期刊在线咨询服务,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

期刊咨询 杂志订阅 购物车(0)

生物信息学论文模板(10篇)

时间:2023-03-20 16:26:30

生物信息学论文

生物信息学论文例1

一、生物信息学的产生

21世纪是生命科学的世纪,伴随着人类基因组计划的胜利完成,与此同时,诸如大肠杆菌、结核杆菌、啤酒酵母、线虫、果蝇、小鼠、拟南芥、水稻、玉米等等其它一些模式生物的基因组计划也都相继完成或正在顺利进行。人类基因组以及其它模式生物基因组计划的全面实施,使分子生物数据以爆炸性速度增长。在计算机科学领域,按照摩尔定律飞速前进的计算机硬件,以及逐步受到各国政府重视的信息高速公路计划的实施,为生物信息资源的研究和应用带来了福音。及时、充分、有效地利用网络上不断增长的生物信息数据库资源,已经成为生命科学和生物技术研究开发的必要手段,从而诞生了生物信息学。

二、生物信息学研究内容

(一)序列比对

比较两个或两个以上符号序列的相似性或不相似性。序列比对是生物信息学的基础。两个序列的比对现在已有较成熟的动态规划算法,以及在此基础上编写的比对软件包BALST和FASTA,可以免费下载使用。这些软件在数据库查询和搜索中有重要的应用。有时两个序列总体并不很相似,但某些局部片断相似性很高。Smith-Waterman算法是解决局部比对的好算法,缺点是速度较慢。两个以上序列的多重序列比对目前还缺乏快速而又十分有效的算法。

(二)结构比对

比较两个或两个以上蛋白质分子空间结构的相似性或不相似性。

(三)蛋白质结构预测

从方法上来看有演绎法和归纳法两种途径。前者主要是从一些基本原理或假设出发来预测和研究蛋白质的结构和折叠过程。分子力学和分子动力学属这一范畴。后者主要是从观察和总结已知结构的蛋白质结构规律出发来预测未知蛋白质的结构。同源模建和指认(Threading)方法属于这一范畴。虽然经过30余年的努力,蛋白结构预测研究现状远远不能满足实际需要。

(四)计算机辅助基因识别

给定基因组序列后,正确识别基因的范围和在基因组序列中的精确位置.这是最重要的课题之一,而且越来越重要。经过20余年的努力,提出了数十种算法,有十种左右重要的算法和相应软件上网提供免费服务。原核生物计算机辅助基因识别相对容易些,结果好一些。从具有较多内含子的真核生物基因组序列中正确识别出起始密码子、剪切位点和终止密码子,是个相当困难的问题,研究现状不能令人满意,仍有大量的工作要做。

(五)非编码区分析和DNA语言研究

在人类基因组中,编码部分进展总序列的3-5%,其它通常称为“垃圾”DNA,其实一点也不是垃圾,只是我们暂时还不知道其重要的功能。分析非编码区DNA序列需要大胆的想象和崭新的研究思路和方法。DNA序列作为一种遗传语言,不仅体现在编码序列之中,而且隐含在非编码序列之中。

三、生物信息学的新技术

(一)Lipshutz(Affymetrix,Santaclara,CA,USA)

描述了一种利用DNA探针阵列进行基因组研究的方法,其原理是通过更有效有作图、表达检测和多态性筛选方法,可以实现对人类基因组的测序。光介导的化学合成法被应用于制造小型化的高密度寡核苷酸探针的阵列,这种通过软件包件设计的寡核苷酸探针阵列可用于多态性筛查、基因分型和表达检测。然后这些阵列就可以直接用于并行DNA杂交分析,以获得序列、表达和基因分型信息。Milosavljevic(CuraGen,Branford,CT,USA)介绍了一种新的基于专用定量表达分析方法的基因表达检测系统,以及一种发现基因的系统GeneScape。为了有效地抽样表达,特意制作片段模式以了解特定基因的子序列的发生和冗余程度。他在酵母差异基因表达的大规模研究中对该技术的性能进行了验证,并论述了技术在基因的表达、生物学功能以及疾病的基础研究中的应用。(二)基因的功能分析

Overton(UniversityofPennsylvaniaSchoolofMedicine,Philadelphia,PA,USA)论述了人类基因组计划的下一阶段的任务基因组水平的基因功能分析。这一阶段产生的数据的分析、管理和可视性将毫无疑问地比第一阶段更为复杂。他介绍了一种用于脊椎动物造血系统红系发生的功能分析的原型系统E-poDB,它包括了用于集成数据资源的Kleisli系统和建立internet或intranet上视觉化工具的bioWidget图形用户界面。EpoDB有可能指导实验人员发现不可能用传统实验方法得到的红系发育的新的药物靶,制药业所感兴趣的是全新的药物靶,EpoDB提供了这样一个机会,这可能是它最令人激动的地方。

Babbitt(UniversityofCalifornia,SanFrancisco,CA,USA)讨论了通过数据库搜索来识别远缘蛋白质的方法。对蛋白质超家族的结构和功能的相互依赖性的理解,要求了解自然所塑造的一个特定结构模板的隐含限制。蛋白质结构之间的最有趣的关系经常在分歧的序列中得以表现,因而区分得分低(low-scoring)但生物学关系显著的序列与得分高而生物学关系较不显著的序列是重要的。Babbit证明了通过使用BLAST检索,可以在数据库搜索所得的低得分区识别远缘关系(distantrelationship)。Levitt(Stanforduniveersity,PaloAlto,CA,USA)讨论了蛋白质结构预测和一种仅从序列数据对功能自动模建的方法。基因功能取决于基因编码的蛋白质的三级结构,但数据库中蛋白质序列的数目每18个月翻一番。为了确定这些序列的功能,结构必须确定。同源模建和从头折叠(abinitiofolding)方法是两种现有的互为补充的蛋白质结构预测方法;同源模建是通过片段匹配(segmentmatching)来完成的,计算机程弃SegMod就是基于同源模建方法的。

(三)新的数据工具

Letovsky(JohnshopkinsUniversity,Baltimore,MD,USA)介绍了GDB数据库,它由每条人类染色体的许多不同图谱组成,包括细胞遗传学、遗传学、放射杂交和序列标签位点(STS)的内容,以及由不同研究者用同种方法得到的图谱。就位置查询而言,如果不论其类型(type)和来源(source),或者是否它们正好包含用以批定感兴趣的区域的标志(markers),能够搜索所有图谱是有用的。为此目的,该数据库使用了一种公用坐标系统(commoncoordinatesystem)来排列这些图谱。数据库还提供了一张高分辨率的和与其他图谱共享许多标志的图谱作为标准。共享标志的标之间的对应性容许同等于所有其它图谱的标准图谱的分配。

Candlin(PEappliedBiosystems,FosterCity,CA,USA)介绍了一种新的存储直接来自ABⅠPrismdNA测序仪的数据的关系数据库系统BioLIMS。该系统可以与其它测序仪的数据集成,并可方便地与其它软件包自动调用,为测序仪与序列数据的集成提供了一种开放的、可扩展的生物信息学平台。

生物信息学论文例2

(二)对信息技术与课堂教学整合的理解“整合”实际上是一种课堂教学中呈现出来的状态,或是效果,每一节课都有具体的任务,都有一定的教学目标。在信息技术的强大功能面前,教学不能退居于后,成为次要部分,无论如何,教学都是首要内容,教学目标的达成,学生获得的学习结果,都是第一位的东西。利用信息技术的强大功能去实现课堂教学的目标是必要的,但信息技术从属于课堂教学的地位也是必然的。若信息技术能在教学过程最需要的时刻发挥作用,非常自然真实地成为教学过程中一个环节、一个步骤、一段过程……,这样状态下的课堂教学,就成为一种整合状态,它所达到的效果是我们所追求的课堂教学效果,此刻很难说是教学还是信息技术在起决定性作用,因为它们之间不分彼此,已经完全融为一体,也就整合在一起了。

(三)信息技术在生物课堂教学中的应用1.将微观世界或宏观现象通过视频、动画、声音、图片等形式展现在学生面前,加强了教学的直观性,激发学生学习的兴趣,有利于揭示事物本质,使抽象事物具体化。同时运用信息技术还可以刺激学生的视、听、看等多种感官,如用形象生动的图像信号吸引学生的视觉,用音响适中、悦耳精炼的语言信号吸引学生的听觉,特别是电教媒体的特技效果突破了信息传递中的时间和空间的限制,使学生能直观地看到宏观世界、微观世界、远方或过去的事物,使信息通道得到了无限的延伸和扩展。2.关注全体、分层教学、因材施教,从而激发学生学习兴趣,改变学生对学习的倦怠心理,提高学习效率。例如:在学生做题时,可以运用PPT打出不同难度的题,教师通过活动让不同层次的学生参与其中,这样既关注了全体,又达到了分层教学,同时也照顾了学困生的自尊心,起到了一举两得的作用。

二、在实践中发现的一些问题

在信息技术与生物学科整合的实践过程中,我有过困惑,总结过经验教训,主要表现在以下几个方面:

(一)在课堂教学中不能盲目突出信息技术在实际教学中,不能片面追求效果的最优化,不分课型、内容,不顾实际教学需要,盲目使用各种媒体。信息技术只是一种教学工具或教学手段,如果利用得当,它就可以推动教学改革,提高教学质量;如果没有正确认识信息技术,那么素材、课件等就会变为教师的“电灌”工具。我们如果片面夸大信息技术的效果,排斥传统的教学手段和方法,如以电子板书替代传统板书,或是本应使用实物、模型、挂图等常规教具的情况下,一味使用多媒体技术,就会搞得学生视觉疲劳,失去了观看的兴趣。长此以往,不但会影响信息技术的使用效果,而且还会事倍功半。因此,我们在使用信息技术时,应注意时间长短适中,信息适量,媒体搭配合理、有序、适当,而且要根据不同年龄特点的学生及教学内容需要选择不同的信息技术手段,内容、设计上不应过于花哨,以免分散学生的注意力。

生物信息学论文例3

随着认知学习理论的发展,人们越来越认识到,学习是一个不断处理信息、形成知识网络并用来解决问题的内化过程。有效的学习者应当是一个积极的信息加工工作者、解释者和综合者,能使用各种不同的策略来存储和提取信息。

探究性学习既是生物新课标倡导的理念,也是新课标规定的教学内容。高中生物课堂教学中更多的是文本探究活动方式,主要以资料收集处理、逻辑推理或方案设计为呈现方式,通过开拓学生的思维来渗透探究的理念。

一、文本探究的信息流程

教学过程中,对于文本类教学内容,教师利用各种信息来源设计丰富的探究素材,并在此基础上设问质疑。这些资料在学习整合过程中就变成了数字化的信息资源,学生可以基于问题展开文本探究。

1.指导自学,提取感知信息

学生通过阅读、分析知识及其结构特点,进行信息的提取,寻找主干信息,感知变化的主线和最佳突破方案。如,学习有丝分裂和减数分裂就要提取出其变化的主干信息,即染色体的规律性变化。学生通过画关键词和重点句,捕捉关键信息,感悟知识的内涵,培养熟练接收信息的能力。

2.质疑设问,筛选加工信息

学生在阅读感知信息的过程中产生疑问,因个人理解的角度不同而获得不同的体验,在客观提供的信息材料中结合自己已有经验进行思考和判断,从中筛选出与学习内容相关的信息,形成自己的推论。学生通过质疑和推测对学习材料进行精加工,挖掘课本表述的言下之意和言外之意,通过讨论争辩,在思维的相互碰撞中加深对知识的理解。

3.提炼总结,编码交流信息

信息只有经过加工处理,并以一定形式正确表达出来,才能说明真正掌握。学生明确自己的观点后,在与同伴交流中,用自己的语言或通过绘制概念图、思维导图等概括新概念,通过语言表达和图示绘画的双重编码,掌握内化所学的信息,从而被长期记忆。

4.融会贯通,概括输出信息

引导学生把已编码的信息进行重组、提炼,在课堂中善于将所学知识运用到新的学习情境中,积极尝试运用生物学知识解决生活生产中的实际问题,达到学以致用的目的。

案例:“细胞有丝分裂”的学习,学生首先提取感知信息,观看教师提供的“植物(动物)有丝分裂过程Flash”,认识到有丝分裂是一个过程性的知识,并直观地发现有丝分裂过程中最重要的变化发生在细胞核。学生从动画中已提取到了主干信息和最佳突破口,接下来筛选加工信息,阅读、对比、分析不同分裂时期的图片,抓住其中最重要的信息——染色体的变化,从而概括出各时期特点。通过表达交流,达成共识,掌握细胞分裂的内在规律,即染色体的规律性变化,并总结出染色体、染色单体、DNA数目之间的关系,用曲线图加以描绘,实现信息的编码。

如果学习过程仅到此,还不足以让知识转变为长时记忆,进行信息输出尤为重要。学生必须能用自己的语言概述出每个时期的特点,因为会说在一定程度上代表掌握。在此基础上,学生还必须会用简笔画绘出细胞分裂各时期染色体(或染色质)的形态,能画出包括纺锤体、染色体行为在内的整个细胞图,因为会画,才说明知识已内化。能否用正确的图像表达各时期的特点,是检查学生对细胞有丝分裂过程是否掌握的最简洁的方法。这种编码处理信息的方式有助于加强学生对知识的建构,加强长时记忆。

二、文本探究的教学策略

在学习的信息加工系统中,存在着对信息流动的执行控制过程,监视和指导认知活动的进行,评估学习中的问题,确定使用什么教学策略来解决问题,评价所选策略的效果。

1.“复述策略”培养知识的迁移

复述策略是在工作记忆中为了保持信息,对信息进行反复加工,即运用内部语言在大脑中重现学习材料,以便将注意力维持在学习材料之上的教学策略。任何新的学习都是建立在原有的知识经验上的。现代认知心理学把知识的迁移看成是先前学习的知识在后继学习中的应用。教师要引导学生在学习新知识时不仅能熟练使用学过的知识,而且能将旧知识组织、归纳并应用到新的学习情境中,使他们具有一定的知识迁移能力。

例如,减数分裂是一种特殊形式的有丝分裂。在进入减数分裂过程的学习时,让学生先回忆并复述有丝分裂的相关内容,即分裂过程中DNA、染色体、染色单体数目的变化和每个时期的分裂特点,然后再通过阅读减数分裂的图群,分析其“特殊性”主要表现在哪些方面,通过比较两者的异同,认识到减数分裂的特殊性,从而实现知识的迁移。

2.“主线策略”建立知识的逻辑

新课标下教材的编写是围绕主线展开的,学生在学习过程中也要遵循这样一条主线,在头脑中建构起知识的框架,从而让学习变得富有逻辑性。必修三个模块遵循的主线分别是:探究生命的物质基础和结构基础;人类对基因的本质、功能及其现代应用的研究历程;生物个体、种群、群落和生态系统各个层次系统稳态的维持。学生在学习过程中要立足知识的主干,建立思维的连续性和逻辑性。

例如,“基因指导蛋白质合成”是必修2中遗传学知识在个体、细胞、分子水平内在逻辑联系这条主线中的一个重要环节。转录、翻译是连接DNA与性状关系的桥梁,因此在探究过程中,要明确一条主线,建立逻辑推理过程。引导学生探究四个问题:(1)基因位于细胞核中,怎么去指导细胞质中的核糖体合成蛋白质?(2)mRNA只有4种碱基,如何决定20种氨基酸?(3)翻译过程如何决定氨基酸的顺序?(4)游离存在于细胞质基质中的氨基酸如何到达核糖体合成多肽链?学生不断利用已有的基础知识进行逻辑推理,完成主线建构。

3.“视觉策略”提升知识的整合

根据信息模式的分类学,信息可以用视觉方式进行表征。教材中的结构模式图、生理活动示意图等,是生物学科独特的语言符号。视觉符号易被快速识别,可以帮助学生在短时间内准确接收大量信息,与文字相比更易于被学生接受。视觉图式信息,能使学生迅速、准确地获取信息,通过扫描关键词从信息资源中抓住知识的脉络,形成整体轮廓式的信息认知。实际上,学生“读”图的过程就是积极思维的过程,是提取信息、分析信息、处理信息的过程。教师在指导学生读图与图群时,设计与图文相匹配的读图指导题,使学生通过识图——析图——释疑,最终自主构建知识。

例如,“兴奋在神经元之间的传导”的学习,就是完全建立在对突触图群理解的基础上。学生提取图中的画面信息可以确定:神经元之间有间隙,突触小体是轴突的末梢,神经递质通过外排作用释放,线粒体表明需要耗能,突触后膜上有受体等。再通过探究问题把零散的知识整合起来:

(1)神经纤维上的神经冲动以电信号的形式传递,电信号如何从前膜经间隙传到后膜?

(2)兴奋能从树突传到轴突吗?

(3)兴奋在神经纤维上的传导速度与在神经元之间的传递速度一样么?

需要学生将直观的视觉信息与原有的知识结构关联起来,让新旧知识发生相互作用,推测出兴奋在神经元之间的传递需要经过一个信号转变过程,在此基础上提供突触的膜电位变化图示,通过讨论交流,完成“兴奋在突触间单向传递”的特点归纳。

4.“精加工策略”让知识融会贯通

美国教育心理学家布鲁纳认为:“人类记忆的首要问题在于组织”。组织好的、系统的知识容易巩固在记忆中,即使忘掉了其中的某一点,通过联想也容易把它恢复重现出来。“精加工”是指对学习材料做精细的加工活动,即通过在要记忆的材料基础上增加相关的信息来达到对新的材料记忆的学习方法。通过形成新旧信息间的附加联系,把所学的新信息和知识联系起来,应用已有的图式和已有的知识使新信息合理化,从而促进对新信息的理解与记忆。对生物学概念和规律的理解,要关注其内涵和外延,在对关键概念全面认知的基础上把那些分散的、零星的、在课本里跳跃性出现的知识点整理出来,对它们进行比较、归纳,找出各部分之间的内在联系和规律性的东西,串联成清晰的知识链,从而使学生对所学知识能上下相互沟通、左右触类旁通。

如,对于“遗传物质”这一知识点的学习,可将分散于必修1、必修2不同章节中有关“细胞中的生物大分子”、“减数分裂”、“DNA的结构和复制”、“基因控制蛋白质的合成”等片断的、零乱的知识点进行梳理,按照“配子、染色体、DNA、基因、蛋白质、性状”这样一条主线来组织内容。

精加工策略一方面能够使新知识与已有知识取得联系,增进对新知识的理解;另一方面经精加工的信息进入已有知识体系中,在以后需要唤起时易于检索。

5.“组织策略”构建知识网络

生物信息学论文例4

1.1图像成像

从本质上来看,生物医学图像成像技术(下文简称“图像成像技术”)与医学影像技术的区别并不大,仅仅是人们更习惯将其表达为医学影像。生物医学图像成像技术的研究内容为:利用染色方法和光学原理,清晰地表达出机体内的相关信息,并将其转变为可视图像。图像成像技术研究的图像对象有:人体的标本摄影图像、观察手绘图像、断层图像(如ECT、CT、B超、红外线、X光)、脏器内窥镜图像、激光共聚焦显微镜图像、活细胞显微镜图像、荧光显微镜图像、组织细胞学光学显微镜图像、基因芯片、核酸、电泳等显色信息图像、纳米原子力显微镜图像、超微结构的电子显微镜图像等等。

图像成像技术主要包括2个部分:现代数字成像和传统摄影成像。通常可采用扫描仪、内窥镜数码相机、采集卡、数字摄像机等进行数字图像采集;显微图像采集则可应用光学显微镜成像设备及超微结构电子显微镜成像设备;特殊光源采集可应用超声成像仪器、核磁共振成像仪器及X光成像设备。目前,各种医学图像技术的发展都十分迅速,特别是MRI、CT、X线、超声图像等技术。在医学图像成像技术方面,如何提高成像分辨力、成像速度、拓展成像功能,尤其是在生理功能及人体化学成分检测方面,已经引起了相关领域的重视。

1.2图像处理

生物医学图像处理技术,是指应用计算机软硬件对医学图像进行数字化处理后,进行数字图像采集、存储、显示、传输、加工等操作的技术。图像处理是对获取的医学图像进行识别、分析、解释、分割、分类、显示、三维重建等处理,以提取或增强特征信息。目前,医学领域所应用的图像处理技术种类较多,统计学知识、成像技术知识、解剖学知识、临床知识等的图像处理均得到了较快的发展。另外,人工神经网络、模糊处理等技术也引起了图像处理研究领域的广泛重视。

1.3图像分析及图像传输

生物医学图像分析技术,是指测量和标定医学图像中的感兴趣目标,以获取感兴趣目标的客观信息,建立相应的数据描述。通过计算测定的图像数据,可揭示机体功能及形态,推断损伤或疾病的性质及其与其他组织的关系,进而为临床诊断、治疗提供可靠依据。生物医学图像传输技术,是指应用网络技术,在互联网上开展医学图像信息的查询与检索。通过网上传输图像,在异地间进行图像信息交流,可实现远程诊断。同时,在院内通过PACS(数字医学系统—医学影像存档与通信系统),也能在医院内部实现医学图像的网络传递。

生物信息学论文例5

2实验的分析

访问调查实验班和普通班的学生通过对进行了信息技术与生物化学课程整合的班级学生与未整合的同时进行问卷访问调查,通过调查得出如下几个结论:第一,整合课程对提高学生的自主探究能力的作用不明显;第二,实行整合课程对有效调动学生学习的兴趣有较明显的作用;第三,实行整合课程对提高学生的合作意识和提高信息素养有着一定的作用。总而言之,进行信息技术与生物化学的整合能够让学生在学习时带有浓厚的兴趣,培养学生积极主动学习的能力。总之,课程整合益处甚多。

3进行信息技术与生物化学的课程整合的优点

3.1能帮助学生改变学习方式

过去,大多数学生都会在老师枯燥乏味的书面知识中昏昏欲睡,甚至产生厌学的情绪,完全没有学生该有的青春朝气与蓬勃。学生们喜爱的是精彩的课堂,有兴趣的课程,多样的教学方法。进行信息技术与生物化学的课程整合,恰到好处地满足了学生想要听课的动机。教师运用多种方法,如情景模式,课外活动,精彩的故事,幽默的语言,全面的感官信息等等来吸引学生的注意,同时让学生掌握学习生物化学的方法,有效地达到学生认真听课的目的。

3.2能加深学生的学习兴趣

运用丰富的多媒体视频信息,给学生感官的享受。艳丽的色彩,生动的动画,美妙的音乐,活泼的学习氛围。学生们可以寓情于景,使注意力高度集中。教师采用启发式教学,以故事或者幽默的语言来描述书本当中枯燥乏味的东西,培养学生对生物化学课程的热爱,从而能够自己独立去研究知识,学习知识,掌握知识的技能。

3.3能启发学生的思维

教师就是学生学习道路上的路标,引导着学生向正确的方向前进。在课程整合中,教师可以将多媒体中抽象的知识进行改编,以儿歌或者图像的形式输出,提高学生的形象思维能力。比如在记忆生物中人体必需的氨基酸时,可以用携(撷氨酸)一(异亮氨酸)两(亮氨酸)本(苯丙氨酸)单(甲硫氨酸又称蛋氨酸)色(色氨酸)书(苏氨酸)来(赖氨酸)。这样一句话就可以将所有人体必需的氨基酸概括起来,记忆简单,易于学生接受。

3.4能提高教学质量

在生物化学的教学中,使用多媒体等信息技术进行知识的归拢,能让教师的知识层面更加广阔,同时也减轻了教师板书的负担,使教师与学生有更多面对面的课堂交流。另外,给了学生足够的思考空间,使学生的思维能力开阔化。与之相应的,也提高了教育教学质量。

生物信息学论文例6

关键词

信息技术;初中生物;整合

在新课改推动下,教育领域发生了很大变化,目标是为国家培养出具有高学历、高素质、过硬的实践能力的优秀人才,符合国家的发展要求。但是,要实现这一目标,就需要在教学实践中运用现代化的技术指导教学,将两者进行整合。随着经济与科技的不断发展,新型科技也在不断走进课程教学,而对于实践性较强的生物教学来说,实现生物教学与信息技术的整合就显得十分重要。

一、信息技术在生物教学中的作用

在信息技术中有一种教学方式叫做多媒体教学,将多媒体教学应用到生物教学中,不仅能够让学生在学习中进行视觉、听觉的有机整合,还能让学生从多方面进行感受,将成果通过更直观的形式展现出来,可以调节课堂氛围,提升学习效率。在教学方法上,还能将教师所要表达的思想更直接地表现出来,让学生对教师的要求更加明确,并有针对性地回答问题,在这种教学模式下,可以让学生了解到更多的教科书以外的内容,开拓学生的视野。在必要的教学内容中播放相关影片进行教学还能引发学生的思考,加深其对教学内容的掌握程度。同时,学生遇到问题可以随时提出,教师立即进行解答,改变了传统的教师只负责教而学生只负责学的教学模式,师生之间进行良好的互动,充分体现了学生的主体地位。

二、将信息技术与生物教学进行整合的益处

(一)提高了学生学习的积极性

传统的生物教学方式基本都是教师在进行照本宣科的工作,提出的问题也很有局限性,学生只负责学习,对于教师提出的问题经常是处于朦胧状态,似懂非懂,师生之间进行的互动也较少。新课改以后,教学方式得到了改善并引进了新的教学设备,增添了教学手段。将信息技术与生物教学相整合,教师不仅可以利用多媒体对教学所需的图像、影视动画进行综合处理,还可以根据教学要求自主设置教学主题,将所讲内容通过多媒体教学展现得更加直观,带动学生的学习积极性,引发学生思考,实现课本与信息技术相结合,增加学生的学习动力。

(二)使教学内容更加贴近学生的生活

现阶段的学生在物质生活上已经有了很大的提高,对于网络信息也不陌生,但网络技术在发展中有利有弊,所以这就要引导学生正确利用网络进行学习。网络中的教学内容是丰富多彩的,具有新颖、更新速度快的特点,便于学生掌握新的知识。在生物教学中运用网络进行教学,可以帮助学生及时找到要了解的内容,并出色地完成作业。

(三)提高学生的复习效率

在经过一阶段或一学期的学习后,教师就要对学生的学习情况进行检验,如期中考试、期末考试,这就要求学生将学习内容进行很好的复习,但由于时间有限,不能对所学的各个章节进行重复讲解,所以在进行期中考试、期末考试之前,教师可以通过多媒体对以往的教学重点、难点进行播放,对教学内容进行总结,以加深学生对教学内容的印象,从而起到巩固知识的作用。

三、将信息技术与苏科版初中生物教学进行整合的具体方法

(一)多媒体教学方式走进课堂

在苏科版初中生物教学中需要大量的道具,但不能将所需要的道具都拿到课堂上,即便有些道具方便带到课堂,但由于季节或条件的限制还是在教学中无法充分应用。如在“观察花的结构”这项实验中就需要大量的花朵作为道具,这就增加了实验的难度,没有任何一种花朵是可以随意采摘的,所以在实验中利用多媒体进行教学就可以解决这个问题,不仅可以找到实验中所需的内容,还能让学生观看得更清晰、生动,能很好地解决采摘等带来的问题。

(二)将信息技术作为师生进行互动的工具

现代技术较为发达,因而要正确利用这一点。学生在学习时难免会遇到困难,可以利用网络与教师进行互动,但这种教学方法需要教师进行引导,提出问题让学生进行思考,如在进行“探究唾液淀粉酶对淀粉的消化作用”这项实验时,自行操作存在一定的困难,这时教师就可以根据实际情况,在网络上选取相关教学视频进行教学,通过视频中的试验,提出“在这项实验中淀粉经过唾液淀粉酶的分解后产生了什么变化?”学生会看到,在不同温度下,加入碘液后淀粉的颜色会不同,在37摄氏度时加入碘液颜色不变,但在100摄氏度时,加入碘液后颜色会呈现蓝色,这就增加了学生与教师之间的互动,学生观察越仔细,收获也就越多。

(三)运用信息技术生动讲解教学内容

现代信息更新较快,教材更新永远跟不上科学研究,这时就需要教师利用信息技术拓展学生的知识面,将最新的研究成果引入到教学中。如在关于“观察小鱼尾鳍血液的流动”的实验中需要小鱼作为实验对象,但传统的实验方法已经不能适应现代的教学要求,教师就可以选择最新的实验方法进行教学,如用载玻片将小鱼的尾鳍压住,关注小鱼尾鳍的摆动情况,利用多媒体进行展示,这样不仅能达到实验目的,还能让学生了解到更多的实验方法。

综上所述,通过以上的研究发现,将信息技术应用到苏科版初中生物教学中是必然的,将二者进行整合以后,不仅提升了学生的学习积极性,还让学生对实验理解得更深刻。

作者:周婧玉 单位:江苏省昆山市陆家中学

生物信息学论文例7

二、基于毕业论文写作的信息素养教育策略

毕业论文写作中的信息素养教育是基于物理学专业情境的学习过程。这种渗透式的专业信息素养教育可以使学生巩固所学物理学专业知识,扩大知识面,发展学术素养,全面提升信息素养。

1.通过论文选题培养学生的信息检索能力物理学专业学生的毕业论文选题可以是教师科研项目的组成部分,也可以在教师指导下自由选题。例如,与教师科研项目相关的毕业论文题目:一维三原子链的晶格振动分析,一维线性谐振子薛定谔方程的数值计算,相互作用带电粒子运动轨迹的数值模拟与分析,航天器变轨过程分析,光学涡旋的产生及衍射特性,数字全息显微技术研究,光学实验中的图像处理与应用,等等。学生参与教师的科研项目,可以增加科研实践机会,拓展物理学专业知识视野。学生在导师的指导下自主选题时,要综合考虑自己的知识掌握情况和专业能力,并根据自己的专业兴趣选定论文题目。学生可以从科学研究中尚未解决的难点问题,以及公众关心的热点问题中自主选题,也可以在他人研究成果的基础上进行选题。无论如何选题,都是以大量信息为基础的,充分利用信息,善于捕捉为己所用的信息,了解课题的学术意义、学术创新和国内外最新进展,就会大大拓宽研究思路。[8]在论文选题过程中,课题检索是一个必不可少的环节。通过课题检索,有助于学生掌握各种物理学专业数据库的检索途径、方法和技巧,如学会熟练运用中国知网、超星数字图书馆、万方数据库、维普等中文数据库的使用方法,了解SCI、EI、ISTP、EBSCO、IOPP、ScienceDirect、SpringerLink、IEEEXplore等外文数据库的使用方法。这样可以督促学生自觉主动地利用图书馆的各类馆藏文献资源进行自主探究学习,使学生学会课题检索,掌握文献检索知识,丰富信息知识,巩固所学物理学专业知识,使学生的专业信息能力得到发展。

2.通过文献综述培养学生的信息能力在确定好论文题目之后,学生需要进一步进行文献的检索和整理,并在此基础上进行文献综述。文献综述是指在全面掌握、分析与课题相关文献的基础上,对该课题在一定时期内的已有研究成果进行分析、归纳、整理和评述而形成的论文。文献综述一般要对研究现状进行客观的叙述和评论,以便预测发展、研究的趋势或寻求新的研究突破点。[9]在文献检索过程中,教师要指点学生注意文献资料的新颖性、价值性和真实性,引导学生科学合理的筛选、评价所获取的信息资源,提取有价值的信息内容,并将收集到的文献资源进行分类,将其融入到自己的知识体系中。在此基础上,应充分利用所获取的信息,完成文献综述。当然,本科生的文献综述只要能够对已有研究成果进行较为全面的分析和述评即可。文献综述的作用体现在多个方面:第一,充分了解课题的全面情况,把握课题的发展规律,熟悉已取得的成果和存在的问题,以及从事该课题工作的主要学者的成就和水平;[10]第二,可以培养学生熟练运用信息检索工具的能力以及根据主题收集信息、整理信息的能力;第三,文献综述对参考文献的要求可以帮助学生掌握学士学位论文的规范要求;第四,文献综述可以有效减少学生的抄袭现象,便于对学生进行信息伦理道德教育。

3.通过毕业论文写作全面提升学生的信息素养毕业论文的写作不仅需要学生掌握系统的物理学专业知识,还需要学生具备复合型的知识结构、良好的逻辑思维能力和扎实的文字功底。在论文写作过程中,学生要充分利用所占有的各类信息资源,运用各种创造性思维,在综合归纳材料、分析实验数据的基础上形成自己的见解。教师要指导学生掌握论文写作的各个细节,如要让学生掌握科技论文的结构:一是论文前置部分,包括封面、题名、中英文摘要、目录;二是主体部分,包括引言、材料和方法、结果与分析、讨论、结论、致谢、参考文献;三是附录;四是致谢。在开始论文写作前,要列出论文的写作提纲。写作提纲要提纲挈领、主次分明、组织合理。在写论文的主体部分时,要注意结构严谨、层次清楚、文字通顺、衔接自然、用语符合技术规范,图表清楚,格式规范。论文中的论据应该真实可靠;论证要合情合理;论述要具有科学性、专业性、创新性;结论与全文观点要保持高度的一致性。

4.通过论文答辩评价学生的物理学专业信息素养能力论文答辩是毕业生在规定时间内展示自己毕业论文的研究内容、研究方法和主要结论,由答辩委员会就论文进行点评,指出优缺点及修改意见的过程。论文答辩是学生展示、交流毕业论文成果及学业成就,检验学生信息能力的重要环节。通过论文答辩可以全方位检验学生对所写论文的认知程度,对物理学专业知识的掌握程度及运用能力,运用论文观点回答问题的应变能力,以及对文中创新点的解释能力。

生物信息学论文例8

中图分类号:B01文献标识码:A文章编号:16738268(2015)06008806

一、会议背景

当今世界已经步入信息时代,信息业已成为学术界的研究热点之一,但是不同的学科背景使得学者们对于信息问题各抒己见,因此,为了促进各学科的信息研究能够有效沟通与合作,首届国际信息科学峰会(IS4IS)应运而生。2015年6月3~7日由国际信息科学联合会(International Society for Information Studies)和多国机构联合举办的第一届国际信息科学峰会在维也纳技术大学举行,其中,西安交通大学国际信息哲学研究中心是举办单位之一,此次峰会的总主题是:“处于十字路口的信息社会――信息科学的回应与责任。”此次峰会包括了三个分会:第二届国际信息哲学研讨会(ICPI 2015)、第六届国际信息科学基础大会(FIS 2015)和第五届国际信息通信技术与社会学术研讨会(ICTS 2015)。该峰会吸引了全球300多名信息领域的研究学者参加,我国有涵盖的30多名学者参会,其中邬j教授所带领的信息哲学团队阵容庞大,由邬j本人及其十多名博士生组成。不仅如此,由邬j教授担任主席的“第二届国际信息哲学研讨会”收获颇丰,共收录论文33篇,内容横跨科学、哲学、艺术等多个方面,每一场讨论都十分热烈。邬j教授作为首届国际信息科学峰会主席团成员在峰会开幕式上致辞,并作为“第二届国际信息哲学研讨会”主席在分会上致开幕词和闭幕词。

邬j教授在峰会开幕式上致辞指出,在各国学者的共同努力下,国际信息科学和信息哲学已经出现了一个很好的发展态势。中国的信息科学和信息哲学研究正在走向世界,而世界的信息科学和信息哲学研究也正在走向中国。人类信息社会的发展正在打通世界各国的壁垒,同时,也把世界范围内的科学家和哲学家更为广泛地联合了起来。当今世界的哲学、科学、技术、经济与社会的发展面临着一个共同的信息范式的转换过程,信息不仅是一种全新的思维方式,而且还是一种全新的生产方式、发展模式和组织模式。正是信息范式在哲学、科学、技术、经济和社会的不同层面所呈现出的这种统一性,决定了我们这个时代的特征和发展方式,同时也决定了人类的科学和哲学的发展正面临着在信息范式基础上的重新融合与统一。

在此次峰会闭幕前夕,相关组织机构还召开了国际信息科学联合会的执委会,邬j教授全票当选为国际信息科学联合会副主席;同时,执委会公布成立了国际信息科学联合会的第一个分支机构――中国分会,并决定下一届国际信息科学峰会(2017年)由瑞典哥德堡大学承办,届时西安交通大学国际信息哲学研究中心仍将是会议承办方之一,第三届国际信息哲学研讨会也将成为峰会的分会议之一。

二、信息本质与信息转向

邬j教授作了题为《信息哲学与信息科学的互动与融合》的大会特邀主题报告,他在报告中指出,关于存在的哲学是哲学的元理论,哲学的根本性变革应当基于存在领域的分割方式的变革,并依此对哲学的几次重大转向予以了总结。邬j教授认为,最开始存在被分割为三大领域:上帝(客观理念)、物质、个体精神,随着科学和哲学的发展,上帝的存在被证明是虚设的,于是上帝便被剔除在存在领域之外,最终,存在领域的范式被归结为:“存在=物质+精神”。更进一步,邬j教授基于信息科学的最新成果,将存在领域进行了重新划分,并提出了“存在=物质+信息”的新的存在论范式,在此,邬j教授从最抽象的哲学范畴上揭示了一个全新的存在领域――信息,信息包括主观信息和客观信息(精神)两大领域,并认为“存在=物质+信息”这一新的存在论范式还在信息活动的高级形态的意义上重新规定了精神的本质。同时,邬j教授认为,哲学的这一信息转向是在哲学最高范式的层面发生的变革,是根本性的转向,而所谓的认识论、语言学、现象学转向、生存论转向、价值论转向、实践论转向、身体哲学转向等都是非根本性转向,并由此断定,信息哲学给人类哲学带来了第一次根本性的转向。

来自英国牛津大学的弗洛里迪(Luciano Floridi)教授也通过一个公式定义了信息:I=Q+A。他认为,信息就像回答问题一样:人们所知道的东西就是信息(知道问题并知道回答),人们不十分确信他是否知道的东西就是不确定(知道问题但不知道回答),人们甚至连他不知道本身都不知道就是无知(既不知道问题也不知道回答)。他还将信息和权利问题放在一起来讨论,将人类的历史分为史前阶段(没有信息与通信技术)、历史阶段(个人与社会福利与信息与通信技术有关)和超历史阶段(个人与社会福利依赖于信息与通信技术)。并认为,人类在超历史阶段就进入了成熟的信息社会,成熟信息社会的权利不仅仅是与事物有关或者与关于事物的信息有关,也和不确定性有关,在成熟信息社会谁制造不确定性控制问题并塑造答案,谁就能控制现实的人。

华南理工大学吴国林教授在《量子信息的追问》一文中首先梳理了经典信息概念之所以成立的前提条件:一是可以用概率表示的可能事件集;二是信息是不确定的消除。进而对量子信息进行了考察,认为量子信息满足类似如经典信息的两个前提条件:一是量子信息描述微观事物的可能,并且量子信息是波函数的表达;二是量子信息也是通过编码、传递、解码来处理信息,量子信息是量子不确定的消除(量子信息Ⅰ)。他认为,量子信息与经典信息之间的这种家族类似性,使得量子信息可以归属于信息概念。最后,吴国林教授通过一系列的推导得出结论:量子信息是量子状态的显示(量子信息Ⅱ)。

来自加拿大多伦多大学的罗伯特・ K・洛根(Robert K. Logan)教授立足于系统生物学的观点对信息进行了定义。他在《什么是信息?为什么它是相对的?它和物质、意义以及组织之间的关系是什么?》一文中首先分析了申农信息理论的局限性,认为依据申农的信息定义,一组结构化的数据比一组随机数据包含的信息要少,并以此推出,随机有机化学物质原汤比结构化生物组织包含更多的信息;活体随着越来越结构化和组织化,所包含的申农信息也就越少;但是,这是违反生物学家直觉的。因此,罗伯特・K・洛根教授认为用申农信息理论来描述生物系统是失效的。他认为,从生物信息的角度来看,机体中的信息等同于约束性组织,它有助于机体从环境中获得能量来促进自身的增长和复制。生物体进行约束性组织的增殖,就是在进行信息构建。约束就是信息,信息就是约束,而这种约束就是生物组织,所以生物组织也是信息,反之亦然。生物信息不是象征性的,不像抽象性的符号信息,它不能和实在之物相分离,是实体化的,内嵌于生物体,作用于生物体。并认为,人类主要处理三种信息:遗传信息、认知信息和概念信息(符号)。

三、信息理论的发展

中国人民大学苗东升教授在《信息研究的中国路径在开拓中》一文中对信息相关理论进行了梳理。首先,他对申农、维纳、惠勒以及邬j的信息理论进行了评价,认为申农的信息理论回避了语义信息,为通信技术提供了有力的工具,但是申农信息论的优点也造就了他理论的局限性,认为申农信息论有待突破。苗教授认为维纳信息理论突破了申农信息论的框架,并指出了突破方向:抛弃机械唯物论,承认宇宙存在既非物质、亦非精神的信息,建立信息时代的唯物论。认为惠勒的信息观也有助于突破机械主义论,但是惠勒信息论是唯信息主义,是唯心论在信息时代的反映。苗教授对邬j教授的信息理论给予了高度评价,认为邬j教授既坚持唯物主义立场,又对传统存在领域发出挑战,将存在领域重新划分为物质和信息,并认为邬j教授以这种本体论为核心建构了自己的哲学体系,是对信息时代的哲学回应。此外,苗教授还在文章中以信息概念为核心对辩证法的发展历史进行了梳理,提出了构建信息时代唯物辩证法的重大课题。文章最后,苗教授对信息研究的中国路径也进行了梳理,指出中国的信息研究起步于1960年代,在1980年代出现研究高潮,并认为此次研究高潮得益于钱学森的推动,即“三论热”中的信息论热。苗教授还认为,钟义信教授、邬j教授、闫学杉教授三人的工作大体代表了当前中国信息研究的学术水平,并认为,在中国只有邬j教授形成了一支信息研究队伍。苗教授也肯定了中国其他一些信息理论研究学者的贡献,认为信息研究的中国路径正在开拓中。

还有一些学者从信息这一词的构词以及词义的流变来研究信息,来自于德国国际信息伦理学中心的拉斐尔・卡普罗(Rafael Capurro)教授从亚里士多德作品中的希腊语νóησιζ到阿拉伯语tas・awwur,再到希伯来语z・iyyur,再到拉丁语(in)formatio,讨论了一系列信息构词以及词义的复杂历史流变过程。卡普罗教授还认为,拉丁语的信息概念已经接近我们现代意义的信息概念,Informatio和 informo在整个中世纪被普遍用于认识论、本体论和教育学等相关文献之中,其中信息概念在托马斯・阿奎那(12251274)的作品中得到了最充分的展现。卡普罗教授还认为,在拉丁语中(in)formatio第一个含义代表着“不可分之物”,第二个含义被用来对名字或符号构成的正确与否进行判断。现代英语所用的information更多地保留了信息这一词的认识论上的含义,信息主要用来表示“告知”、“沟通”、“思想的形成”,20世纪随着信息理论的发展,信息概念开始紧密地和知识、科技等联系在一起。

中国青年政治学院肖峰教授在《许多信息“主义”》一文中梳理了众多的信息“主义”。肖峰教授认为,信息主义主要是通过“information+ism”的形式来形成的,包括四种:informationalism,informatism,informationism,informatilism。肖教授认为,informationalism最早可以追溯到加拿大学者大卫・莱昂的著作之中,被用来描述由于信息技术的广泛应用而带来的新的社会结构的出现,后来被美国学者曼纽尔・卡斯特尔泛化了,在他的著作中直接用“information”代替“information technology”(信息技术),认为信息技术从根本上改变了我们这个时代,此时“informationizationism”等同于信息时代,周理乾和索伦在文章中用“Paninformationalism”(泛信息主义)来表示一种哲学命题。肖峰教授还认为,“informatism”比“informationalism”一词出现得更早,被用于文艺领域,包括信息艺术、数据艺术、电子艺术等,主要用来描述那些借由电脑、新媒体、网络、数据处理等信息技术手段来实现的艺术形式,“informatism”也应用于哲学,拉斐尔・卡普罗用“dialectical informatism”(辩证信息主义)来评价沃尔夫冈的信息进化论方法,用以区别“dialectical materialism”(辩证唯物主义)。Informationism被理查德・普莱斯用于表述一种新的哲学趋势。中国学者沈新曦单独把“informatilism”当作一种哲学范畴来使用。

四、信息科学探索

北京邮电大学钟义信教授在《信息转换与智能创生的定律》一文中深入分析了阻碍信息科学发展的原因,钟教授认为主要有三点:一是信息科学研究者学术背景的差异,这些背景包括了图书馆科学界、计算机科学界、通信科学界、信息哲学界、社会信息学界、生物信息学界、艺术学界等,这些不同的学术背景使得相关研究人员对信息科学的理解不甚相同;二是信息科学研究者视角的差异,不同的视角使得研究者对于相同的信息产生了不同看法;三是信息科学研究者的方法论的差异。钟教授认为,方法论上的差异是这些原因中最重要的,传统的“分而治之”的方法论已经不适应于信息科学的研究,而应当将“转而创之”的方法应用于信息科学的研究。钟教授认为,“转而创之”就是“信息转换与智能创生”,具体而言就是通过信息手段来实现智能创生。文章通过一系列的模型和公式推导,研究了“信息转换与智能创生定律”,并认为这一定律是信息科学的核心定律,几乎适用于所有领域,包括人、生物、非生物和人造机器等。

中国科学院大学颜基义教授深入挖掘了申农信息理论中的关键理念,使得申农信息理论的价值重新得到了突显。颜教授认为,从信息去意义化方面来看,正是由于申农信息理论没有考虑信息的意义才使得他的理论和“communication”紧密相联,由此也发挥了很大的作用;从不确定性方面来看,由于“不确定性”现象的普遍存在,而“不确定性”又是申农信息的基本属性,这就使得信息能够和自然界、人类社会中的各种纷繁现象建立起联系;从冗余度方面看,申农的冗余度概念有利于当今的通信实践和“大数据”工作的发展;从点对点的关系方面来看,申农通信理论中的点对点关系抽象为当今的通信应用留下了十分广阔的空间;从逆向推断过程方面来看,申农信息论中的解码过程本质上就是一个逆向推断过程,对于许多技术都有所启发,比如机器翻译;从communication方面来看,尽管申农的信息论去意义化了,但是毕竟是一种通信理论,人类社会离不开communication,所以申农信息论从一开始就同时踏入了科技和社会领域。此外,颜教授还认为莫比乌斯带应当是我们的时代图标,在信息时代,人们自由地在真实世界与虚拟世界之间转换着,他还发现此次国际信息科学峰会的图标正是莫比乌斯带。

北京大学闫学杉副教授在《统一信息科学的三种实现方法与三种可能的前景》一文中认为,人们可以通过直接统一法、级进统一法和特别统一法等方法来建立统一信息科学,并认为无论采取哪种方法,统一信息科学的前景都不超过三种:大信息科学、小信息科学、类信息科学。紧接着,闫学杉副教授详细介绍了这三种方法和可能的三种前景:直接统一法就是将各种信息学科的共同信息特性和问题进行直接统一;级进统一法就是首先将性质相近的信息学科进行统一,然后在此基础之上再进一步统一,一步步最终达到统一的目的;特别统一法就是采取一套特别的方法对信息学科进行一步到位的统一;大信息科学是指有常规科学性质的科学,包含许多子学科;小信息科学是指有交叉科学和跨科学特点的科学;类信息科学是指包含有若干类的信息学科群。

五、信息哲学和信息科学的互动融合

西安交通大学邬j教授认为,信息哲学和信息科学是互动融合的。首先,人类的普遍理性认识方式是哲学和科学内在融合的根据。哲学是追求普遍理性的活动,但是科学并不是单纯的感性活动,也应当包含普遍理性,哲学和科学在普遍理性的认识方式基础上可以融合。其次,普遍理性的层次性导致了哲学和科学划界的相对性和相互规定性。普遍理性是有层次的,不同学科之间只有普遍理性层次差异,而无有无的区别,并且高层次普遍理性和低层次普遍理性之间存在着双向作用,是彼此规范、融合的,所以哲学离不开科学,哲学也应是一种科学,科学也离不开哲学,科学也应是某种意义上的哲学。此外,哲学和科学之间不仅能够融合,还能实现科学对哲学的改造,哲学对科学的批判,哲学的自我批判。邬j教授将科学对哲学的改造看成是普遍理性的层次跃迁,将哲学对科学的批判看成是低层普遍理性局限性的剔除,哲学的自我批判看成是高层普遍理性结构的改变。邬j教授通过信息维度的引入,改变了传统哲学和科学的范式,并提出了“科学的信息科学化”的看法。

来自法国国际跨学科研究中心的布伦纳(Joseph E. Brenner)教授在《信息哲学与信息科学的融合》一文中,首先对邬j教授的信息哲学理论以及邬j教授所做的努力进行了简要的介绍,并认为邬j教授的信息哲学思想对科学和哲学都形成了强有力的冲击。同时,他也提出了自己对于信息哲学与信息科学相互融合的相关看法,认为信息对科学的影响不应当只被认为是影响到了单一的“科学”学科,而应当有更广范围的影响。他认为科学应当包括两个方面:第一,在“硬件”和“软件”的方向上,大约可以分为实验性的科学和概念性的科学;第二,两种不同科学学科的相对独立性。信息科学和信息哲学内在的结合是依据于它们的信息特性。由于信息的多种二重性(物理性和非物理性,动态性和系统性),使得信息无论是在科学上还是哲学上都难以定义,但是信息的特性是科学和哲学都共有的。信息的认识论性质体现了它的科学性,信息作为一种意义的载体体现了它的哲学性。布伦纳教授还指出,跨学科是一种新的理论,这一理论将不同的学科思想融合在一起,不同的学科之间的“交织”有利于更进一步地理解信息和巩固信息科学的基础。并认为,信息哲学作为科学和哲学融合的成果也应当加入到跨学科的进程当中。

来自日本国际教养大学的麻生(Marcin J. Schroeder)教授采用新的范畴来定义信息,将信息看作是哲学和科学的融合点。麻生教授首先分析了亚里士多德、弗朗西斯・培根等人关于科学和哲学的划分依据,认为随着科技的发展,亚里士多德和弗朗西斯・培根的学科划分方法无法解决现代科学中的相关问题。并认为,信息既不能用具体的科学理论,也不能用具体的哲学体系对它进行定义,它是超越科学与哲学的。麻生教授指出,信息的概念涉及到东方哲学中的“一”和“多”这一对范畴,这对范畴超越了一般的科学和哲学的划分原则,通过“一”和“多”来定义信息才能彰显出信息的独特地位:信息是哲学和科学的融合点。麻生教授认为,“多”中选“一”就是信息的选择表现,生成许多的“一”就是给“多”一个限定结构,是信息的结构表现。选择的程度能用作信息的数量特征,结构的程度能被用来描述信息的集成水平,这两种表现可以共存,是信息不同的载体。

六、信息社会

奥地利贝塔朗菲系统科学研究中心的沃尔夫冈(Wolfgang Hofkirchner)教授在《全球可持续信息社会的信息――大分岔势在必行》一文中提出,信息科学将关乎人类的生存与兴旺,并用自己创立的信息理论分析了我们正在经历的全球性挑战中所形成的危机,且提出了相关对策。他首先探讨了进化的路径模型,然后指明了全球可持续信息社会(GSIS)的进化方向,接着分析了全球性、可持续性、信息化等概念及其对于实现全球可持续信息社会的作用,并指出信息是影响全球可持续信息社会实现的重点。沃尔夫冈教授接着借助于自组织系统给出了信息的3C模型,即:认知(cognition)、沟通(communication)、合作(cooperation),并将这一模型用于分析全球可持续信息社会的社会特征,同时指明了人类最终会实现世界主义大同社会。

The Summary of the First International Summit of Information Science

and the Second International Conference of Philosophy of Information

WANG Liang

生物信息学论文例9

早期哲学家意指的“自然”(Physis)特指事物运动变化的“本性”(Nature)、“本原”(Arche)、“太初”。这种最初存在的东西在事物运动变化过程中始终起作用,它们赋予事物质料,是最原始的“基质”,并内涵引导形成事物运动和存在的秩序的“原则”。这一“自然”存在与中医和气功等传统文化的“气”或“元气”概念是一致。近代以前,这种存在之物只能存在于哲学家的主观思维和意识对象之中,与物理科学的实证实验对象无缘,但是现在前沿的量子物理学已为这种以前只能靠思辩或“神秘”体验去把握的存在对象提供了客观实证的物质基础———量子真空零点能全信息场。从一元论宇宙发生论和科学认识的客观信息性上,只能将这一本体的客观存在称为“信息场”、“本体信息”,它是未显现的宇宙“隐信息”、“所有信息”(全信息),中华传统文化称其为“道”、“无”。它通过生成“气”来化生宇宙万物世界。〖信息生命科学〗的“信息”即是立足于这一“量子真空零点总信息场”(“道场”)的宇宙本体信息而言。

2尧信息生命科学对气功尧中医和武术基础的野气冶理论解读

(1)信息生命系统中与先天“炁”和后天“气”生成世界万物的暗物质暗能量宇宙本体隐信息源———“道•气”场,布达佩斯俱乐部的欧文•拉兹洛将其比喻为“微漪之溏”,显性世界只是本体宇宙“池溏”背景上的微漪。这一混沌的生成本体,老子给了其恰当的描述,“有物混成,先天地生,寂兮寥兮,独立不改,周行而不殆,可以为天下母。吾不知其名,字之曰道”(老子•25章)。著名量子物理和科学思想家戴维•玻姆创造了隐含序(Implicateorder)的概念,与显现序(Explicateorder)相对,表达了这一宇宙本体的特征;(2)气功修炼和医学实践中对生命“先天元气”的提取和运用;(3)元气的本体信息多维复合一体性的物理奥秘———纵波磁旋构成的挠场;(4)传统文化中的天(地)、道(德)、无极(太极)、性(命)都与这一本体信息场相应。3尧结论和建议在道(气)一元的基础上,运用信息生命科学整合中医、气功和武术等,是传统文化创新的科技之路。

参考文献

[1]赵敦华.西方哲学简史[M].北京:北京大学出版社,2001年1月,第一版.

[2]戴维•玻姆著,洪定国等译.整体性与隐缠序[M].上海:上海科技教育出版社,2004.12.

生物信息学论文例10

本文进一步指出,信息/熵是比质点、物质、力、引力更重要的物理实在,通过信息/熵可以了解力、引力、量子等。换句话说,信息/熵是本质,力是表象,力起源于信息/熵。从某种程度上说,信息/熵即量子引力作用,量子即信息。因此本文立足于更本质的广义信息,以一种全新的视角看我们的世界,给出了描述我们这个世界的一种新框架,可以贯通物理、化学、生物、生态、经济、社会、心理等分支,实现客观与主观、物质与精神、唯物与唯心、可逆与不可逆、生命与非生命等的统一。本文最后给出该新框架在复杂生态系统中的应用案例。

2 一个唯信息论的理论模型

2.1 近现代物理学的理论模型

近现代物理学以小球(质点或场)为对象,坚持先有物质、后有联系的原则,在简单动力学因果(力学的、可还原的、对称的、单调的)下,定义质点、惯性系、运动、力(场)、时空,得到了牛顿力学方程或哈密顿力学方程。

形成了从牛顿力学、电磁场理论、平衡统计力学、相对论到量子力学的近现代物理学的理论框架,论述了物质、时空、运动、力等大千世界的可逆的、确定的物理运动现象。这种基于简单动力学因果的法则导致了力、运动、物质(或能量)的还原性和客观性,也即式(1)有如下特征:牛顿力学方程必须基于惯性系;能量或哈密顿函数H是可积的;刘维算符L 具有正则性和厄米性。于是世界便是物质(或能量)在力的作用下运动或转化,因此便有了“世界除了运动的物质或物质运动以外,什么都没有”的图像。这种图像看似很合理,但似乎还有不少东西(如主观、精神、心智、不可逆、有机性、活力、生命等)没法包含进来,因此也会有上帝第一推动的困惑。

确实,由于简单的物理运动还属于比较低等的运动现象,大千世界还有许多更高级、更复杂的运动现象,因此,在物理学的前沿领域,则进一步兴起了系统科学、非线性科学、自组织理论、非平衡统计力学、复杂性科学等,它们主要以式(1)所示的微观动力学为基础,引入粗粒化、新概率因果或其它假设,形成以经典熵/信息为核心的统计力学,实现从微观可逆动力学、中观动理学到宏观非线性偏微分方程的推演,从而研究生命、秩序、心智、文明、进化等更高级、更复杂的世间万象。显然,这种思路仍是基于物理学的还原逻辑,具体说来就是,以近现代物理学的可逆动力学为基础,要么是像非线性科学那样在可逆的动力学基础上加入非线性作用,要么是像自组织理论和统计力学那样人为地引入了粗粒化和新概率因果假设,要么像系统科学和复杂性科学那样人为地假设组元间的复杂作用规则,从而实现对生命、秩序、心智、文明、进化等复杂世间万象的形成机理的分析。不可否认,这种思路取得的成就是巨大的,目前也是科学界的研究主流。但显然,近现代物理学中所谓的质点、物质、惯性系、运动、力(场)、时空都是一种简化,是一种实用主义的唯物观,描述了一个客观的、简单的、可逆的、确定的机械唯物的世界,以其揭示宇宙的简单物质性方面是足够的,但进一步以其为出发点研究宇宙的生命、秩序、心智、文明、进化等复杂世间万象方面有先天的固疾。其实在力的起源上牛顿必须求助于上帝的第一推动时已揭示了这种固疾确实是先天存在,今天现代科学在许多前沿问题如四种力统一、宇宙奇点、客观与主观、物质与精神、唯物与唯心、可逆与不可逆、生命与非生命、G?del 不完备性等一系列根本问题上的大量困惑只是具体表现,它们只是让这种科学根基的先天固疾昭然若揭而已。所以总体来说近现代科学的唯物论正遭遇到重大挑战,必须从根源入手探讨修正方法。

2.2 一个唯信息论的理论模型

我们把自然实在看成生成性网络(整体),大自然是个整体,对大自然来说,是先有联系(信息),后有物质,生成性网络的联系、信息创生万物。换句话说,对自然来说,信息是比物质和力更根本的本体,可以用一种以信息为本体的唯信息论去取代以物质和力为本体的近现代科学的唯物论。

当然以信息为基础建立物理学并不是一个陌生的概念[5]。300 多年前,莱布尼兹就有了从信息出发建立力学的思想。自上世纪50 年代以来,学术界已在热力学的基础上发展起了信息熵的概念。近年来,量子信息的出现,信息概念开始融入量子力学研究,为理解量子物理学的基础问题提供了一个新的途径,量子信息和量子计算对整个社会的信息格局有巨大的冲击。最近,不少著名物理学家如John A Wheeler 和Lee Smolin 等意识到,对整体网络这样的研究对象,应坚持先有整体网络结点的物理过程之间的信息交换、后有场和时空的观点[4]。现有不少研究也暗示,很可能是先有表征正如现代科学自身逻辑揭示出的黑洞视界熵、确定性混沌、彭加勒共振、量子测量坍塌之类的整体论的信息、或全息原理,后有力/量子引力[2]。一句话,我们需要直接从整体网络中提炼信息概念,重新诠释力、时空和动力学等概念。如目前Frieden 利用Fisher 信息重构了物理学,也有人从量子信息角度理解重力[2]。这些研究确实是试图从反映整体网络的信息/熵角度修正牛顿力(能量函数、哈密顿函数或作用量函数)、时空观和动力学,提出新的物理学方程,从而尝试重建物理学[6-7]。

不过,总体上,这些信息概念起源于经典熵,仍基于物理学的还原逻辑,对本原的整体性和有机性理解是不充分的;这种信息熵概念是狭义的,不具有本体论的意义,仍是附属于物质上的派生品而已,没有从根本上替代力和物质实体,也仅限于用在通讯等技术和数据统计领域而已。遗憾的是,目前几乎所有的信息熵概念都是以其为基础的。因此,不难理解,以其为基础来重建物理学是不可能成功的。

广义信息熵及其最大化原理会导致涌现出有序结构,实际上是产生沿λk>0 模式的最小流动阻力或最大流量的流动(即形成特定构形或流动)。直观看来,由于组元xi 的不断时空演化,对应的网络前峰就不断在以最小阻力的形式流动并持续变形,就像一团流体,从而导致复杂系统结构的演化。因此,一个复杂开放系统结构的演化实际上就是生成性网络或一团流体(或气)在时空上以最小流动阻力或最大流方式的蔓延,条件允许,其往往会形成发展层次分形结构。这是一幅生动的宇宙图像:物质、时空、生命、活力、社会、组织、秩序等,该图像可给出牛顿式的物质世界图像(最简单的、最低层次的图像),也可给出引力理论和量子理论给出的图像,也是系统科学、非线性科学、自组织理论、复杂性科学、统计力学给出的图像。它可以看做是这个有机自然的图像。

显然,通过定义ρJ 及MFP 这种方式就产生和构造了力和时空,即在图2 的网络上由不断的信息操作(多样化的、复杂的、内置的、非对称或更高级对称的联系)这种全新的因果关系而产生流动的、进化的、稳定的、公用的序结构,这种结构的出现不仅就是我们感受到的物质、时空、运动、力等物理现象的起源,也是生命、秩序、心智、意识、文明、进化等世间万象的起源。而MFP 揭示了信息熵最大原理正是产生流动的、进化的和稳定的结构,从而产生物质、时空、运动、力、生命、秩序、心智、意识、文明、进化等世间万象的调控法则。上述体系相当于找到现代物理学的深层次基础。相对论力学认为,没有万有引力,只有时空弯曲。现在则可以这样表达,没有万有引力,只有最大化的广义流或信息传递,万有引力是最大化的广义流或信息传递的结果。时空、物质、力、量子、生命、意识、社会、进化等也是最大化的广义流或信息传递的结果。

信息、认知是产生一切的终级理由,这就是终级解释,所以进一步地追问终结原因是不必要的。其实作为一种哲学和科学的根本信念, 或者说一种假设,是无法基于逻辑推理加以论证的。

如上所述,在现有的现代科学逻辑中实现从物质到生命这样大跨度的贯通,必须基于以牛顿力学为基础、以经典熵/信息为核心的统计力学,从微观可逆动力学、中观动理学到宏观非线性偏微分方程,令人困惑的粗粒化和新概率因果假设不可少。本文则改变力和物质的思维方式,引入新本原,这不仅可描述物理学现象,也可与生命、意识现象等贯通起来。与现有系统科学、非线性科学、自组织理论、非平衡统计力学、复杂性科学等的研究思路有根本的不同。

3 唯信息论新模型在生态系统中的应用

生态系统作为由大量组元组成的典型复杂开放系统,其演化动力学是当前学术界的研究热点和难点。生态系统不同于以力和原子概念为主导的经典力学体系,而是一个以熵和信息概念为主导的非平衡热力学和统计力学系统,因此,上述的唯信息论的新模型可以在研究生态系统的演化中得到良好的应用。

以位于“日光城”拉萨市的拉鲁湿地为例,该湿地是目前青藏高原上受人类活动影响,生态环境和结构发生重大变化较为典型的生态系统之一。60 年代以前,该湿地面积曾有数十万平方公里,生态环境良好,生物多样性丰富。然而,70 年代后期以来,频繁的人类活动导致了拉鲁湿地生态系统的退化,严重地破坏了当地的生态环境。因此必须从湿地形成的机理上寻找原因,分析湿地结构形成的影响因素,从机理抓起,从而来治理高原湿地。 分析其原因,主要是人类活动的影响。自20 世纪80 年代中期在湿地东北面娘热沟、夺底沟山角下相继建立的一些采矿场和1990 年修建的“一江两河”农业灌溉引水渠对湿地积水状况影响最为显著。同时,1990 年后修建的一条长7.3km,宽3-5m,自东向西横穿湿地而过的拉萨中干渠,因渠底低于湿地地面高程1-2m,湿地中60%的积水和地下水通过该渠排走,因而湿地地势相对较高的东面就逐步成为了季节性积水或无积水的地带。虽然夏季雨季开始后,上涨的河水可冲越抬升的河床增大湿地积水覆盖面积,但湍急的河水所挟带的大量泥沙已致使北面河水入口处约有6.7-13hm 的湿地被沙化。同时,随着城市建设的加快发展,又有一些单位和个人进驻湿地,开展旅游项目和进行无规则放牧,对该湿地和拉萨市的生态环境造成严重威胁,进一步加速了湿地退化的进程。

从广义信息熵最大的角度来说,各种条件自始至终都影响着湿地生态系统中组元的变化,从而影响湿地生态系统中结构的形成,或者说,生态系统中的组元会通过信息的传递,极力去争取最大广义信息熵,协调发展形成新的食物链网络从而适应新的环境要求。在外部条件的影响下,湿地生态系统会突然失稳、结构发生突变,这就可能造成湿地生态系统向退化的方向发展。延伸阅读:农业田间信息技术的应用

2000 年湿地生态结构模式和1990 年的湿地生态结构模式比较接近,说明自1990 年后湿地的生态结构模式又逐渐的稳定下来,湿地生态结构没有发生太大的变化,湿地的衰退现象得到了一定的抑制,究其原因,是人们为了留住拉鲁湿地这片独特的高原内陆湿地生态系统,做了很多有效的保护工作。通过这些保护工作,鸟类,鱼类的数量减少趋势得到了控制,湿地芦苇、藏青苔草的生物量开始逐渐的增加。此期间的湿地生态系统中,人类的对外部环境的干预增强了关键物种从外界获取环境流的能力,物种通过竞争和协作,物种之间形成某种联系,从而组成新的自然生态网络;这种有序结构的形成增强了物种抵御外界干扰的能力,保持了系统的稳定性,有利于湿地生态的发展。

4 结语

本文的理论内核是信息生成万物,自然界多样化的现象可以看成是网络上信息的动态演绎过程(动力学原理就是MFP)。从无到有、从无序到有序、从简单到复杂、从无生命到有生命、从低等到高等、从物质到意识等,都可以看成是这团网络流体的流变形态的进化而已。过去,以物质为核心的近现代科学,在揭示宇宙的简单物质性方面是相当成功的,但在研究宇宙的生命、秩序、心智、文明、进化等复杂的、高级的世间万象方面遭遇到了客观与主观、物质与精神、唯物与唯心、可逆与不可逆、生命与非生命、Gdel 不完备性等一系列根本问题的挑战。本文提倡用信息本体取代近现代科学中的物质和力(或场)的本体,用信息论来解释现有的物理定律,重新看所谓的客观世界,许多挑战性疑难都可得到一定程度的解决。

另外,从实用方面看,本文的基于信息论的新物理学模型得到了对称破缺的力学方程,可以应用到物理、化学、生物、生态、经济、社会、心理等不同学科,描述结构、组织、生命、社会等复杂系统展示的现象。以拉鲁湿地复杂生态系统为例,本文的方法清晰地给出了生态系统结构的演化规律,论述了一个具有严格理论基础的完整分析复杂系统的模型,说明新的理论模型可以很好地应用到实际研究当中。

[1] Jaynes E T. Papers on Probability, Statistics and Statistical Physics[M]. R D Rosencrantz (ed.)。 Dordrecht:Kluwer Academic Publishers, 1989: 1-10.

[2] Frieden B R. Physics from Fisher information[M]. Cambridge: Cambridge University Press, 1998: 1-5.

[3] [比]普里高津。 确定性的终结[M]. 上海: 上海科技教育出版社, 2000: 20, 107. [5] 刘钢。 信息哲学探源[M]. 北京: 金城出版社, 2007: 73-74.

[6] 邬焜。 信息哲学: 理论、体系、方法[M]. 北京: 商务印书馆, 2005: 424.