设置的密度和位置有很大的关系。总体上来说,节点数量越多,所采集的交通信息精度越高;节点数量越少,则交通信息精度越低。需要在综合考虑道路网络拓扑结构、交通流特性、投资规模、交通信息精度要求、RFID读卡器通信范围等因素基础上,研究交通信息采集节点布设方案的优化方法[5]。另外还需考虑多RFID基站读写冲突的问题。

3.2 基于多源数据的交通信息融合技术

基于车联网的交通数据采集技术与现有交通检测技术(如线圈检测器、视频检测器)各有其优点和不足,RFID检测器覆盖范围广,可以检测车辆身份、行程平均车速,行程时间等,不能检测车辆的实时速度;线圈检测器可以检测车辆的瞬时速度,而视频检测器可以有效检测交通流量、交叉口运行情况、占有率等,但由于价格昂贵,受天气影响比较大目前使用范围有限。因此基于车联网的交通数据和现有检测器检测的交通信息进行融合有很强的必要性。针对交通管理者对交通信息的需求,可以把交通信息在交通流参数、交通路口状态以及交通路网状态三个层次上融合。常用的融合方法有卡尔曼滤波[9]、BP神经网络[10]等。

3.3 海量数据高效处理技术

RFID数据的特点是具有流动性、批量性和海量性[11]。特别是当RFID应用到实际城市道路交通网系统中后,通常会有数十万辆甚至上百万辆机动车同时在道路上行驶,交通信息采集基站获取的交通数据量非常庞大。对于海量交通数据,如何提高数据处理和存储效率,是需要解决的技术难点之一。目前,对海量信息进行处理的主要方法是“云计算”。交通信息采集基站、各种手持式基站、交通信息中心等可以组成一个“大云”,来实现对海量信息的云计算功能。广义云计算[12]是指服务的交付和使用模式,指通过网络以按需、易扩展的方式获得所需的服务。可以把普通的服务器或者PC连接起来以获得超级计算机的计算和存储功能,用户不需要知道服务器在哪里,不用关心内部如何运作,通过高速互联网就可以透明使用各种资源。云计算涉及到的关键技术有效用计算、分布式计算和网格计算[13]。

4结语

随着RFID在最近几年的蓬勃发展,利用RFID在城市道路交通中实现“车辆网”,通过采集到实时,可靠,覆盖面广的交通信息为城市交通管理提供决策支持已经成为我国目前智能交通系统主要的发展方向。基于此,本文研究了基于车联网的智能化交通系统的组成及其主要的功能,并在此基础上对实现车联网智能交通管理系统的关键技术进行了分析,这一成果将为将来智能交通系统的建设提供重要的理论基础和指导意义。

参考文献

[1]严新平,吴超仲.智能运输系统原理方法及应用[M].武汉理工大学出版社,2006,1-4.

[2]目前市区平均车速不过20公里/小时. 2010.10 /10/1021/06/6JGI3DNT00014AED.htm,

[3]张存保.基于浮动车的交通信息采集与处理理论及方法研究[D].上海:同济大学交通运输工程学院,2007年,2-4

[4]2009年8月总理视察研究院. 2010.8

/eworld/2010-08/04/c_12407101.htm.

[5]张丽珍,李欣.基于RFID技术的实时交通信息采集处理技术[J].交通标准化,2007, 12 (172)、 44-47.

[6]卢少平,汪建强等.基于RFID的城市道路车辆监控系统设计研究[J].现代物流技术,2009,2 55-58.

[7]陈华君,林凡等.RFID技术原理及其射频天线设计[J].厦门大学学报,2005(44),312-315.

[8]综合交通决策支持系统框架研究.2008.5

/Techarticle/ITS/Techarticle_22535.shtml.

[9]杨兆升,王爽,马道松.基础交通信息融合方法综述[J].公路交通科技,2006,23(3)、111-116.

[10]张存保,严新平.固定检测器和移动检测器的交通信息融合方法[J].交通与计算机 .2008,25(3),14-17.

交通的智能化例10

中图分类号: TN959?34 文献标识码: A 文章编号: 1004?373X(2013)13?0147?03

Waveform design and realization of instrumentation radar

for intelligent traffic information

L? Bo1, ZHOU Chang?you2, ZHANG Hong?wei1

(1. Ordnance Engineering College, Shijiazhuang 050003, China; 2. Unit 75124 of PLA, Fusui 532199, China )

Abstract: In order to meet the needs of intelligent traffic development, a new waveform of multifunctional traffic information instrumentation radar was designed. The functional requirements of the instrumentation radar are introduced in brief. With an eye to these functional requirements, the needed radar waveform was educed from a theory analysis. Based on the advanced DDS, PLL, microwave frequency multiplication and filtering technique, the waveform generating method of this radar is elaborated in detail. The principle diagrams of its software and hardware are offered. The tested results is given. The accuracy of this method was verified.

Keywords: waveform synthesis; ITS; DDS; instrumentation radar

0 引 言

交通信息检测是智能交通系统中的重要环节,其主要任务是获取道路上车辆的状况,这些信息主要包括车流量、平均车速、车道占有率、车型等。交通信息的实时准确获取是整个智能交通系统的基础,现有的交通信息探测技术手段主要有环形线圈检测、红外线检测、视频检测、超声波检测、微波检测等。其中,环形线圈检测精度高、使用范围广,但是安装维修时需封闭部分路段并对道路进行破坏,时间和经济成本较高;红外和视频检测器受气候因素影响很大,晚上、大灰尘和阴雨雾天气时检测精度低;超声检测必须顶置安装,安装条件受到一定限制[1]。基于雷达的检测技术不受上述缺点限制,具有安装维护方便、检测精度高、抗干扰能力强、受环境影响小、全天候、体积小等诸多优点,发展前景广阔,具有重要研究价值[2]。

波形设计是一部交通信息测量设备的核心问题,它是系统功能实现的关键。本文分析了基于雷达的交通信息测量设备的波形设计,并详细介绍了用于某型交通信息测量雷达的微波源设计方法。

1 测量雷达功能要求及雷达波形分析

1.1 测量雷达功能

测量雷达侧向架空安装于路边的灯杆或电线杆上,波束指向垂直于车道,灯杆或电线杆到第一车道的水平距离[l0]在2 m左右,架设高度[h]约8 m,具体安装态势如图1所示。

测量雷达主要完成以下任务:实时测量每部车的速度,实现不同时间段内平均通行速度的统计;测量车辆通过雷达波束时所处的车道及行驶方向,实现双向八车道的通行量统计;测量车辆长度,实现双向八车道的车型通行信息统计。

1.2 功能实现分析及波形分析

车辆速度测量常用的方法是多普勒测速,雷达发射连续波信号,比较发射信号与接收信号之间的频率差测出车辆的速度。本设备由于侧向垂直路面安装,车辆通过雷达检测剖面时没有相对雷达的径向速度,多普勒频率为零,因此多普勒测速方法并不适用本系统。为了测出每辆车的速度,该设备采用双天线、双波束的方式来测速,通过记录车辆通过两个天线波束的时间差进而得出其速度。

图1 交通信息测量雷达安装示意图

车道交通流量的统计问题,实际是不同车道的触发累计问题。根据工作环境的不同,对每一个车道设置一定的检测门限,当有车辆通过时,该车道的信号电平会超过设置的门限,触发累加器做加1操作,实现统计值的更新。该指标实现的关键是车辆所处车道的准确判定,而车辆所处车道的准确判定关键又在于车辆到雷达距离的准确测量。为了准确判断车辆的车道,雷达需发射线性调频连续波信号,当有车辆通过时产生较大幅度的回波信号。由于不同车道车辆的回波到测量雷达的延迟时间不同,便会产生不同的频率差。雷达通过时域的幅度检测来触发测量,再通过频域频率差的测量,便可以准确判定出那个车道有车通过,并对相应车道的统计值加1。

车型的区分利用不同车通过波束的时间长短来进行判断。不同车型由于自身结构、长度各异,因此它们通过雷达波束的时间长短各不相同,且回波波形包络各有特点。测量雷达提前采集不同车型的波形并建立数据库,当测量到一辆车的回波信号时,与数据库进行比对,便可确定出车型信息。

根据以上分析,交通信息测量雷达系统组成框图如图2所示,其发射信号波形宜采用线性调频连续波(LFCW)信号。

2 测量雷达波形产生与实现

测量雷达工作于Ku波段,信号形式为线性调频锯齿连续波,调频带宽为120 MHz,波形时频特性如图3所示。

为了生成Ku波段的调频信号,雷达采取混频加倍频的方式。首先利用DDS生成较低频率、小带宽线性调频信号,然后混频至中频,再利用16倍频产生Ku波段、大调频带宽的辐射信号。波形产生单元的组成框图如图4所示。

图2 系统组成原理框图

图3 系统组成原理框图

图4 波形产生单元组成框图

2.1 DDS芯片选择

本系统选用的DDS芯片为AD9954 ,它是AD公司生产的性能最好的芯片之一。与普通的DDS芯片相比,AD9954为了实现线性调频和高度集成,除了具有一般DDS芯片所必要的相位累加器、正弦查找表外,输出端还增加了D/A转换器[3]。

AD9954内含1 024×32静态RAM,利用该RAM可实现高速调制,并支持几种扫频模式。AD9954可提供自定义的线性扫频操作模式,通过AD9954的串行I/O口输入控制字可实现快速变频,且具有良好的频率分辨率[4]。

AD9954的应用范围包括频率合成器、可编程时钟发生器、雷达和扫描系统的FM调制源以及测试和测量装置等。

2.2 单片机与DDS的接口设计

AD9954有单频模式、RAM控制模式和线性扫频三种工作模式,因为测量雷达需要产生FMCW信号,所以需置高CFR1寄存器的第21位,选择DDS工作于线性扫频模式。

AD9954有2线串口编程方式和3线串口编程方式。串口操作时,前8位为指令位,用于确定是读操作还是写操作,以及操作的是哪个寄存器。串口编程时序图如图5所示。

图5 DDS串口编程时序

SCLK为串行时钟,用于数据同步。SCLK上升沿时才能向寄存器写入数据,下降沿可用于读出数据。AD9954最高支持25 MHz的时钟频率。[CS]为片选信号,只有当其为低电平时才允许进行串口通信;当[CS]为高电平时,SDO和SDIO将变为高阻状态。SDIO为串行数据输入输出口,所有写入DDS的数据必须经由此端口,而且利用寄存器CFR1的第9位,还也可将其配置为双向数据口。

2.3 单片机程序设计

信号源程序流程图如图6所示。

图6 程序流程图

单片机加电后,首先进行单片机的初始化设置,然后进入到DDS的配置程序,具体步骤如下:

(1)利用Reset端口将AD9954复位一次。因为DDS要工作在线性扫频模式,将无用的PS1、OSK、IOSYNC等置为低电平;

(2)置低IO update和PS0端口;

(3)配置CFR1寄存器。设置CFR1为高电平,使DDS工作于线性扫频模式;设置CFR1为高电平,使DDS扫频至最高频率后不停留,直接跳回起始频率;

(4)配置CFR2寄存器。设置参考倍频系数为20,实际DDS所用外部晶振为20 MHz,则系统时钟频率将达到最高值200 MHz;

(5)配置FTW0寄存器,设置线性扫频的起始频率;

(6)配置FTW1寄存器,设置线性扫频的终止频率;

(7)配置RLSCW寄存器,设置线性调频斜率;

(8)I/O update端口电平翻转一次,更新各个寄存器中的数据;

(9)定时,每隔0.24 ms PS0端口电平翻转一次。

第(9)步每执行一次,DDS便可输出线性调频信号的一个“调频锯齿”,不断循环执行,便产生了所需的线性调频连续波信号。

2.4 其他部分设计与实现

混频所需的本振由AD公司生产的集成PLL芯片AD4360?6产生,它内部集成有分频器、鉴相器、VCO等,只需外部配置参考晶振和无源环路滤波器便可构成完整的PLL系统,使用非常方便。通过单片机对它的寄存器进行配置,产生600 MHz的混频本振。

600 MHz本振与DDS产生的LFCW信号混频,得到中频LFCW信号。由于混频器输出中包含很多的高次分量,为了得到纯净的输出频谱,增加一个窄带滤波器,滤除高次混频分量。中频滤波器选用介质滤波器较为合适,它的体积小、成本低,矩形系数高、损耗低,频率温度系数小[5],非常适合用于本系统。

16倍频器选用集成有源倍频器,它除了产生需要的16次谐波外,也会产生大量其他次的倍频谐波。为此,倍频器后面采用一个微波腔体滤波器完成滤波任务。经过上述处理后便得到了测量系统所需的微波信号。

3 测试结果

为了验证设计的正确性,分别使用频谱分析仪MS2668C和计数器CNT?90对输出信号进行了测量,结果如图7所示。测量结果表明,该信号源中心频率为12.06 GHz、调频带宽为120 MHz、调频周期为0.24 ms,各项指标均与设计相符,满足雷达测量设备的需求。

图7 信号源测试结果

4 结 论

该波形产生信号源已经设计完毕,可输出锯齿波调频的连续波信号,并成功应用某型交通信息测量雷达。该测量雷达可同时测量车辆的速度、所处的车道、行驶的方向、车辆的长度等多个指标,满足了省道、国道、高速公路交通信息采集的准确性要求,且安装方便,工作不受天气因素影响,取得了非常好的测量结果,为公路交通的智能化管理提供了有力的手段。

参考文献

[1] 蒋铁珍.数字雷达技术在车流量检测雷达中的应用[D].上海:中国科学院上海微系统与信息技术研究所,2006.

[2] 奈存亮,张浩,余稳,等.微波交通信息检测雷达信号处理系统设计[J].微计算机应用,2009,30(11):60?64.

[3] 李申阳,苏广川.基于DDS技术的高性能雷达信号源的设计[J].军民两用技术与产品,2006(9):41?43.