期刊在线咨询服务,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

期刊咨询 杂志订阅 购物车(0)

超高层住宅设计模板(10篇)

时间:2023-09-05 16:30:08

超高层住宅设计

超高层住宅设计例1

中图分类号:TU241文献标识码: A

1 工程概况

某超高层住宅项目处于大连市东港区,场地北侧为大连万达公馆,南侧与维湾广场隔长江路相望,东临辽宁省检验检疫局。本工程总建筑面积22.96万m2,地上建筑面积18.14万m2,地下建筑面积4.82万m2。共两层地下室,其中地下二层为车库及设备用房,地下一、二层局部为核6、常6级甲类防空地下室,地上建筑包括两栋独栋商业及三栋超高层住宅。超高层住宅首层局部挑空为大堂部分, 2~50层为住宅部分,标准层层高3.3米,建筑总高度为167.10m;塔楼分别在15、27、39层设3个避难层。

2 结构体系

2.1上部结构

本工程地上部分主体结构为50层,室外地面至主屋面高度为167.95m。

主体结构采用钢筋混凝土剪力墙结构。剪力墙墙厚根据计算确定,一般墙肢厚度详见表1。标准层平面结构布置图见图1。

主要墙体厚度 表1

图1标准层平面结构布置图

2.2地基基础设计

根据场地地质勘察报告分析,本工程采用桩筏基础,桩端持力层座落于中风化板岩层,桩型采用机械成孔桩,饱和单轴抗压强度标准值,桩径1.4m,单桩承载力特征值为14000kN,筏板厚度2.4米,基础埋深12.3m。单独地下室部分及独栋商业部分基础坐落于强风化板岩层上,地基承载力特征值fak=400 kPa。裙楼地下室部分采用独立柱基础防水底板,防水板厚0.5m。在塔楼与地下室之间设置施工后浇带以减小二者之间的差异沉降。由于抗浮水位较高,经复核,单独地下室部分结构自重无法满足整体抗浮要求,故在上述区域采用抗浮锚杆以抵抗较大的水浮力。

3上部结构超限情况及性能目标

3.1超限情况

1.高度超限

高度超限,主体高度167.95m,超过《高层建筑混凝土结构技术规程》(JGJ3-2010)规定的B级钢筋混凝土剪力墙结构适用的最大高度150米的要求,属于超B级高度超限高层。

2.平面不规则

建筑二层楼面局部开大洞,楼板不连续,导致该层平面不规则。

3.扭转不规则

塔楼在地震作用下和风荷载作用下,最大弹性层间位移角与平均层间位移角的比值存在大于1.2但小于1.5的情况,为扭转不规则。

3.2性能目标

参照《建筑抗震设计规范》(GB50011-2010)及《高层建筑混凝土结构技术规程》(JGJ3-2010)有关结构抗震性能设计的参考方法,本工程具体性能目标设定见表2。

抗震性能设计目标 表2

4 结构设计与计算

4.1 设计参数

本工程结构安全等级为二级;基础设计等级为甲级;抗震设防类别为丙类;抗震设防烈度为7度[1];设计基本地震加速度值为0.1g;设计地震分组为第二组;水平地震影响系数最大值为0.105(多遇地震作用下)(安评报告提供);Ⅱ 类场地(场地特征周期为0.35 s);结构阻尼比: 0.05。剪力墙抗震等级为一级。基本风压为0.65kN/m2(50年重现期),地面粗糙度类别为A类。

4.2 多遇地震下振型分解反应谱法计算分析

本工程采用中国建筑科学研究院PKPM CAD工程部编制的SATWE(2011年1月版)和韩国MIDAS IT Inc.公司编制的MIDAS Building(2011版)两种不同的空间有限元分析与设计软件进行了结构整体计算分析。分析按照二层地下室并附带相关联部分结构进行结构嵌固条件分析计算。验算通过后按无地下室模型进行结构整体计算分析。多遇地震作用和风荷载按两个主轴方向作用,同时考虑5%偶然偏心地震作用下的扭转影响及双向地震作用之最不利作用。

工程计算的整体建筑空间模型见图2,剖面示意见图3。

图2整体空间模型图3剖面图

从整体计算结果(表3)可以看出,各软件计算的结构总质量、剪重比比较接近,满足现行规范的要求。结果说明各程序在计算结构动力特性方面较为精准,程序之间具有可比性。计算主要结果见表4、5。

整体结构总质量、基底剪力比较表 表3

顶点最大位移与层间位移角表5

4.3弹性动力时程分析

弹性动力时程分析采用SATWE进行计算,选用的地震波为场地地震安全性评价报告提供的50年超越概率为63%的一条人工波α63-2和分析软件内存的两条适合本工程场地土的两条地震波XH-1和XH-2,单个波的总地震剪力不小于振型分解反应谱方法计算结果的65%,三条波计算所得的结构基底剪力平均值平均值不小于振型分解反应谱方法计算结果80%,满足规范要求。对于顶部楼层的剪力大于反应谱计算的部分,结构设计时将取用三条时程波的包络值,在反应谱基础上将内力放大调整,进行构件补充计算。

4.4中震弹性和中震不屈服分析

在进行多遇地震弹性计算的基础上,本工程进行了中震弹性验算,计算目标是底部加强区剪力墙受剪保持弹性状态,部分连梁可以进入塑性阶段,并通过调整梁刚度折减,适当增加剪力墙安全度。此外进行了中震不屈服结构验算,计算目标是剪力墙偏拉偏压保持不屈服状态,验算墙肢是否出现全截面受拉,部分连梁可以进入塑性阶段。上述计算均采用特征周期0.35,水平地震影响系数0.23。

4.5 静力弹塑性分析

本工程采用PUSH&EPDA对主体结构进行了X向和Y向推覆计算,荷载加载形式为CQC。其性能点的基底剪力、顶点位移为、阻尼比、最大层间位移角见表6。罕遇地震作用下的薄弱层弹塑性变形验算满足规范1/120要求。X、Y向推覆能力谱与需求谱曲线见图4-5。

结构性能点相关参数 表6

图4X向推覆能力谱与需求谱曲线 图5Y向推覆能力谱与需求谱曲线

4.6结构舒适度验算

按照10年重现期的风荷载计算结构顶点横风向及顺风向的结构顶点加速度,本工程的计算结果为:顺风向0.060 m/s2,横风向0.147 m/s2,满足规范0.15m/s2的限值。

4.7超限加强措施

控制墙肢轴压比不大于0.50,南北窗间墙处按分离框架柱进行补充计算分析,并按两模型包络值进行配筋设计。剪力墙底部加强区取为一层~六层,过渡层取为七层~八层,采用一级抗震等级;对大堂处局部穿层肢墙采取特一级抗震构造措施,并在一、二层增设钢骨加强。在底部中震受拉(拉应力标准值大于ftk)处墙肢增设型钢,以型钢抵抗全部拉力,且型钢配置高于受拉区域二层,并采取特一级抗震构造措施。需构造加强的节点(转角墙、横墙、南北窗间墙,内墙支撑多梁的端节点)的约束边缘构件上延至轴压比0.30处(25层)。在楼板局部不连续处加大两侧板厚,并配置上、下双向通长钢筋,同时周边剪力墙设暗梁,以增大水平刚度。罕遇地震作用时,底部加强区内的部分墙肢进入塑性状态,施工图设计时增加设置型钢或加大配筋等加强措施,以提高墙肢延性及抗倒塌能力。

5结论

通过两个不同软件对整体结构的计算分析,互为验证后,结构的刚度与变形特性满足规范规定的限制要求,按设定的性能目标及相应措施,通过对超高层复杂结构进行弹性、弹塑性分析,实现预期的性能目标,采用比规范要求更高的抗震措施对重要的构件做适当的加强。

参 考 文 献

[1] GB50011-2010 建筑抗震设计规范 [S] 北京:中国建筑工业出版社, 2010。

[2] 孙建超,徐培福,肖从真,等。钢板-混凝土组合剪力墙受检试验研究[J]. 建筑结构,2008,38(6):1-6.

[3] JGJ3-2010 高层建筑混凝土结构技术规程[S]北京:中国建筑工业出版社, 2010

超高层住宅设计例2

随着超高层住宅建筑的兴起,目前新建商品住宅中高度超过100 米的住宅数量日趋增多。超高层住宅建筑的设计成为电气设计人员关注的热点。超高层建筑一般建筑面积大,人员密度高,火灾危险性大,一旦发生火灾,火势蔓延速度快,扑救难度大,人员疏散较为困难。与超高层公建相比,超高层住宅不属于人员密集场所,居住人员对环境较为熟悉,规范中的规定相对公建来说宽松些,并没有停机坪和避难层的设计规定,火灾时以自救为主。正因如此,火灾的早期报警及消防自动灭火更为重要,它可以将火灾控制在初期,为人员疏散争取时间,使人员能最大程度的得以疏散。

2011年5月并于2012年4月实施的《住宅建筑电气设计规范》对于建筑高度为100m或35层及以上的住宅建筑进行了详细的规定,从用电负荷等级、自备电源、导体及线缆选择、应急照明、防雷、火灾自动报警系统几个方面进行了规定。下面就超高层住宅建筑设计中的一些设计要点进行探讨研究:

1、用电负荷等级的确定

规范明确规定消防用电负荷、应急照明、航空障碍照明、走道照明、值班照明、安防系统、电子信息设备机房、客梯、排污泵、生活水泵均应为一级负荷供电。其中消防用电负荷、应急照明、航空障碍照明、生活水泵宜设自备电源,即柴油发电机组供电。目前本地的工程项目中,设置柴油发电机组的情况较少,房地产商会首先考虑经济投资,对于“宜”的设置项会选择不设置,但随着人们对消防方面安全防范意识的增强,相信不久的将来,柴油发电机组会成为超高层住宅建筑设计的必要组成部分。

2、导体及线缆的选择要求

规范明确规定用于消防设施的供电干线应采用矿物绝缘电缆。矿物绝缘电缆是用退火铜作为导体、密实氧化镁作为绝缘、退火铜管作为护套的一种电缆。由于它的全部材料都是采用无机材料,所以它本身不会引起火灾,不可能燃烧或助燃,它可以在接近铜的熔点的火灾情况下继续保持供电,是一种真正意义上的防火电缆。近年来多起发生人员伤亡的火灾实例显示,人员出现死亡的一个重要原因是火焰烟雾中毒所致的窒息。火灾烟雾中含有大量的一氧化碳及塑料化纤燃烧产生的含氯、苯等有害物质的气体火焰又可造成呼吸道灼伤及喉头水肿,这些因素足以使浓烟中的被困者在3~5分钟内中毒窒息身亡。此外在浓烟的状态下人员无法辨别方向,进而无法逃生。因此在设计过程中,对于非消防电源的干线电缆、电线应选用阻燃低烟无卤或无烟无卤的交联聚乙烯绝缘电力电缆、电线。这类电缆的特性,使得当火灾发生时,烟浓度低,可见度高,有害气体释放量小,便于人员撤离。

3、防火系统的设计要求

超高层住宅遇见火情时的扑救和应急救援能力,是设计人员设计过程中的重点。对于和居民住宅相关的消防安全内容均应得到重视,建筑内应设消防控制室、火灾自动报警系统为特级保护对象,除了卫生间外,均应设置火灾自动报警系统。报警系统主要由火灾自动报警系统、消防联动控制系统、消防专用电话系统、火灾应急广播系统、火灾漏电报警系统、电梯运行监视控制系统、应急照明控制及消防系统接地构成。

设计中应明确消防安全警示标识、喷淋灭火系统、报警装置、应急广播装置等设置标准。特别是在住宅户内需安装火灾探测报警器。上海更提出进一步要求:100米以上的超高层住宅应设置避难层。

上海出台的《住宅设计标准》是国内首个将避难层纳入超高住宅的设计标准。新标准明确规定100米以上超高层住宅每15层或者45米设置一层避难层,避难层严禁常人居住,净面积应按每平方米3人计算。新标准的实行为超高层住宅的居住安全提供了保障。

此外,《住宅建筑电气设计规范》指出建筑高度为100m或35层及以上的住宅建筑、居住人口超过5000人的住宅建筑宜设应急联动系统。应急联动系统应以火灾自动报警系统、安全技术防范系统为基础。

应急联动系统应具有下列功能:

1)对火灾、非法入侵等事件进行准确探测和本地实时报警。

2)采取多种通信手段,对自然灾害、重大安全事故、公共卫生事件和社会安全事件实现本地报警和异地报警。

3)指挥调度。

4)紧急疏散与逃生导引。

5)事故现场紧急处置。

应急联动系统宜具有下列功能:

1)接受上级的各类指令信息。

2)采集事故现场信息。

3)收集各子系统上传的各类信息,接收上级指令和应急系统指令下达至各相关子系统。

4)多媒体信息的大屏幕显示。

5)建立各类安全事故的应急处理预案。

应急联动系统应配置下列系统:

1)有线/无线通信、指挥、调度系统。

2)多路报警系统。

3)消防一建筑设备联动系统。

4)消防一安防联动系统。

5)应急广播一信息一疏散导引联动系统。

应急联动系统宜配置下列系统:

1)大屏幕显示系统。

2)基于地理信息系统的分析决策支持系统。

3)视频会议系统。

4)信息系统。

应急联动系统宜配置总控室、决策会议室、操作室、维护室和设备间等工作用房。 应急联动系统建设应纳入地区应急联动体系并符合相关的管理规定。

4、低压配电系统保护方面

规范规定了每套住宅应设置自恢复式过、欠电压保护电器。

4.1导管布线方面

潮湿地区的住宅建筑及住宅建筑内的潮湿场所,配电线路布线宜采用管壁厚度不小于2.0mm的塑料导管或金属导管。这是对以往设计要求的金属导管1.5mm的进一步提高。

对于敷设在楼板内、垫层内的线缆保护导管做了相应规定,在住宅电气设计过程中,户内箱体预留,设备间选择、楼板内管径与楼板厚度要求是和土建专业密切配合的几个方面,也是预留预埋时的设计要点。

4.2电气竖井布线方面

规范对于电气竖井的设置做了明确的规定。高层住宅建筑利用通道作为检修面积时,电气竖井的净宽度不宜小于0.8m。电气竖井内应急电源和非应急电源的电气线路之间应保持不小于0.3m的距离或采取隔离措施。电气竖井内应设电气照明及至少一个单相三孔电源插座,电源插座距地宜为0.5m~1.0m。电气竖井内的照明开关宜设在电气竖井外,设在电气竖井内时照明开关面板宜带光显示。

4.3公共照明方面

住宅建筑的门厅应设置便于残疾人使用的照明开关,开关处宜有标识。可在距地1.0米和1.3米各设一只照明开关,既满足了要求又节省了造价。

4.4家居配线箱方面

距家居配线箱水平0.15m~0.2m处应预留AC220V电源接线盒,是为了给箱内的有源设备供电,电源变压器可安装在电源接线盒内,接线盒内电源宜就近取自照明回路。

4.5安防技术防范系统方面

超高层住宅设计例3

水 消 防

概述

中德.英伦联邦住宅小区座落于成都市红星路南沿线。

工程规模:总建筑面积:584560.862 m2

居住总户数:3630户

居住总人口(3.5人/户):12705人

本项目包括:一栋独立33层高层住宅(18#楼)、两栋三联体33层高层住宅(19#、22#楼)、四栋二联体33层高层住宅(13#、14#、15#、20#楼)、两栋独立46层超高层住宅(23#、24#楼)、两栋46层超高层住宅(16#、17#楼)及联体一栋三层商业中心、一栋两层农贸市场、一栋三层独立幼儿园、两层地下车库。

设计范围

建筑红线内室外消火栓系统。

建筑内消火栓系统,自动喷水系统,泡漠-喷淋灭火系统,建筑灭火器系统。

三、消火栓及自动喷水系统

3.1 水源。

1).本工程水源为城市自来水。

2). 供水压力0.25MPa。

3). 本工程拟从小区东侧红星路南沿线市政给水管道上接两根DN350mm的引入管。建筑红线内,分别设DN350住宅水表一块,DN100商业水表一块, DN100绿化水表一块。

3.2 消防用水量(小区消防统一考虑)

本工程16#、17#建筑消防用水量按一类高层综合楼设计,13#、14#、15#建筑消防用水量按一类高层商住楼设计,其余按普通住宅考虑,同一时间内的火灾次数按一次计,自动喷水灭火系统地下室按中危险Ⅱ级设计,其余自动喷水灭火系统按中危险Ⅰ级,自动喷水用水量取30 L/S,消火栓系统及自动喷水灭火系统用水量如下:

3.3 消防水池、消防转输水箱、天面消防水箱

本工程采用临时高压给水系统,室内消火栓系统及自动喷水灭火系统均由消防水泵供水,消防水池设在23#楼地下一层,消防水池贮存一次火灾室内外消防用水量。消防水池有效容积为864m3(含室外消防用水量)。其中,超高层住宅24#楼屋顶设置消防水箱,消防水箱有效容积为18 m3。另, 24#楼第14层(避难层)设置消防转输水箱,有效容积为31.2m3(10min消防水量)。

3.4 室外消火栓给水系统

室外消火栓系统用水量为30L/S, 作用时间3h。本工程拟从小区东侧红星路南沿线市政给水管道上接两根DN350mm的引入管作为消防水源,在该小区道路内形成环状给水管道,管径DN350。沿小区室外消防车道设置地上式室外消火栓(SS150/80),供应室外消防给水。消火栓间距不超过120米,距离路边不大于2米。发生火灾时,由城市消防车从现场室外消火栓或消防水池吸水口取水经加压进行灭火或经消防水泵接合器供室内消防灭火用水。

3.5 室内消火栓系统

3.5.113~15#商住楼设计流量: 40L/S, 火灾延续时间2小时, 16~17#综合楼设计流量: 40L/S, 火灾延续时间3小时,其余普通住宅设计流量: 20L/S, 火灾延续时间2小时,水枪口径Φ19,射流量≥5L/S, 13~15#商住楼以及16~17#综合楼室内消火栓立管管径DN150, 过水能力15L/s, 其余普通住宅室内消火栓立管管径DN125,过水能力10L/s。室内消火栓间距≤30M, 建筑物内任何一点均有2股消防水柱同时到达。各消火栓箱内配置DN65,SN型消火栓两只,Φ65合织衬胶水带一条,长25m,Φ19mm直流喷枪一支,消防软管卷盘一套。屋顶试验用消火栓前设压力表,室内消火栓给水管道由阀门分成若干独立段,保证检修管道时关闭停用的竖管不超过一条,阀门标注明显的启闭标志。

3.5.2室内消火栓系统分区

本工程超高层建筑(16#、17#、23#、24#楼)室内消火栓系统垂直分三个区:低区:地下一层至十五层。中区:十六层至三十一层。高区:三十二层至四十六层。

本工程其余普通住宅及商住楼室内消火栓系统垂直分两个区:低区:地下二层至十六层。中区:十七层至三十三层。

地下一层设消防泵房和消防水池,水泵房耐火等级为一级。室内消火栓主泵二台(-用-备),单台泵性能: Q=40L/sH=190mN=132Kw。

消防十分钟前由设于24#楼塔楼屋顶的18 m 3消防水箱向消防管网供水,十分钟后由地下室消防泵供给。由于天面水池静压不能满足规范要求,24#楼屋顶设置消防增压装置,消火栓系统设二台稳压泵(-用-备)和一个Φ800隔膜式气压罐作为消防系统的增压装置,稳压泵单台泵性能: Q=5L/s, H=20m, N=3.0kW,气压罐有效容积300L。

为保证消火栓栓口出水压力不超过0.5MPa,各区下部室内消火栓均采用SNJ65型室内减压稳压消火栓,具体详消火栓系统原理图。

室内消火栓水泵接合器高、中、低区分别设置,其中高区室内消火栓水泵接合器接至24#楼消防转输水箱,经高区室内消火栓转输水泵加压至16#、17#、23#、24#楼高区管网,具体详消火栓系统原理图。

3.5.3室内消火栓系统水泵控制

室内消火栓系统主泵由设于室内消火栓箱门上部的破碎玻璃按钮远程启动水泵。室内消火栓系统稳压泵由气压罐连接室内消火栓管道上的压力控制器控制,当压力下降0.05Mpa时启动稳压泵,当主泵启动时停止稳压泵。消防控制中心及水泵房内均可手动控制水泵的运行,室内消火栓系统各台主泵、稳压泵的启、停、故障均有信号在消防中心显示。

3.6 湿式自动喷水灭火系统

本工程湿式自动喷水灭火系统地下室按中危险Ⅱ级设计,自动喷水用水量27.7L/s;住宅塔楼前室按中危险Ⅰ级设计,自动喷水用水量12.0L/s;其余按中危险Ⅰ级设计,自动喷水用水量20.8L/s。本工程火灾延续时间1小时,住宅塔楼前室自动喷水用水量取12L/s,其余自动喷水用水量取30L/s,最不利点处工作压力不小于0.05MPa,自动喷水用水储存于地下消防水池。

3.6.1设置部位

设置闭式喷头的部位:地下室、商住楼裙房商业部分及13~15#商住楼塔楼前室,23~24#超高层住宅塔楼前室,16~17#超高层综合楼塔楼前室。

3.6.2自动喷水灭火系统分区

本工程自动喷水灭火系统垂直分两个区,低区:地下二层至十四层。高区:十五层以上。

低区湿式报警阀组设置于地下室各防火分区风机房内。13~15#商住楼高区湿式报警阀组设置于各塔楼天面。13~15#商住楼以及16~17#超高层综合楼高区湿式报警阀组设置于各塔楼避难层及天面。每套湿式报警阀组控制喷头不超过800个。

高、低区下部配水管入口压力大于0.4Mpa者均于安全信号闸阀前设减压孔板。

高、低区湿式报警阀前均设环状供水管道, 报警阀进出口设信号闸阀,每层及每个消防分区均设水流指示器及信号闸阀,水流指示器及信号闸阀信号在消防中心显示。每个防火分区均设有水流指示器及带开关显示的阀门(开关信号反馈至消防中心),并在管网末端设一条排水及试验用的排水管及控制阀门与压力表,湿式报警阀前按分区分别设消防水泵接合器。系统平时由屋顶消防水箱设专用水管至报警阀前供水管,保证系统压力。发生火灾时由给水加压泵从水池取水加压供水。

地下室水泵房内设置两台低区自动喷水灭火系统主泵(-用-备),单台泵性能: Q=30L/sH=100mN=45Kw;两台高区自动喷水灭火系统主泵(-用-备),单台泵性能: Q=12L/sH=195mN=55Kw。

消防十分钟前由设于24#塔楼屋顶的18 m 3消防水池向自动喷水灭火系统管网供水,十分钟后由消防泵供给。由于天面水池静压不能满足规范要求,23#楼屋顶设置消防增压装置,自动喷水系统设二台稳压泵(-用-备)和一个Φ800隔膜式气压罐作为消防系统的增压装置,稳压泵单台泵性能: Q=1L/s, H=20m, N=1.1kW,气压罐有效容积150L。

自动喷水水泵接合器高、低区分别设置,其中高区水泵接合器接至23#楼消防转输水箱,经高区室内自动喷水转输水泵加压至各栋楼高区管网,具体详自动喷水系统原理图。

3.6.3自动喷水灭火系统水泵控制

自动喷水灭火系统主泵设于地下一层消防泵房,主泵由设于湿式报警阀的压力开关启动。消防控制中心及水泵房内均可手动控制水泵的运行,自动喷水灭火系统各台水泵的启、停、故障均有信号在消防中心显示。

四、灭火器配置

本建筑物的火灾危险等级为严重危险级,火灾种类:高、低压电房,变压器房,发电机房为E类,地下室为B类,地上部分为A类。单具灭火器最小配置灭火级别:A类为3A,B、E类为89B。手提式灭火器最大保护距离:A类为15米,B、E类为9米;推车式灭火器最大保护距离:B类为18米。按《建筑灭火器配置设计规范》配置手提式磷酸铵盐干粉灭火器。灭火器具体配置:每个配置点配备3具手提式磷酸铵盐干粉灭火器(MF/ABC5),地下室配置推车式磷酸铵盐干粉灭火器,每个配置点配备1具推车式磷酸铵盐干粉灭火器(MFT20)。

五、泡沫喷淋灭火系统

5.1本工程地下车库部分考虑采用泡沫喷淋灭火系统。地下车库各防火分区均单独设置泡沫喷淋灭火系统。

a、泡沫罐及湿式报警阀组设置于各自所属分区的水设备房内,每个分区各设置一个泡沫罐。

b、根据低倍数泡沫灭火系统设计规范(GB50151)。泡沫混合液供给强度和连续供给时间的规定,泡沫喷淋不小于10min,可得:泡沫混合液最小用量V=12800 L(泡沫混合液用量不小于此数值),考虑可能的两次着火或多处火灾和练习用泡沫,泡沫混合液用量富裕,泡沫混合液用量增加一倍为25.6 m 3 。

c、泡沫灭火剂须采用6%水成膜泡沫灭火剂,系统采用先喷泡沫10min后喷水1h,泡沫灭火剂用量V0=泡沫混合液用量V×混合比b%=25.6m×6%=1.536M3 ,取1.6M3 。泡沫灭火用水量V1=泡沫混合液用量V×(1-混合比b%)=25.6×(1-6%)=24.064m3,取25M3 。泡沫混合液流量Q=供给强度×作用面积=8L/min .m ×160 m =1280L/min。

d、比例混合器及相关管线与水系统管线串联连接,比例混合器须水平放置,口径为DN150。、

六、气体灭火系统

本工程发电机房, 高低配电间,变压器间均设七氟丙烷(HFC-227ea)洁净气体灭火系统,采用全淹没灭火系统; 灭火设计浓度采用9%,七氟丙烷的喷放时间不大于9s。应具有自动、手动、机械应急操作三种启动方式,设置独立气体消防贮瓶间。

七、管材

超高层住宅设计例4

一、工程概况

福州万科金域花园位于福建省福州市闽江北岸中央商务中心,地块南临江滨西大道,东临二环西路、尤溪洲大桥。建筑用地由两个地块组成,北边B-8块用地面积为12790 m?,绿地面积为2713.7㎡,地上63层,建筑高度约180米;南边B-10块用地面积为12607㎡,绿地面积3635.6㎡,地上58层,建筑高度约150米;建筑结构形式为框剪结构,建筑设计使用年限均为50年,抗震设防烈度为6度。

二、设计理念

(1)根据福州市的总体规划设计思想,以现代生态型居住小区为设计框架,强调人与自然的协调,创建可持续发展的高品位的社区环境,营造21世纪“绿色生态家园”。

(2)改善福州市城市形象,创造出良好的居住与生态环境,实现人与自然的和谐共生,促进社会文化生态环境与居住环境三者的有机结合。

(3)提升城市品位,以创造宜人宜居的生活环境为规划价值导向。

(4)在整体设计上,充分利用现有用地,并满足城市规划要求。在设计中把基地的自然环境的组织结构和住宅区内部的人造环境结构,建筑结构组织起来,成为一个统一的结构体系。

(5)在单体设计上,采用新古典主义风格,用简洁明快的手法,达到整体、和谐的艺术效果,丰富了立面及城市景观。

(6)注重节能设计。采用节能材料和设备,采取必要的保温隔热措施。

三、建筑设计要点

3.1建筑空间布局

(1)建筑主要为超高层,由于建筑布置前后和左右间距较大,这样有利于小区的日照。另外,建筑空间布置的不规则,形成韵律和变化,不仅美化城市的环境,而且满足小区景观的视线要求。

(2)建筑户型的选用体现人性化原则,满足市场需求。户型设计面积均在120平方米左右,十字户型以两个点的形式南北对称。因南边面临景色优美的闽江,因此在住宅的总体高度上,北边的住宅比南边的高。既满足城市设计要求的天际景观线,同时最大程度的满足更多住户的景观视线。

(3)建筑朝向以南北向为主,建筑南北排间距较宽,充分满足住宅私密性的要求,有效避免了相互间对视,日照方面也让每户得到了足够的阳光。

3.2 功能设计

功能设计是住宅设计根本的着手点。住宅内不同功能的空间在布置上应紧凑合理,交通联系应方便简捷,又要有相对的独立性,各得其所。住宅内使用功能有二个分区:一是公共活动区(如起居室、餐厅、厨房)宜布置在住宅入口处,便于对外往来;二是私密休息区(如卧室、书房)应布置在住宅的深处,以保证个人行为的私密性不受外界影响。这些分区各有明确的使用功能,在设计中要正确处理这二个功能区的关系,满足各部分的功能要求,使之动静分区、公私分区、洁污分区,不致相互干扰,保障生活规律。此外,在合理安排各部分功能的同时还要做到流线顺畅,交通面积紧凑集中。

3.3 套型设计

在建筑起居室设计时,应注意以下几点:

(1)厅内设计不能有太多的门和洞口,则会因没有足够长度的延续墙面影响家具布置,还会因有人在厅内来回穿行而干扰会客、视听、休闲等公共性活动。由于厅内活动人数相对较多,又是家庭的聚焦点,所以还应有良好的日照和视域。

(2)卧室要设计低窗台凸窗,这样能够增大居室空间感,使阳光更加充分,宽敞的窗台便于放置绿色植物,调节气候、扩大视野,使人感到温馨。

(3)厨卫设计应综合考虑操作顺序、设备安装、管线布置的要求,要有足够的面积和尺度以保证设备、家具合理配置的需要,此外还应有良好的自然通风和直接采光。卫生间应尽量做到浴、厕与洗漱、洗衣分离,以减少使用干扰。阳台是人们接触室外空气阳光的主要活动场所,设计时应加大阳台进深,有利于进行健身活动。厨房与餐厅要紧邻,端上菜肴和拆除餐具就会方便。

3.4 外墙造型设计

外部造型的基本形态虽然取决于建筑平面的布局,但立面处理也很重要。现在家庭都是封闭阳台,到处看到的都是一串串玻璃匣子,生硬呆板,没有一点生气。其实,住宅立面可装饰的还是挺多的,如风格设计,颜色搭配和艺术装饰等等。

外墙面色彩的合理搭配与周围环境的协调才能营造出典雅优美的感观效果。本建筑外立面设计借鉴经典的新古典主义风格,避免了都市的拥挤,压力和冷酷的建筑环境,超越了“欧陆风”的生硬与“现代简约”的粗糙。在传统美学的规范之下,高层造型比例严谨,设计精细,品位典雅。充分运用现代的材质及造型工艺,使作品既具有传统建筑之美感,又融汇现代科技之灵性,具有明显的时代特征。如阳台、楼梯入口、窗台等都可作为造型的艺术点缀,利用阳台的凹凸、窗眉、腰线、屋顶造型等都能产生很好的造型效果。建筑外墙采用质轻高效的屋面保温材料和黄色外墙砖搭配晶莹剔透的玻璃材料,给人以清新,雅致、稳重的感觉。住宅大部分均为南北朝向,体现安全高效与节能策略,见图1。

3.5 道路交通与竖向设计

道路是居住区的构成框架。主要起到疏散居住区交通的功能。本项目基地四面临路,且中间也规划贯穿基地的规划路,所以交通方便。而车行出入口是设置在东边规划路上,南北地块各一个。地下车库出入口西边设置两个,结合地块西边的道路,作为住宅停车的主要流线。东边的地下车库出入口,则是方便商业车流停车的。超高层住宅的人行出入口各设置在南北两边,住宅根据规划要点的要求,退线让南北边规划路有足够的距离,人流线先进入各自的入口广场,然后再进入到各自的入户大堂。这样尽量减少对商业界的影响,做到人流与车流的分流。

另外,道路设计本身也是构成居住区的一道风景线。在进行居住区道路设计时,我们有必要对道路的曲直、宽窄、分幅、绿化等

进行综合考虑以赋予道路美的形式。比如,与直线型道路相比,曲线型道路所呈现的是不对称的画面构成。随着视点的移动景观逐渐展现出来,因此更具含蓄美,但过多的曲折变化反而会产生矫揉造作的感觉。道路两边的植物配景手法可交替使用,或贴近密植形成林荫道,或远距种植形成有层次的缓坡。

3.6 绿化景观设计

长期以来,绿化的规划设计应抛弃以往过分注重人工构筑物,过分重视建筑小品的传统,尽量提高绿化面积,注重发挥绿色植物净化大气、防风、防尘、防噪的作用。本社区绿化与景观设计亮点在于点、线、轴的结合。点的设计体现在两地块入口区预留大块面积做广场,结合城市绿化广场设计,在广场中有树阵与景观树为主,南边地块保留地形原有的大榕树,同时结合景观水体营造入口空间,让住宅有个皇者风范的入口。线的设计主要体现在两栋高层之间,裙房镂空形成的景观大线。轴的设计体现在地块中心的规划道路上,此贯穿地块的道路形成了两地块景观点和景观线的严整对称,去除过多繁琐的景观构筑物设计,采取更人性化、更加细腻生态的轴对称设计手法,让整个社区在活泼中更显气派。同时对于社区构筑物角隅部分的植物配置也需精心处理。在配置植物时还需充分考虑植物的季节变化,使住区环境一年四季形成不同的植物景观特点,不一定要做到四季有花可赏,但必须充分体现季节的特色,为人们创造出安静、舒适、优美的社区居住环境。

四、结束语

综上所述,在超高层住宅建筑设计时,应做到功能分区合理、室内交通便捷、干扰小,套型方便实用、灵活多样,空间能充分利用和应变能力更强,造型丰富有特点,居住环境舒适,更加人性化有归属领域感,从而为我们创造出一个真正体现生态、节能为目标的实用型住宅。

超高层住宅设计例5

1 前言

近年来,随着城市建设的大力开发,为了提高土地的利用率,高层住宅楼中高宽比超限结构也越来越多,这不仅给设计计算分析带来了难度,而且加大了抗震研究的难度,需要根据具体情况具体计算分析和设计,提出合适必要的抗震加强措施。对于结构工程而言,给出结构在不同强度地震作用下的反应值,使研究和设计人员注重对结构地震作用下地震反应分析。在超限高层建筑的结构抗震设计中,有助于提高高层建筑工程抗震设计的可靠性,促进高层建筑技术发展。设计者需要根据具体工程实际的超限情况,必要时还要进行模型试验,业主也需要提供相应的资助,以期保证结构的抗震安全性能。高层建筑工程抗震设防专项审查实践表明,有的工程在抗震审查中由专家组的专家提出某些基于性能的设计要求。

2 高层住宅楼高宽比超限结构抗震设计的重要性和意义

城市化进程让人们的生活质量水平不断提高,而住宅楼是人们生活赖以生存的空间,住宅楼的安全是保证人们生活质量的基本保障。目前流行的高层住宅楼在安全问题上是一项挑战,特别是抗震设计方面的威胁,给设计者和施工者带来了更加严厉的要求。超高层建筑工程是一种建立在现代化技术下的建筑接哦股,在人们对空间的成分利用的前提下应运而生的,反映了人们对充满现代感和时代感的城市生活的追求。超限高层建筑工程自身的结构特点比较复杂,超出了我国对建筑工程的规定,因而其抗震设计是超高建筑工程的重大难题。建筑物的抗震安全性和人民的生命财产安全密不可分,必须认识到超限高层建筑工程抗震设计的重要性。高层住宅楼高宽比超限结构的抗震设计只管重要,不仅是人民生命财产安全的重要保证,同时也是社会发展的需要所在。

3 高层住宅楼高宽比超限结构的抗震设计研究

3.1 高层住宅楼高宽比超限结构的抗震设计理念

与一般的超高层结构、高宽比超限高层结构一样,高层住宅楼高宽比超限结构的抗震设计理念也是经济与性能的抗震设计。基于性能的抗震设计,是为了能够根据建筑物的重要性和用途,由不同的性能目标提出的一种抗震设计理念。设计分为不同的抗震设防标准,这是因为在建筑物整个生命期内,可能遭遇发生的地震是不同程度的。为了进一步改善结构抗震性能,相继提出一些新规范及旧规范的修改计划。基于性能的抗震设计,要求结构在不同水平地震作用下具有明确的性能水平,目标性能水平的确定要综合考虑来优化确定。基于性能的抗震设计思想,对于具体的工程结构,设计人员提出几种抗震性能目标及对应的造价,由设计人员根据所选定的性态目标进行抗震设计,使结构满足预期的抗震性能目标。

3.2 高层住宅楼高宽比超限结构抗震设计基本原则

从世界范围来看,抗震的主要原则是“小震不坏,中震可修,大震不倒”。在实践过程中,大部分建筑物符合了抗震规范设计,但是在中小地震过程中,可能造成建筑物的某些结构正常使用功能的丧失。高层住宅楼高宽比超限结构的抗震设计理念是基于性能的抗震设计理念,如何把这种理念合理并且简单实用地应用到实际中,主要遵循两个基本原则。第一,传统基于力的设计原则,即首先进行基于地震作用的强度设计,然后进行变形验算,采用可靠度理论和优化思想来确定。第二,直接基于位移的抗震设计原则,即采用结构位移作为结构性能指标,这种方法采用结构对应最大位移进行变形设计,与结构实际情况更为符合。

3.3 高层住宅楼高宽比超限结构抗震设计要点

针对宽度和高度比超限的住宅楼的设计,其要点是一般连体板主要用来计算建筑物的连体部位和周边,同时还要考虑地震的竖向作用。对在超限高层住宅楼工程中,主要依据就是结构的抗震概念设计,防止出现过大的扭转,对于抗震薄弱部位的保护措施能够加强并得以保证,逐步改善建筑的抗震性能。综合考虑其建设过程中可能出现的各种不利因素和影响,基本要求就是要对框架结构进行超限的程度控制,以满足提高结构的延性的要求。高宽比必须要有一点或者一点以上符合规程、规范的相关规定,要对结构抗震进行计算分析,要求在超限高层建筑的设计中注意对抗震计算的控制,结构动力特性测试和抗震实验也必须进行过操作。

3.4 高层住宅楼高宽比超限结构抗震措施

对于高层住宅楼高宽比超限结构来说,抗震设计措施首先是要注意底部剪力墙的厚度的加强,在连梁配筋的时候,采用交叉暗撑这种形式来加强其稳定性。在梁式转换层的设计上,同样也要注意剪力墙的厚度的加强,能够使转换层的侧向刚度符合规定的要求。超限高层建筑工程的抗震设计需要通过对已建成的工程进行分析和总结,抗震实验的验证等方面来实现。在加强构建的强度和刚度,对于每一项的超限,都需要要有相应的解决措施和方法来保证其抗震安全和受力的合理。对结构在地震作用下的内力和变形进行计算分析,应多取一些振型,振型数的取值多少应根据振型有效质量来确定,应验算结构整体的抗倾覆稳定性;并控制这些构件的轴压比,通过调整桩的布置,满足有关规范、规程的要求。

4 总结

综上所述,高层住宅楼高宽比超限结构的出现,顺应了国家城市化的进程,也是城市土地资源紧缺情况的必要措施,高层住宅楼抗震设计和研究具有重要意义,抗震设计和研究过程中应该注意和避免一些问题,这对提高我国高层建筑领域的技能和水平,都有着重要的意义和作用。总之,高层住宅楼发展前景广阔,对其高宽比超限结构的抗震设计要求也将更加严格。

参考文献:

[1]牛发民. 超限高层建筑结构抗震设计[J]. 中华建设,2012,(10).

[2]方娇.某超限高层基于性能的抗震设计研究[D].合肥工业大学,2012.

[3]姜文辉,李智.超限高层建筑工程抗震设计中的若干问题[J].广东土木与建筑,2008(01).

超高层住宅设计例6

1 工程概况

本项目位于大连市,用地为填海地块,总用地面积为50800m2,总建筑面积为255290m2。项目包括17栋住宅和5栋配套公建。地下室1层,并设置核6级常6级战时人防防护单元。8号楼、11号楼为44层超高层住宅,高度为132.2m,9号楼、10号楼为47层超高层住宅,高度为141.200m。地上标准层高均为3.0m,剪力墙结构,为B级高度的建筑。本文针对8号楼进行抗震设计可行性论证分析。

2 设计参数

本工程 设计基准期为50年,抗震设防类别 为丙类,抗震 设防烈度为7 度,设计基本地震加速度为0.1g,设计地震分组为第2组,场地类别为Ⅲ类,场地特征周期0.55s。小震下规范反应谱和安评反应谱拟合曲线如图1。本工程计算地震作用时按如下原则 取值:小震 采用 安评地震 动参数进行 弹性计 算分析,中震、大震采用规范地震动参数 进行性能 目标验算。结构水平位 移计算时基本风压按50年重现期0.65kN /m2;结构承 载力计算时 取该值的1.1倍;地面粗糙度A类。

3 结构体系

8号楼建筑平面尺寸约为50.3mX18.9m,屋顶标高132.2m,高宽比为6.99,选用剪力墙作为结构抗侧力体系;标准层结构布置平面如图2所示。由于结构高度和高宽比均超出了规范的最大限值,因此必须将剪力墙布置在合适的位置,形成有效抗侧力体系。Y 向,在山墙位置及内部房间分隔处布置了通长剪力墙,通过墙肢开洞的方式(或有建筑门洞)形成联肢墙,即提供了有效的抗侧刚度,又避免了因墙体过长而吸收过多的地震力造成损伤。X 向,在隔墙处、电梯间及设备井处布置剪力墙,作为主要抗侧力构件,但建筑条件限制, X向剪力墙较少,因此将本方向边梁和墙做宽,以提高该方向的抗侧刚度。

4 结构超限情况

8号楼房屋高度超过A级高度但未超过B级高度的建筑;存在凹凸不规则、局部楼层楼板不连续、局部穿层墙共3项一般不规则项。

5 抗震性能目标

综合考虑抗震设防类别、设防烈度、场地条件、结构的不规则情况、建造费用、震后损失和修复难易程度等因素,确定本工程主要结构构件的抗震性能目标(结构整体抗震性能介于《高规》要求的C级和D级性能目标之间)。C级和D级的小震、中震、大震下性能水准分别为1,3,4和1,4,5。具体目标为所有构件在在多遇地震作用及风荷载作用下均为弹性;关键构件中震下偏拉、偏压不屈服、受剪弹性,大震下不屈服并满足受剪截面要求;普通竖向构件中震下不屈服并满足受剪截面要求,大震下较多屈服并满足受剪截面要求;耗能构件中震下受弯屈服、受剪不屈服,大震下部分发生严重破坏。

6 结构计算与分析

设计时采用2个不同力学模型的 空间结构分析程序(SATWE、Midasbuiling)进行风荷载、多遇地 震作用下的 弹性计算和设防烈度地震 作用下的弹性及不屈服计算;用SATWE 进行小震下弹性时程分析,与振型分解反应谱法进行比较;使用Midasbuiling软件进行动力弹塑性时程分析,考察结 构在大震下的抗震性能。用ETABS进行小震、中震、大震的楼板应力分析。

6.1 小震及风荷 载作用下弹性计 算主要计算结果见表1(两软件的计算结果十分接近,相差5%以内,限于篇幅只列出SATWE计算结果)。综上分析,在多遇地震及风荷载作用下:

(1)SATWE和MIDAS BULIDING两种软件分析的各项指标基本吻合且满足规范要求。

(2)塔楼受力及变形均无明显突变,结构具有合适的抗侧刚度。(3)扭转周期与平动周期之比小于0.85,结构具有合适的抗扭刚度。(4)结构楼层质量分布均匀,地震力沿高度方向无较大突变。(5)结构构件均处于弹性状态,承载能力和变形能力均能满足规范要求。(6)结构刚重比、整体抗倾覆均满足规范要求。

6.2 小震弹性时程分析

抗规要求需进行小震弹性时程分析 作为结构补充计算。选取1组人工波和2组天然波,计算结果取时程分析法的包络值与振型分解反应谱法的较大值。楼层剪力、层位移角对比曲线如图3,经分析得出如下结论: ⑴层剪力曲线表明,X、Y 向顶部时程剪力包络值大于反应谱结果,顶部放大系数为100%~150%,设计时拟根据此结果对相应楼层的地震力进行放大。⑵层位移角曲线表明,时程反应包络值小于反应谱结果,最大层间位移角均小于规范限值1/1000。⑶位移曲线(图略)以弯曲型为主,曲线光滑无突变,反映结构侧向刚度较为均匀。

6.3 中震弹性、中震不屈服、大震不屈服计算

按选定的性能目标,对关键构件、普通竖向构件、耗能构件进行中震(设防地震)弹性、不屈服、大震不屈服验算。经计算,底部加强部位的剪力墙和框架柱满足偏拉、偏压不屈服、受剪弹性,大震不屈服和抗剪截面的要求;非底部加强部位的剪力墙和框架柱满足中震不屈服和抗剪截面的要求、大震抗剪截面的要求;框架梁、连梁满足中震抗剪不屈服的要求。

6.4 动力 弹塑性时程分析

选取1组人工波和2组天然波,采用Midasbuiling进行结构罕遇地震动力弹塑性时程分析。部分计算结果见表2,各组地震波按X、Y 两个地震主方向分别计算。

通过大震动力弹塑性时程分析,结合结构整体反应指标和结构构件的抗震性能分析结果,得出如下结论:(1)罕遇地震作用下结构基底剪力为多遇地震基底剪力的4.1~4.4倍,地震作用量级合理。(2)结构层间弹塑性位移角均小于规范限值要求。(3)表征剪力墙剪切性能的剪切应变,表征剪力墙偏拉、偏压性能的砼纤维应变与钢筋纤维应变绝大多数处于弹性状态,对局部剪切应变屈服比较集中的墙肢进行抗剪承载力验算,墙肢整体满足不屈服的性能目标,且满足受剪截面控制要求。(4)框架柱大部分处于弹性工作状态,个别出现弯曲开裂第1状态,但均未进入屈服状态,且满足受剪截面控制要求。(5)多数楼层连梁及框架梁梁端进入屈服状态,使结构具有良好的变形耗能能力。

7 通过以上论证分析,可得到以下结论:

(1)在多遇地震作用及风荷载作用下,Satwe和Midas Building两种软件分析的各项指标基本一致;结构构件处于弹性阶段,承载能力和变形能力均能满足现行规范要求。时程分析与反应谱分析之间具有一致性和规律性,符合工程经验及力学概念所做判断。(2)在设防烈度地震作用下,剪力墙和框架柱满足偏拉、偏压不屈服,受剪弹性的要求;连梁、框架梁满足部分受弯屈服,受剪不屈服的要求。(3)在罕遇地震作用下,结构层间弹塑性位移角满足规范限值要求,底部加强部位剪力墙、框架柱不屈服并且满足受剪截面要求,非底部加强部位剪力墙、框架柱部分屈服并且满足受剪截面要求,连梁和框架梁多数屈服进入变形耗能状态。

综上所述,通过计算分析和适当的抗震加强措施,8号楼满足预定的抗震性能目标要求。

超高层住宅设计例7

Abstract: along with the current super-tall residential construction projects has increased, architectural style becoming more diverse, overrun the structural design of the issues are becoming increasingly become the high-rise residential buildings of engineering difficulty. Combining with the project examples, from the off-gauge situations, the computation analysis, structure static elasto-plastic analysis, analysis and discusses the design of high-rise residential shear wall structure in the process of common problem.

Key word: overrun high-rise residential; Shear wall; Structure design; question

中图分类号: TU318 文献标识码: A 文章编号:

超限高层住宅建筑是指高度超高、体型复杂、跨度大、结构异常,国家现行规范和规程所没有包含的建筑工程,为了杜绝安全与质量的隐患,这类工程在设计初始阶段,就应当进行抗震设防的专项审查工作。剪力墙结构作为超限高层住宅中最为常用和主要的结构主体,对其相应设计问题的探讨与研究,对保证建筑工程的安全经济,以及抗震设防目标的实现都有着极为重要的现实意义。

一、工程概况

某工程总建筑面积达23万平方米,地上部分建筑为6栋41层住宅,地下部分3层,为停车场、人防室和设备用房。工程结构主体采用了剪力墙结构,各楼层的层高分别为负三层为4.3米,负二层为4.1米,负一层为4.4~6.1米,塔楼首层为10米,二层以上为3.45米,天面总标高为148米。

根据工程地质勘察技术报告和抗震设计规范,该场地设计地震分组为第一组,场地抗震设防烈度为7度,设计基本地震加速度值为0.10g,场地土为Ⅱ类。勘察场地地形平坦,地层分布较为均匀,场地也较为稳定,无不良地质作用,是建筑抗震的有利地段。

二、超限情况处理

1、工程超限的问题

(1)该高层住宅工程的塔楼高度为148米,属于B级高度。根据《高层建筑混凝土结构技术规程》中的规定,B级工程的建筑结构高宽比应控制在7以内,而该住宅工程的高宽比在7.3,略微超过了《高规》中的最大高宽比,没有符合该条规定。

(2)《高规》中规定了在开洞和凹入扣除以后,建筑工程的楼板的最小净宽度值在任一方向都应大于5米,而该工程的塔楼平面类型为凸型,属于楼板局部不连续,均不满足《高规》的规范。

(3)工程在首层和地下室为防止伸缩缝漏水问题,并没有设置伸缩缝,也超过了《高规》中对于伸缩缝最大间距的规定。

2、针对超限问题的设计处理

(1)剪力墙应合理布置,使建筑结构的质心和刚心能够尽量重合,并通过对楼层周边配筋和边梁截面的加强,以最大化的减少扭转变形和增加抗扭刚度。

(2)为保证尺寸较小的Y方向的侧向刚度,应沿该方向布置多道剪力墙,以满足规范的要求。需适当的增加剪力墙边缘约束构件的配筋率,以及底部加强部位在竖向和水平方向的配筋分布率,并严格控制剪力墙的轴压比,以符合规范的要求。

(3)该工程的标准层的墙厚为30~40厘米,因首层的高度较大,为满足侧向刚度和墙柱稳定的要求,可将首层的剪力墙的厚度增大为60~70厘米。因部分电梯和楼梯的剪力墙结构受到空间的限制无法加厚,则可进行降低该处层高和加设夹层楼板的设计处理。

(4)在地下室结构的设计方面,应充分对混凝土收缩有可能带来的不利影响进行评估和考虑,并可适当的提高地下室壁板构造的配筋率。同时还需加强对混凝土在浇筑后的养护管理,做好喷水保湿工作,并至少养护14天以上。

三、计算分析和对比

1、弹性时程分析

该工程采用了国建筑科学研究院编制的 SATWE 和PMSAP 两种程序进行同时计算分析、对比。为符合《高规》的要求,该工程对剪力墙在小震作用下的弹性时程进行了分析,每栋建筑选二组实际地震波和一组人工波进行计算对比。对弹性时程进行分析时,所输入的最大地震加速度为35cm/s2。相应各条地震波的特征值见下表1。

表1结构分析结果

下图1是时程分析所得计算结果绘制的是在X、Y方向最大楼层剪力曲线,图形显示了各栋住宅所选波形。

图1时程分析主要计算结果图

分析图1曲线,可见楼层的最大位移曲线在X、Y方向变化光滑、平稳、连续,曲线的变化趋势也符合剪力墙结构的变化形态,在顶点处的位移峰值比较合理,表面了整体结构分布均匀、刚度适中,无明显的扭转偏移;在层间最大位移角曲线无较大的收进和突出,表面了结构的竖向刚度变化均匀,没有明显的薄弱层。

2、中震弹性验算

该工程还采用SATWE程序对中震进行了不屈服验算,其抗震设防的目标是允许结构轻微受损,上部结构允许局部受弯屈服,竖向构件底部加强部位不屈服。在验算时,多遇地震影响系数的最大取值为0.23,并控制结构最大层间位移角在1/400以内。验算结果表明,墙肢截面和其它构件的抗剪承载力均符合中震不屈服的设计要求。

三、结构静力弹塑性分析

该工程采用了PKPM程序中的EPDA模块对结构进行了静力弹塑性分析(Pushover analysis),评估了结构在罕遇地震作用下的抗震能力,并根据计算的结果评价了结构在地震作用下的弹塑性状态。实现了结构在地震作用下的薄弱部位与屈服部位的寻找,并基本寻找到了结构在地震作用下各个部位的屈服顺序。

本工程同时从构件的塑性变形程度和结构的整体性能这两个方面来评价了结构的安全性,构件的塑性变形主要通过构建塑性铰的变形发展程度来进行评估;而整体性能则通过顶点位移、最大层间位移角、顶点位移角、剪重比、基底剪力等进行评估。通过结构静力弹塑性分析,结构在罕遇地震下通过内力重分布,使结构的抗震性能达到规范所规定的抗震设防目标。

总结:

在高层住宅的建设开发中,结构设计是相当重要的一个环节,它与建筑、设备、规划和施工等各个环节都紧密相连。在该工程中,通过科学的计算分析和合理的构造,解决了相应的在结构设计中的难题,使建筑既符合了变形特性和结构刚度的相应规范,也满足了抗震设防的要求。

参考文献:

[1] 施金平,张晖.益中花园1号楼超限高层结构设计[J].结构工程师,2009(6).

超高层住宅设计例8

1 工程概况:

本工程为合肥市政务文化新区某项目中的9#楼,为超高层住宅楼,东西长70.8米,南北宽19.6米,地上41F,地下-2F,总建筑面积5.36万 m2,标准层高3.6米,总高147.6m,高宽比7.53。建筑立面和剖面见图1,2所示。

本工程设计使用年限为50年,结构安全等级为二级;基本风压为0.35KN/m2,本工程对风荷载较敏感,承载力设计时按基本风压的1.1倍采用,风载体系系数取1.4。建筑场地类别为II类,抗震设防烈度为7度,特征周期Tg=0.35s,阻尼比取0.05;地下室顶板作为上部结构的嵌固端。

图1 建筑立面 图2 建筑剖面

2 结构体系与布置

本工程为纯剪力墙结构,其抗侧力及竖向承重体系主要为剪力墙、连梁以及框架梁形成整体结构体系,主要墙肢的厚度随楼层变化依次为350(-2F~10F)、300(11F~18F) 、250(19F~25F) 、200(26F~41F);砼强度等级依次从下向上由C60变化到C30。楼面采用现浇钢筋混凝土梁板,砼强度等级均为C30,楼层及屋面板厚一般取120mm,其中对跨度较大(6.5x9.0米)的客厅板厚取160mm,对于左右单元连接薄弱部位板厚取140mm;地下室顶板180mm.;为增加结构的整体抗扭刚度楼面梁位于建筑四周的边梁高取900mm,内部梁高根据跨度和荷载情况取200mm~600mm,梁宽同墙厚;剪力墙抗震等级为一级。

3 超限情况与抗震性能目标

根据高规、抗规和《超限高层建筑工程抗震设防专项审查技术要点》的有关规定本工程高度超过120米,为高度超限;一般不规则超限仅有一项,主要是门厅部位楼板有效宽度小于50%。针对超限情况对本工程进行了抗震性能化设计,对重要部位的构件有针对性的设置适当的抗震性能目标,针对不同部位的构件设定其在小震、中震、大震下性能目标如下。

1)小震:要求结构整体完好、无损坏,所有构件为弹性;最大层间位移角限值小于1/1000。

2)中震:对于底部加强区墙肢(关键构件)要求满足受弯不屈服,受剪弹性;底层门厅位置的跨层墙要求中震弹性;普通竖向构件要求不屈服;连梁、框架梁要求屈服不超过50%;中震下结构最大层间位移角限值小于1/350。

3)大震:对于底部加强区墙肢(关键构件)要求满足受剪不屈服,受弯屈服不超过10%;底层跨层墙要求不屈服;普通竖向构件要求受弯屈服不超过50%,受剪截面满足截面限值条件;结构弹塑性最大层间位移角限值小于1/135。

4 结构弹性分析

1)结构弹性分析分别采用SATWE和PMSAP软件进行。弹性分析采用考虑扭转耦联振动影响的振型分解反应谱法并考虑偶然偏心的影响。分析结果表明两中软件计算的自振周期、结构总质量和基底总剪力结果相差均小于3%,说明两种模型分析结果基本一致且第一扭转周期与第一平动周期之比小于0.85,有效质量参与系数大于95%;楼层层间最大位移与层高之比u/h为1/1547,均满足高规要求。

2)在结构平面布置时为了加强结构的抗扭刚度,减少扭转的影响,剪力墙尽量沿周边布置,加大边梁高度,弱化中间剪力墙并减小梁截面。计算结果显示,在考虑偶然偏心的地震作用下,楼层竖向构件的最大水平位移与平均值的比值的最大值X 向为1.15(第44层),Y 向为1.18(第1层),均小于1.2,满足规范要求。

3)超高层建筑控制刚重比对结构整体p-效应和整体稳定性起着十分重要的作用,本工程X向和Y向刚重比分别为6.98和4.85,均大于2.7,可以不考虑重力二阶效应。

4)本工程弹性时程分析选择了5条天然波和2条人工波,所选七条时程波计算所得底部剪力均大于振型分解法所得底部剪力的65%,平均值大于振型分解法所得底部剪力的80%,且规范谱与地震波谱在主要振型周期点上的对比,其平均值均小于20%, 说明该组地震波其地震影响系数曲线与振型分解反应谱法所采用的地震影响系数曲线“在统计意义上相符”。计算结果显示弹性时程分析得到的基底剪力略小于振型分解反应谱法的结果,但结构的中上部时程分析的平均值大于反应谱计算结果,在35层以上应放大1.12倍。

5 中震构件承载力验算

对关键构件、普通竖向构件和耗能构件均进行了中震弹性和中震不屈服验算,通过调整构件的配筋进行承载力复核,使所有构件均满足设定的性能目标。嵌固层至5层在建筑沿纵向外边缘墙肢在中震下出现了拉应力,但拉应力均小于砼抗拉强度标准值,本工程对于出现拉应力的墙肢采取附加竖向钢筋以抵消受拉墙肢的拉力,同时受拉墙肢的抗震等级按特一级进行设计。

6 大震静力弹塑性分析

本工程采用静力弹塑性(Pushover)分析,用以评估结构在罕遇地震作用下的抗震性能,静力侧向荷载采用“CQC地震力”模式并同时补充“倒三角形”层剪力的加载模式对比复核。计算结果表明,在Pushover推覆过程中,当推覆荷载相当于7度设防的多遇地震荷载作用下时结构无屈服情况出现,这也验证了小震不坏的抗震设防要求。当推覆荷载接近7度设防烈度地震作用下,结构也基本处于弹性状态,竖向受力构件均未屈服,仅部分楼层的连梁和框架梁开始屈服参与结构整体塑性耗能,但屈服程度不深。推覆荷载过中震后外侧剪力墙开始出现受拉损伤,当荷载达到7度罕遇地震作用力时加强区少数剪力墙开始进入受拉屈服状态,但整个过程墙肢未出现受压损伤;非加强区剪力墙仅顶部个别墙肢进入屈服状态。在结构塑性屈服过程中剪力墙的屈服时间明显

超高层住宅设计例9

Abstract: with the rapid development of construction industry in our country, city high-rise buildings like emerge the ground is built. And tall building structure design, must be in high-rise building structure based on the theory of the design. Combining with the project examples, this paper briefly describes the structure design of super-high several problems that should be noticed, and some optimization countermeasures, available for reference.

Key words: the modern city; Tall; Residential construction; Structure design

中图分类号:TU318文献标识码:A文章编号:

前言

随着城市化进程的加快,以及国民经济的高速发展,我国城镇人口不断增加,规模也不断增大,使得现代城市住房建设用地较为紧张,所以建设高层或超高层住宅建筑成为城市发展的必然趋势。这也给超高层建筑是设计也带来了更多的挑战和崭新的课题。如何设计出舒适、安全、经济、美观,同时又要符合使用者精神生活要求的建筑,成为建筑设计者必须直面问题。

一、工程简述

按照规范[1,2]结构体系的适用范围,采用剪力墙结构体系。剪力墙厚度:地下室、底层架空层370mm或400mm,标准层均为240mm。100m左右超高层竖向构件混凝土等级为C40~C30;140m左右超高层竖向构件混凝土等级C55~C30.梁板混凝土等级为C35~C30。

该工程设计基准期为50年,结构设计适用年限为50年。抗震设防烈度为6度,设计基本地震加速度为0.05g,地震分组为一组,设计特征周期为0.45s,抗震设防类别为丙类,结构安全等级为二级。场地类别为Ⅲ类。采用桩筏基础,主楼区域采用直径700、800、900、1000mm钻孔灌注桩,一层地下车库采用管桩满足抗拔要求。

二、结构概念设计

高层建筑中,宜使结构平面内形状简单、规则、刚度和承载力均匀,根据高宽比选取合理的户型,结构平面布置应减少扭转的影响;高层建筑的竖向体型宜规则、均匀,避免有过大的外挑和内收。结构的侧向刚度宜下大上小,逐渐均匀变化,不应采用严重不规则的结构体系。对可能出现的薄弱部位,应采取有效措施予以加强。4#、5#、7#、8#、16#、17#楼平面见图1~图3,其中11#、12#楼和7#、8#相同,本工程不规则超限内容见表1,因此应严格控制其它不规则指标,以避免成为复杂超限高层结构。

高层建筑结构抗震设计计算是在一定假想条件下进行的,尽管分析手段不断提高,分析原则不断完善,但由于地震作用的复杂和不确定性,地基土影响的复杂性和结构体系本身的复杂性,可能导致理论分析计算和实际情况相差数倍之多,尤其是当结构进入弹塑性阶段之后,会出现构件局部开裂甚至破坏,这时结构已很难用常规的计算原理去进行分析。实践表明,设计中把握好高层建筑的概念设计是很重要的。

图 14#、5#楼奇数层平面图

图 27#、8#楼奇数层平面图

三、结构计算设计及设计要点

与低层或多层建筑不同,结构侧移已成为高层结构设计中的关键因素。随着建筑高度的增加,水平荷载下结构的侧向变形迅速增大,与建筑高度H的4次方成正比(=qH1/8EI)。另外,高层建筑随着高度增加、轻质高强材料的应用、新建筑形式和结构体系的出现、侧向位移的迅速增大,在设计中不仅要求结构具有足够强度,还要具有足够的抗推刚度,使结构在水平荷载下产生的侧移被控制在某一限度之内。

图 316#、17#楼奇数层平面图

高层和超高层建筑减轻自重比多层建筑更有意义。从地基承载力或桩基承载力考虑,如果在同样地基或桩基的情况下,减轻房屋自重意味着不增加基础造价和处理措施,可以多建层数,这在软弱土层有突出的经济效益。地震效应与建筑的重量成正比,减轻房屋自重是提高结构抗震能力的有效办法。高层建筑重量大了,不仅作用于结构上的地震剪力大,还由于重心高地震作用倾覆力矩大,对竖向构件产生很大的附加轴力,从而造成附加弯矩更大。

在满足地下室车库层和底层架空或者底层商铺的前提下,遵循对称、均匀、周边、拐角的原则,在结构周边、拐角和核心筒等部位对落地剪力墙进行较合理布置,主体结构抗震等级为三级(低于140m)和二级(高于140m)。对结构薄弱部位如楼电梯周围,内庭院周围均设置了120mm厚楼板,采用双层双向拉通钢筋予以加强;对少量肢长受到限制的短肢剪力墙(墙肢长度∶墙厚

本工程项目中仅16#和17#楼高度超限,应报省超限高层建筑工程抗震设防专项审查。风荷载取值,考虑到以后城市建设的不断发展,位移计算时取0.45kN/m2,强度计算时取0.5 kN/m2。

四、优化设计对策

4.1剪力墙的延性设计:弱化剪力墙和连梁刚度,控制墙肢长度:墙厚=10∶1左右,把长剪力墙开洞(结构洞或门窗洞)成联肢墙,洞顶设置跨高比≥5的弱连梁,结构洞及窗台用砌块填砌。弱化后的剪力墙和连梁具有较轻的自重、更大的延性和抗震耗能能力,钢筋用量也较小。根据多年设计经验,建筑物高度80m以下时剪力墙面积占标准层面积的3.5%~7%时较合理,让最大层间位移角接近规范限制,太大或者太小时,或者是剪力墙布置不合理,或者工程造价太高。随着建筑物高度增加,该比值相应增大。剪力墙布置合理时,各剪力墙轴压比相差不大,且都小于规范要求,剪力墙一般是构造配筋,一般采用12或14直径钢筋即可满足要求,可明显减少剪力墙用钢量。

4.2为进一步减少工程造价,采取减轻填充墙荷载,用新三级钢筋,板采用分离式配筋,选用直径较小的通长筋及减少次要构件钢筋用量等优化设计措施。

表1结构计算结果

五、结构计算结果分析

通过相同户型不同高度计算分析,在满足相应规范的前提下,得出了竖向构件面积占标准层面积的比值,见表1,其中7#、8#楼该比值偏大,剪力墙一般需要300mm和350mm才可以满足规范的基本计算要求。

经过比较,7#、8#楼户型最不经济合理,4#、5#楼户型次之,16#、17#户型最经济合理,分析原因,主要是7#、8#楼户型高宽比太大,远远超过了规范的数值,经过与业主协商,7#、8#楼决定另选户型。

由于户型的需要,塔楼的高宽比一般都较大,通过对本项目中4#、5#楼不同高宽比的计算分析,在竖向构件面积占标准层面积合适的比值范围内,高宽比在8左右时,竖向构件在200mm或者240mm宽度就基本可以满足计算要求。

经与业主协商调整后确定户型和塔楼高度,周围梁高为240mm×470mm,内部梁高200(240)mm×400mm, 4#、5#楼未注明板厚均为120mm,7#、8#、9#楼未注明板厚为100mm。应业主要求,主卧内卫生间120mm厚墙下做暗梁处理,标准层剪力墙均为240mm厚。经优化各塔楼用钢量在60~65kg/m2和混凝土量,具体见表2。

表2 各塔楼的用钢量与混凝土量

六、结语

通过对上述工程实例的分析,得出以下结论:

(1)建筑户型的选择非常重要,户型尽量简单规则,户型的选择直接关系到结构体系的复杂程度,和工程造价存在着直接的关系。

(2)概念设计对于高层和超高层结构方案的合理、经济即有效选取非常重要,不能仅仅考虑结构设计的合理性,而且还能考虑到建筑的适用功能、进而满足建筑的安全性、适用性和耐久性的要求。

(3)超高层住宅一般采用框架剪力墙结构体系和纯剪力墙结构体系,剪力墙应遵循对称、均匀、周边、拐角等原则进行合理布置。剪力墙和连梁应进行优化设计,剪力墙尽量不要采用短肢剪力墙,剪力墙的墙肢长度与墙厚之比大于8,当墙肢长度过大时,应中间开洞,设置为弱连梁(跨高比不小于5的连梁)。延性剪力墙结构体系具有更轻的自重、更好的延性和更强的抗震耗能能力;剪力墙布置要合理,高度80m左右的高层,竖向构件面积占标准层面积的最佳比例为5.0%左右,高度100m左右超高层住宅的最佳比例为6%~8%,随着高度不断增加的最佳延性设计较短肢墙有更好的经济效益。

(4)结构设计中,对不规则部位,特别是结构的薄弱部位,应通过计算、分析进行准确判定,并加以可靠的加强措施。

参考文献:

超高层住宅设计例10

1 工程概况

本工程为兰州兰石集团有限公司3#住宅楼,建设用地位于兰州市七里河区。3#楼地下为2层(地下一层为管道夹层,层高1.50m,地下二层为甲类核六级人防兼自行车库,层高3.60m),地上30层为住宅,结构主体高度87.30米,惯性矩等效宽度13.75米,高宽比6.35,全现浇抗震墙体系,抗震墙抗震等级一级。嵌固端位置取在一层楼面(标高±0.000)处。

2 超限类型

根据建设部《超限高层建筑工程抗震设防专项审查技术要点》,本工程不属于建设部规定的超限高层建筑。根据《甘肃省建筑工程施工图设计文件审查要点》结-C50201的规定,3#住宅楼高宽比超过规定,为省定超限高层建筑。

3 建筑结构设计等级及设计参数

4 地基与基础

4.1 地基概况

拟建场地位于建设用地位于兰州市七里河区。勘察场地主要地层特征见下表。

4.2 基础设计

根据场地的地层结构及物理力学性质,并结合上部结构的特点,基础采用桩-筏基础,桩以卵石为持力层。基础埋深6.0米(5.1+1.2- 0.3=6.0),埋置深度为建筑物高的1/14.55。

5 上部结构选型

由于高宽比超限,且建筑物主要使用功能为住宅,故结构体系选择抗侧力性能较好的剪力墙结构,并通过合理的布置剪力墙以达到抗倾覆、结构整体稳定的要求。楼(屋)盖采用现浇混凝土楼(屋)盖,并适当加厚嵌固楼板及屋面板的厚度,以提高建筑物的整体性能。

6 结构分析

6.1 本工程使用中国建筑科学研究院PKPMCAD工程部编制的结构分析程序《多层及高层建筑结构空间有限元分析与设计软件SATWE》(2010年版)进行结构分析,由于高宽比超过《高层建筑混凝土结构技术规程》JGJ3-2002限值,采用PMSAP软件进行补充整体分析,并用SATWE选用两条天然波TH1TG040、TH3TG040,一条人工波RH1TG040进行结构弹性动力时程分析,并对三种计算结果列表对比。

6.2 主要电算结果

4.3 结果分析

对SATWE与PMSAP两套不同振型分解反应谱法进行计算比较,SATWE程序的振型分解反应谱法与结构弹性动力时程分析法进行计算比较,主楼弹性动力时程分析、PMSAP分析结果与SATWE计算结果基本一致,第三周期为扭转周期,结构设计采用SATWE计算结果。

弹性动力时程分析每条时程曲线主要结果:

TH1TG040 X: 6348.8KN Y:6592.2 KN

TH3TG040 X: 4976.6KN Y:9691.9 KN

RH1TG040 X:5979.7KN Y:5761.8 KN

振型分解法的底部剪力:X: 6495.72KN Y: 7343.00KN

4.3.1 X:{6348.8,4976.6,5979.7}>6495.72*65%=4222.22,

Y:{6592.2,9691.9,5761.8}>7343.00 *65%=4772.95KN,

计算结果满足每条时程曲线所得的结构底部剪力不小于振型分解法的底部剪力的65%。

4.3.2 (6348.8+4976.6+5979.7/3=5768.37>6495.72*80%=5196.58

(6592.2+9691.9+5761.8)/3=7348.6>7343.00*80%=5874.40

计算结果满足多条时程曲线所得的结构底部剪力的平均值不小于振型分解法的底部剪力的80%。

弹性动力时程分析每条时程曲线计算所得结构底部剪力大于振形分解反应谱法计算结构的65%,三条时程分析曲线计算所得结构底部剪力的平均值大于振形分解反应谱法计算结果的80%,且振型分解反应谱法计算结果曲线均能包络时程分析曲线的平均反应曲线。

结构的刚重比最小为6.65大于2.7,结构计算可不考虑重力二阶效应的不利影响,也满足高层建筑结构稳定对结构刚度的要求。底部加强区各楼层与其上一楼层的刚度比、承载力比均大于0.8、0.9。结构计算的有效质量系数均大于95%;考虑5%偶然偏心的地震作用下,楼层或层间位移比均不超过1.2,平面扭转规则。多遇地震作用下基础底面未出现零应力区。中震作用下,结构底部抗倾覆弯矩与倾覆弯矩之比均大于2.0,基底出现零应力的范围占基础底面积的最大值为23.4%,小于25%。中震下结构不发生整体倾覆。基础埋深满足抗倾覆的要求。

在罕遇地震作用下,层间弹塑性位移角最大为1/174,小于1/150。

外纵墙最大轴压比0.30

主要受力构件配筋适中,除极少量剪力墙连梁截面抗剪强度不够外,其它构件基本无超筋超限,竖向抗侧力构件未出现塑性铰,未出现薄弱部位。说明结构布置合理,各控制指标均满足规范限值要求,计算结果有效、可靠。

5 结构加强措施

结构设计采取以下加强措施:

5.1 控制楼层层间最大位移与层高之比≤1/1100。

5.2 加大基础有效埋深,基础埋深6.0米,埋置深度为建筑物高的1/14.55,不小于房屋高度的1/16。

5.3 严格控制外纵墙轴压比,其限值按《高规》表7.2.14所对应的数值降低0.1(即0.5-0.1=0.4)。

5.4 剪力墙底部加强区墙体水平及竖向分布钢筋配筋率控制不小于0.30%,对底部加强剪力墙约束边缘构件从基础底板以上设置,设置高度在《高规》7.2.15条基础上再向上延伸一层,纵向边墙约束边缘构件配筋率不小于1.35%并不小于6 18。

5.5 底部加强区剪力墙连梁加强密箍,一般控制其跨高比不大于2.5,当跨高比小于2.5 时,设置水平缝形成双连梁或增设斜向交叉暗撑或钢筋。

6 预期性能目标

当遭受低于本地区抗震设防烈度的多遇地震影响时,一般不损坏或不需修理可继续使用,当遭受相当于本地区地震设防烈度的地震影响时,可能损坏,经一般修理或不需修理可继续使用,当遭受高于本地区抗震设防烈度预估的罕遇地震影响时,不致倒塌或发生危及生命的严重破坏。