期刊在线咨询服务,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

期刊咨询 杂志订阅 购物车(0)

安全监测系统模板(10篇)

时间:2022-09-08 03:30:45

安全监测系统

安全监测系统例1

0.引言

我国煤炭资源丰富,但开采条件复杂,自然灾害严重,47%的矿井属于高瓦斯或瓦斯突出矿井。在当前煤炭市场需求旺盛的推动下,部分煤矿存在突击生产或盲目超产现象,造成近几年矿井安全事故发生率居高不下。为保障煤矿的安全生产,除进一步加强煤矿安全管理意识外,关键是建立煤矿井下安全监测监控系统,形成煤矿井上、井下可靠的安全预警机制和管理决策信息通道。所以当前现代化矿井的生产不仅要解决煤矿生产过程中存在的安全问题、生产自动化的问题、又要了解各种与生产经营相关的信息。建立安全生产、调度和管理网络系统,对井上、井下安全生产全面了解,靠及时准确的信息指挥生产和防止各种事故的发生,已成为煤矿设计工作必须解决的问题。

1.煤矿安全监测监控系统的内涵和作用

矿井安全监测监控系统是传感器技术、信息传输技术、计算机应用技术、电气防爆技术和控制技术等多种技术在矿井安全生产监控领域应用的产物,对保障煤矿安全生产,提高生产效率和机电设备的利用率都具有十分重要的作用。矿井安全监控系统一般由三部分组成:①中心站(包括应用软件、计算机及设备);②信息传输装置(包括传输接口、分站、传输线、接线盒等);③传感器和执行装置。具体来讲,煤矿安全监控系统是指对煤矿的瓦斯、风速、一氧化碳、烟雾、温度等环境参数和矿井生产、运输、提升、排水等环节的机电设备工作状态进行监测和控制,用计算机分析处理并取得数据的一种系统。安全监控系统可以为各级生产指挥者和业务部门提供环境安全参数动态信息,为指挥生产提供及时的现场资料和信息,便于提前采取防范措施。另外通过对被测参数的比较和分析,系统可以实现自动报警、断电和闭锁,便于制止事故的发生或扩大;在发生事故的情况下,能及时指示最佳救灾和避灾路线,为抢救和疏散人员、器材,提供决策信息。

2.安全监测监控系统目前存在的问题

2.1通信协议不规范,可集成性差

因为没有一个符合矿井电气防爆等特殊要求的总线标准,所以现有生产厂家的监控系统的通信协议几乎都采用各自专用的,互不兼容。不同厂家产品之间缺乏互操作性、互换性,因此可集成性差,不易于系统功能扩展。在使用中,个别系统虽经多次升级改造,仍不能实现系统资源的有效共享,形成了一个个独立的“信息孤岛”,严重阻碍了矿井安全生产管理水平的进一步提高。

2.2传感器质量和性能

安全监测监控系统配接的甲烷传感器和CO传感器已成为矿井瓦斯综合治理和监测煤炭自燃发火灾害预测的关键技术装备,并越来越受到使用单位和研究人员的普遍重视。但在现场使用中,虽然系统主机、分站以及软件已经不断进行升级,但国产安全检测用的传感器几乎全部采用载体催化元件,长期以来我国载体催化元件一直存在使用寿命短、工作稳定性差和调校期频繁、灵敏度漂移以及制作工艺水平低等缺点,严重制约着矿井有害气体的正常检测。另外《煤矿安全规程》中对甲烷传感器的调校有严格的规定,调校工作需要专用器具和标准气样,对调校人员的技术水平有一定的要求。很多煤矿往往由于缺乏专业技术人员等原因而不能按时对系统进行维护和调校,甚至从不调校,严重制约了矿井有害气体的正常检测。

2.3现场管理和维护水平欠缺

尽管我国各省市煤炭管理部门都强制性要求各大、中、小煤矿的高瓦斯或瓦斯突出矿井必须装备矿井监测监控系统,而且近几年再次加大了对矿井安全生产的管理力度,但一些地方国有煤矿,特别是乡镇小煤矿,多数由于缺乏专业技术人员而不能正常使用和维护已装备的系统,甚至对系统配接的传感器根本不进行调校。另外,在大多国有煤矿还存在着监测监控方面的管理制度不够健全、对已经存在的监测监控管理制度执行不严、对监测监控系统的监督管理不到位等问题,严重地制约着安全监测监控系统的正常运行。

2.4诊断功能有待加强,系统的可维护性低

现场设备在线故障诊断、报警、记录功能不强,现场设备的远程参数设定困难,影响系统的可维护性。作为管理维护监控系统的辅助手段,部分系统只能对系统的通讯状况诊断,不能详细地判断故障的性质和故障点。但实际工作中要求能迅速判断出分站、传感器或电缆故障之间,或短路报警与真实超限之间的区别,为维护人员提供故障的类型和方位,以便于迅速处理故障地点。

3.提高安全监测监控系统良好运行的措施

3.1加强技术培训,完善管理制度

监测监控系统维护要求非常严格,所以在日常监测管理工作中采取多种形式提高维修人员的维修技术和操作水平,每月应组织理论和实践的学习,对新调入的安全监测员,重点加强对其基础知识的学习和培养,合理利用售后服务和兄弟矿井相互指导的便利条件,确保矿井监测系统维护的顺利进行。另外要建立细致严谨的管理制度,及时完善有关监测监控管理的规定和制度,有效提高相互监督、相互预警的能力。

3.2规范监控系统统一通信协议

通信协议不规范将造成设备重复购置、系统补套受制于人和不能随意进行软硬件升级改造等后果。为了改变标准不统一的局面,国家出台了很多规范性规程和标准对监控系统及信息传输协议等进行规范,如《矿井安全监控新标准、新规程汇编及矿井安全监控系统设计与选型手册》等。建议各监控系统统一通信协议,统一采用SQL数据库,采用统一数据格式,这样可以很方便对系统进行维修、补套、升级,也可以很方便的建立矿、公司(矿务局)两级数据存储中心,并与上级监管系统联网,实现系统资源共享。

3.3研究和开发高品质的传感器

国产安全检测用甲烷传感器几乎全部采用载体催化元件,严重制约着矿井瓦斯的正常检测,与国外同类传感器比较差距较大。所以国家科研院所应加大科研投入力度,进一步提高传感器应用的可靠性。

3.4发展专家诊断、专家决策系统软件

科研院所应开发专家诊断、专家决策系统软件。专家诊断应具有对故障的智能分析、判断功能,改变系统自检功能单一、简单的情况。在发生事故的情况下,能正确指示最佳救灾和避灾路线,为抢救和疏散人员、器材提供决策。

随着现代通讯技术和计算机技术的发展,高性能的煤矿监测监控系统在我国有着广阔的前景。安全监测系统是生产、安全及管理方面的一个实时监控系统,通过本系统可以使管理层快速、及时、准确地获取生产相关数据,提高决策的科学性,从而避免或减少因决策失误而造成的安全事故和财产损失。

【参考文献】

安全监测系统例2

煤矿安全监测监控系统在防范和减少煤矿事故的发生,提升安全生产水平和管理效能等方面发挥着重要作用。但近几年发生的多起煤矿事故暴露出产品自身和使用维护等方面也存在不少问题,出现了系统性能不稳定、设备老化、故障率偏高、运行不畅等现象,监测监控预警系统达不到预期目的。这就需要我们找出一套行之有效的煤矿安全监测监控系统技术改造的方法途径,使其发挥应有的作用,确保煤矿安全生产。

1煤矿安全监测监控系统使用现状分析

(1)目前,我国中、小型煤矿装备的监测监控系统大都是模拟信号传输,容易造成监测状态不连续,部分主机系统经常存在长时间(时长超过10分钟)无监测数据的状态。测控到的各类数据参数不直观,不能及时判断井下故障、报警、瓦斯的安全数据,甚至造成信息不共享,生产指挥不连续等现象。(2)现使用的煤矿安全监测监控系统,大都是2000年以来安装的第一批,无快速断电功能(分站常规数据采集方法是用脉冲计数式,单片机在一秒内对输入脉冲进行计数,时间到达一秒后计数停止)。系统版本低,功能设计不全,随着采煤工作面的不断深入变化,达不到瓦斯超限系统报警和断电等功能。(3)随着监控技术自动化、控制手段智能化的不断提升,煤矿对井下监测传感器测量稳定性、数据传输快速性和测量数值精准度的要求也越来越高。当前传感器及断电器的配备数量种类不足,使用的监测传感器存在产品质量和催化元件性能较差,抗击高浓度甲烷冲击能力低,传感器连线与动力电缆挂在同一个电缆钩上,使分站高频率信号叠加,容易造成“冒大数”等现象。(4)当前使用的煤矿安全监测监控系统由于设计上的缺陷,在线故障诊断、可维护性等功能不强,远程参数设定困难,维护性较差。

2煤矿安全监测监控系统技术改造达到的目的

(1)视频监测监控信号实现全数字化传输;(2)报警、断电等全自动化控制功能;(3)进一步提升各类传感器的防护能力;(4)增加自诊断、自评估功能,提升系统的可维护性。

3煤矿安全监测监控系统技术改造的方法途径

(1)实现全数字化。系统通过在各分站至中心站数字化传输的技术上,将一部分模拟视频信号经过网络硬盘录像机编码转换成可以进行网络传输的数字视频信号,使各类传感器、执行器至各分站升级为数字传输,实现安全监控系统的全数字化,更能清晰监控分析各类数据参数的安全、可靠性。

(2)实现自动断电、报警功能。改变现有的单CPU处理模式,改为多CPU处理模式,或多核CPU,缩短传感器脉冲计数周期,对井下传输的各类数据,用计算机进行比较分析处理。当井下监控设备发出声光报警时,提醒维修作业人员及时检修并做好撤离准备,抑制各类事故的发生或再扩大。还可根据瓦斯浓度大小、瓦斯超限持续时间、瓦斯超限范围等,设置不同的报警级别(响度或频度),实施分级响应。

(3)提高传感器的防护能力。将被测的物理量转换成便于传输和处理的电信号,经传输和测控分站连接,为测控分站提供信息。通过将井下监控仪更换成新的四模四开具有FSK传输形式的监控仪,具有串行码传输的各类传感器,能够提高系统传输的准确性、可靠性、高浓度甲烷冲击能力等。

(4)实现系统自诊断、自评估功能。严格按照最新版《煤矿安全规程》标准,正确设置传感器、控制器等设备,确保设备及通信网络工作状态良好,定期维护和校验各类传感器,传感器一般在10天内校验一次。中心站软件安装自诊断功能,改变系统自检功能单一、简单的情况。能够显示各种设备的故障类型、位置、传感器等设备及通信网络的工作状态。通过Modem或GPRS网络进行远程故障诊断,并根据情况进行修复或提供最新软件的在线升级。在瓦斯超限、断电需立即撤人的紧急情况下,可自动与应急广播、通信、人员定位等系统的应急联动。总之,系统经技术改造升级、更换相关器件、增设各类传感器后,解决了脉冲显示、冒大数、传感器防御能力低、性能不稳定等现象,提高了安全稳定性,降低了故障频率等。地面监控人员可以直接对井下情况进行实时监控,不仅能直观的监视和记录井下工作现场的安全生产情况,而且能及时发现事故苗子,防患于未然,也能为事后分析事故提供有关的第一手图像资料,为煤矿的安全生产奠定了坚实基础。

作者:邵明法 单位:临沂市煤矿安全生产监控中心

安全监测系统例3

        0 引言

        监测监控系统是融计算机技术、通信技术、控制技术和电子技术为一体的综合自动化产品,当将其作为一种安全预防技术设施应用到工业生产和社会生活中时,就称其为安全监测监控系统。在我国的工业安全事故中,煤炭工业的安全事故较为频发且性质严重,尤其以生产矿井瓦斯爆炸事故最为突出。为此,国家有关安全生产监督管理部门专门制定了“先抽后采,监测监控,以风定产”的十二字指导方针,由此可见,煤矿安全环境监测监控系统在煤矿安全生产中的重要地位。

        1 煤矿安全环境监测监控系统组成

        根据所述及概念,监测监控系统的功能一是“测”,即检测各种环境安全参数、设备工况参数、过程控制参数等;二是“控”,即根据检测参数去控制安全装置、报警装置、生产设备、执行机构等。若系统仅用于生产过程的监测,当安全参数达到极限值时产生显示及声、光报警等输出,此类系统一般称为监测系统;除监测外还参与一些简单的开关量控制,如断电、闭锁等,此类系统一般称为监测监控系统。

        煤矿安全生产监测控系统层次上一般是分为两级或三级管理的计算机集散系统,一般包含测控分站级和中心站级。每个测控分站负责某几路传感器信号的采集和某个执行机构的控制,实现了采集、控制分散;中心站负责数据的处理、储存、传输,实现了管理的集中。中心站与分站和计算机网络之间的通信、传感器到测控分站的数据传输、测控分站到执行或控制装置信号的传输,是通过传输信道实现的。

        监测系统一般由地面中心站,井下工作站,传输系统三部分组成。地面中心站一般有传输接口装置和若干台计算机,电源,数据处理及系统运行软件,存贮、打印、显示等装置组成。为了计算机稳定工作,一般还配备了机房恒温调节,不间断电源等辅助设施。

        井下分站和传感器构成井下工作站。井下分站的作用是,一方面对传感器送来的信号进行处理,使其转换成便于传输的信号送到地面中心站;另一方面,将地面中心站发来的指令或从传感器送来应由分站处理的有关信号经处理后送至指定执行部件,以完成预定的处理任务,如报警、断电、控制局扇开启等;并向传感器提供电源。

传输系统是用来将井下信息传输至地面和将地面中心站监控指令传输至井下分站的信息媒介。信道,信息传输的通道,监测系统大多采用专用通讯电缆作为信道。

        传感器与分站之间一般采用直接传输方式。我国国家标准规定传感器的输出信号应满足以下几种信号:模拟量信号有三种,频率输出(5~15HZ);电流输出为0~5mA;电压输出为0~100mV;开关量信号输出一般有±0.1mA、±5mA和200~1000HZ等。

        2 煤矿安全环境监测监控系统技术指标

        根据安全监测监控系统的组成,其主要技术指标,主要是以组成系统的各个子系统的技术指标为特征。

        2.1 测控分站 容量:是输入、输出量的个数及类型。例如,模入8,开入4个接点信号、4个电流形式信号等;开出4个TTL电平、4个继电器触点输出等。

        接配传感器:是指所接配传感器的种类、型号、测量范围、输出信号形式、供电电压、精度等。

        检测精度:是反映分站性能优劣的主要指标之一,一般用满量程的相对误差来表示。数值越小,则检测精度越高。

        另外,还有分辨率、转换时间、传输距离等指标。

        2.2 中心站 主机型号及配置:CPU型号,内存容量,硬盘容量,软驱数量、规格,配置外设的种类、型号、数量等,另外,还有备用主机的情况。

        容量:即系统可带分站的数量,例如,井下100个分站,地面10个分站。

        传输速率:数字传输的波特率,例如,600bit/s,1200bit/s。波特率越高,传输效率越高。

        另外,还有传输距离、可靠性等指标。

        2.3 系统信息管理软件 开放性好:组态软件数据库提供了开放数据访问接口,可以实现数据库的二次开发。

        安全性良好:所有的设计方案都充分考虑了系统的安全性,使用采集系统对监控系统的影响达到最小。

安全监测系统例4

0 引言

监测监控系统是融计算机技术、通信技术、控制技术和电子技术为一体的综合自动化产品,当将其作为一种安全预防技术设施应用到工业生产和社会生活中时,就称其为安全监测监控系统。在我国的工业安全事故中,煤炭工业的安全事故较为频发且性质严重,尤其以生产矿井瓦斯爆炸事故最为突出。为此,国家有关安全生产监督管理部门专门制定了“先抽后采,监测监控,以风定产”的十二字指导方针,由此可见,煤矿安全环境监测监控系统在煤矿安全生产中的重要地位。

1 煤矿安全环境监测监控系统组成

根据所述及概念,监测监控系统的功能一是“测”,即检测各种环境安全参数、设备工况参数、过程控制参数等;二是“控”,即根据检测参数去控制安全装置、报警装置、生产设备、执行机构等。若系统仅用于生产过程的监测,当安全参数达到极限值时产生显示及声、光报警等输出,此类系统一般称为监测系统;除监测外还参与一些简单的开关量控制,如断电、闭锁等,此类系统一般称为监测监控系统。

煤矿安全生产监测控系统层次上一般是分为两级或三级管理的计算机集散系统,一般包含测控分站级和中心站级。每个测控分站负责某几路传感器信号的采集和某个执行机构的控制,实现了采集、控制分散;中心站负责数据的处理、储存、传输,实现了管理的集中。中心站与分站和计算机网络之间的通信、传感器到测控分站的数据传输、测控分站到执行或控制装置信号的传输,是通过传输信道实现的。

监测系统一般由地面中心站,井下工作站,传输系统三部分组成。地面中心站一般有传输接口装置和若干台计算机,电源,数据处理及系统运行软件,存贮、打印、显示等装置组成。为了计算机稳定工作,一般还配备了机房恒温调节,不间断电源等辅助设施。

井下分站和传感器构成井下工作站。井下分站的作用是,一方面对传感器送来的信号进行处理,使其转换成便于传输的信号送到地面中心站;另一方面,将地面中心站发来的指令或从传感器送来应由分站处理的有关信号经处理后送至指定执行部件,以完成预定的处理任务,如报警、断电、控制局扇开启等;并向传感器提供电源。

传输系统是用来将井下信息传输至地面和将地面中心站监控指令传输至井下分站的信息媒介。信道,信息传输的通道,监测系统大多采用专用通讯电缆作为信道。

传感器与分站之间一般采用直接传输方式。我国国家标准规定传感器的输出信号应满足以下几种信号:模拟量信号有三种,频率输出(5~15HZ);电流输出为0~5mA;电压输出为0~100mV;开关量信号输出一般有±0.1mA、±5mA和200~1000HZ等。

2 煤矿安全环境监测监控系统技术指标

根据安全监测监控系统的组成,其主要技术指标,主要是以组成系统的各个子系统的技术指标为特征。

2.1 测控分站 容量:是输入、输出量的个数及类型。例如,模入8,开入4个接点信号、4个电流形式信号等;开出4个TTL电平、4个继电器触点输出等。

接配传感器:是指所接配传感器的种类、型号、测量范围、输出信号形式、供电电压、精度等。

检测精度:是反映分站性能优劣的主要指标之一,一般用满量程的相对误差来表示。数值越小,则检测精度越高。

另外,还有分辨率、转换时间、传输距离等指标。

2.2 中心站 主机型号及配置:CPU型号,内存容量,硬盘容量,软驱数量、规格,配置外设的种类、型号、数量等,另外,还有备用主机的情况。

容量:即系统可带分站的数量,例如,井下100个分站,地面10个分站。

传输速率:数字传输的波特率,例如,600bit/s,1200bit/s。波特率越高,传输效率越高。

另外,还有传输距离、可靠性等指标。

2.3 系统信息管理软件 开放性好:组态软件数据库提供了开放数据访问接口,可以实现数据库的二次开发。

安全性良好:所有的设计方案都充分考虑了系统的安全性,使用采集系统对监控系统的影响达到最小。

数据容量大:采用虚拟内存管理技术,理论上数据存储是无限制的(受硬盘空间和内存大小的影响)。

另外,还有响应速度、运行是否稳定、扩展性是否强、兼容性好等衡量指标。

2.4 防爆及防爆标志 根据国家标准的规定,爆炸危险环境用电设备分为2类。有瓦斯爆炸危险的矿井使用的电气设备为I类,除瓦斯矿井以外的爆炸危险场所使用的电气设备为II类。II类电气设备又分为A、B、C三级,这是根据使用场所的爆炸性混合物最大试验安全间隙或最小点燃电流来分的。II类电气设备还按最高表面温度的不同,分为T1-T6共6组。防爆型设备在外壳上的总标志为:“Ex”。

防爆型电气设备按防爆结构的不同,可以分为以下几种类型:增安型、隔爆型、本质安全型、通风充气型、充油型、无火花型、特殊型等等。

3 煤矿安全环境监测监控系统的种类

监测系统按工作侧重点分为环境监测系统和工况监测系统两大类。每种系统又可能包含若干子系统。如环境监测系统可能配备瓦斯突出预报子系统、顶板监测子系统;工况监测系统可能配有综采监控、胶带监控等各类子系统。

环境监测系统一般侧重于监测采掘工作面、机电硐室、采区主要进回风道等自然环境的参数,其主要功能为监测低浓度沼气(4%以下)、高浓度沼气(4%~100%)、一氧化碳、二氧化碳、氧气、温度、风量、风速、负压、矿压、地下水、通风设施、煤尘、烟雾等参数,除实时显示检测数据外,还应按《煤矿安全规程》的要求及各矿井实际情况,在一定地点及工作场所设置报警(灯光、音响)和执行装置,以便防止和预报灾害。

工况监测系统一般侧重于监测机电设备,其主要监测参数有采区产量、井下煤仓煤位、采煤机机组位置、运输机械、提升机械监控、设备故障监测及效率监测等等。但生产工况监测信息并非全部要传输到集中监控系统之中。

一些大的监控系统通常包括环境监测与工况监测两大功能,适应性更为广泛。

4 煤矿安全环境监测监控系统的结构

煤矿安全生产监控系统的系统结构分为集中式和分布式。

4.1 集中式 集中式控制是一种中心计算机直接控制被控对象的系统。其特点是信息采集、分析处理、信道管理,控制功能均由地面中心站计算机完成。数据传输量大、负担繁重,中心站计算机是系统关键性节点,当中心站和传输通道发生故障时,将导致整个系统的瘫痪。

集中式控制系统大多为星型结构,其特点是结构简单,将多个节点连接到一个中心节点即可;增加、扩展节点十分方便。中心节点是整个系统的“瓶颈”,该系统的可靠性很大程度上取决于中心节点。

安全监测系统例5

高速铁路全部是电气化列车,接触网在供电回路中起着十分重要的作用。接触网作为一种露天、没有“防护外衣”的供电设备,要经受风、雷电、污染、冰雪和温度的考验及环境污染对接触网性能的影响,无备用特性决定了接触网的唯一性、重要性和脆弱性[1]。高速列车需要获取源源不断的能量,供电设备的运行可靠性、接触网日常检修及故障后快速维修至关重要。接触网的维护管理主要分检测监测、日常养护、专业修理(简称检测、养护、维修)3种业务类型[2]。检测是接触网设备设施科学养护和维修的重要前提,其重要性越来越突出。国铁集团不断强化技防安全能力,综合运用物联网、图像识别、感知系统等先进技术全面推进高速铁路供电安全(接触网)检测监测系统建设,打造全方位、全覆盖、一体化的综合供电检测监测体系[3-4],获取海量高质量接触网动态和静态状态检测监测数据,信息收集完成后通过6C数据中心进行综合数据分析,从而实时或及时掌握接触网设备设施运行状态,提前发现其存在的缺陷和安全隐患,为实现精调精修提供科学依据。

1检测监测技术

高速铁路供电安全检测监测技术发展最早是德国,其次是英国、法国、日本。为提高工作效率及安全性,主要采用接触式和非接触式检测技术。1.1接触式检测技术该技术需要受电弓与接触线接触,不同功能的传感器布置在受电弓上,如在受电弓托架上安装接触压力传感器和加速度传感器。1.2非接触式检测技术激光测量、高清摄像机、图像识别处理技术被应用到高速铁路供电安全检测中,不需要与接触线接触,如定位器坡度确定是基于高速图像处理实时对拍摄的视频进行分析得到的。1.3测量补偿系统不同的测量技术得到的参数都是用来指导接触网维修,其中列车行进过程中检测到的参数虽能真实反映运行中的弓网状态,但是接触网工对接触网隐患或故障检修都是在静态下进行的,因此要对动态测量值进行补偿,使其与静态测量值相当。

26C系统介绍

6C系统为高速铁路供电系统运行维修模式变革提供全方位技术支持,主要包括6个子系统,具体如图1所示,其主要巡检参数如表1所示。

2.1高速弓网综合检测装置

(1C)该装置是整个系统中检测项目最多、精确度最高的装置。它进行等速检测,即综合检测车的运行速度和高铁实际运行速度相同。检测数据自动分析完成后生成检测报告下发给相关铁路局。该装置通过高速综合检测列车上的接触压力、加速度、角位移导高、网压等不同功能传感器实现对弓网接触力、硬点、导线高度、接触网电压的测量;采用紫外光电管、激光雷达、摄像机等装备对离线、动态拉出值、定位器坡度等进行实时检测。在联调联试和运行维护中应用可以实现以下功能:(1)接触网工程静态验收合格后,评价和验证其系统功能;(2)依据高速铁路接触网动态检测评价标准检验接触网系统的施工质量;(3)通过对采集的数据进行分析,指导接触网系统进行优化、调整,同时对运营高速铁路进行周期性检测,其数据直接指导供电设备维护单位进行维修。

2.2接触网安全巡检装置

(2C)该装置主要是代替接触网工步行巡视,提高效率和准确性。该装置结构简单,为便携式设备,主要包括高清摄像机和图像处理设备两部分,将其放置在列车司机室,摄像机负责对接触网外部环境录像、图像采集系统对数据进行存储和分析。该装置可以采用智能分析,工作人员也可以利用分区或参照分析轻飘物和危树侵限、鸟窝、接触网零部件松脱、断裂等问题。2C检测周期不固定,特殊情况时可以加密检测次数,例如鸟害高发期。

2.3车载接触网运行状态检测装置

(3C)该装置安装在实际运营的高速列车车顶,距离受电弓2m左右的位置,供大部分功能与1C相同,例如拉出值、硬点、导高的测量等,还可以实现弓网受流状态异常监测,例如弓网离线引起的电火花。此外,还可以非接触检测绝缘子的绝缘状况,以及实现对1C采样参数的加密采集,可以全天候(昼、夜、风、雨、雪、雾)及时反应高速铁路接触网与受电弓运行状态。

2.4接触网悬挂状态检测监测装置

(4C)该装置替代人工检查,大大节省人力成本,提高检查效率。大量的矩阵相机、高清摄像机、补光装置等安装在接触网作业车或专用车辆车顶,可以对接触网静态几何参数实现连续测量,并根据得到的接触线高度及接触线横向偏移等参数判断锚段关节、中心锚结处是否平顺和跨中是否有负弛度等。它还可以利用清晰度极高的摄像机对定位装置、接触悬挂和附加悬挂涉及的零部件进行全方位成像检测,其图片清晰度足够自动识别零部件的松动、断裂、脱落等一系列故障,其补光装置可以实现夜间“天窗”点检测,从而提高运输效率。它的扩展功能还包括定位器坡度检测、接触线探伤等。

2.5受电弓滑板监测装置

(5C)该装置以摄像机的形式安装在局界、段界、车站咽喉区、动车段列车出入库线等地点,采集的数据可以无线传输到视频存储系统。它可以实时监测高速列车滑动取流装置(受电弓滑板)的技术状态,及时发现异常,用于事故分析管理及故障责任区域划分,便于指导基层单位进行接触网隐患排查和故障维修。同时,高清成像摄像机可以实现车号识别,其扩展功能包括受电弓结构部件(含弓角、框架等)的缺陷自动识别、报警及受电弓动态性能监测。

2.6接触网及供电设备地面监测装置

(6C)为监测接触网及供电设备运行状态,在接触网的特殊断面分别设置接触网张力补偿在线监测、定位装置振动特性监测、电连接线夹状态在线监测、绝缘子状态在线监测、设备视频监控等装置,不同的在线监测装置实现分布式监测,分别完成以下功能:(1)线索张力监测;(2)线索振动及定位点抬升量监测;(3)线索温度监测;(4)绝缘子、高压电缆头、避雷器、隔离开关等供电设备状态监测。

3结语

近年来,6C系统已经在我国高铁接触网检测监测中广泛应用,并取得了较好效果。借助6C系统开展检测监测数据收集、分析、挖掘,为及时发现接触网缺陷、开展接触网状态修提供重要依据。

参考文献

[1]李瑞.四跨非绝缘锚段关节的缺陷分析和应对措施[J].郑州铁路职业技术学院学报,2018,30(3):9.

[2]王保国,张可新,杨桉,等.高速铁路基础设施维护管理及综合维修体系研究[J].中国铁路,2019(3):10.

安全监测系统例6

中图分类号:TP29文献标识码:A文章编号:1009-3044(2011)18-4477-04

Mine Production Safety Monitoring System Design

ZHANG Kun

(Huai Kuang Modern Logistics Limited Liability Company, Huainan 232082, China)

Abstract: Mine safety monitoring system is mine production safety signs and strong guarantee safety monitoring system, improve the technical level, the mine safety production, a coal miner's life safety has important significance.

Key words: ethernet; monitoring; interface

1 系统概述

矿井安全监测监控系统是矿井安全生产的标志和有力的保障,提高安全监测监控系统的技术水平,对矿井的安全生产、煤矿工人的生命安全有着重要的意义。

张集煤矿矿井安全监测监控系统,是引进美国HONEYWELL公司产品。该系统采用实时的网络化结构,具备完善的安全监测、生产监控、管理功能,对全矿井上、下环境参数及全矿各主要生产环节的生产过程,进行实时数据采集、传输、处理、显示、打印、对井下煤流运输系统进行集中监控,确保人员及设备的安全。

束管监测系统是引进澳大利亚MAIHAK 公司产品,能够连续监测CH4、CO、CO2、O2四种气体。系统作为矿井安全监测监控系统的子系统,达到数据共享的目的。系统真正实现24小时在线监测,并自动记录各路束管气体的数据分析结果,利用数据库进行气体爆炸性分析,预测气体含量的变化趋势。

对地下煤矿气体的分析是通过一些被选用的分布在矿里的抽样点(监控“位置”)来完成的。泵从抽样位置抽取的气体通过一个减湿器到气体分析装置。

气体分析是以持续循环的方式按顺序监控每个监控点完成的。每个监控点每小时被分析一次。PLC控制监控顺序。

每个抽样点被分析的时段是可调整的(停留时间)。在每个停留时间满期时,快速获取分析数值并临时储存在PLC中。这些数值数值被IFIX服务器历史数据库周期性扫描作为长期存储和分析。

HIMASS系统工具通过气体分析仪自动采集气体浓度数据,通过提供气体浓度报警,发展趋势,和图标工具实现煤矿安全评估,从而使得矿井的防灾抗灾能力显著增强。

监控地下煤矿气体是一项旨在减少爆炸和减少火灾危险的重要的且安全的过程。在矿井空气中存在各种气体,不同浓度的上述气体能产生潜在的爆炸。例如工具:考沃德三角形、Ellicott图表、格雷厄姆比率都是实时展现气体分析区域爆炸状态的绘图指示工具。

一个固定地点变的具有潜在爆炸性通常是一个相对缓慢的过程,大约需要几天,几周甚至几个月的时间。然而,早期在一个煤矿中探测潜在爆炸区域包括以下内容:

早期有效措施用来防爆;

在职员周围潜在危险区域排成等级;

在严重区域早些排出等级/变布位置。

2 系统设计方案

2.1 现状

张集煤矿井下环境监测及生产监控系统为引进美国霍尼韦尔公司产品,该系统采用实时的网络化结构,地面网络采用以太网,井下网络采用先进的、本安的数据高速公路(DH+)网络,由网关(Controllogix)紧密地集成为一体。

地面以太网:由2台厂景系统服务器(piii 550,Plantscape r300,5000点数据库,Rslogix 500 3.01)、5台工作站、2台交换机、6个集线器和网关以及用于连接设备的光纤和铜缆组成。服务器、交换机等网络设备采用双环冗余结构连接。5台工作站按照使用权限,分别安装于矿调度室、通风工区、机电科。各工作站可从服务器管理的实时数据库中获取报警、报表、历史记录等数据信息。

井下数据高速公路(DH+):主要由以罗克韦尔公司的可编程控制器SLC500系列为核心的分站、连接光纤、铜缆和各种传感器组成。主干线缆采用光纤,传输速率为57.6Kb/s。分站具有数据处理、逻辑判断、控制功能,并配有彩显和键盘人机接口。系统可以通过网络作远程编程及程序下载。目前系统总的数据量大约为1000点左右。

HIMASS系统使用一直比较稳定可靠,这说明Rockwell系统本身是安全可靠的,为了满足整体网络的需要,通过IFIX组态软件,把Maihak系统的DH+485接口接入整体网络,实现远程监测。为此,我们把HIMASS系统改造成IFIX Maihak系统。

随着煤矿的开采,原设计中有些临时分站已撤除。系统中目前实际使用14个分站,其中井下使用11个分站,地面3个分站。

通过ControlLogix构成4条DH+分支网络,这4条DH+分支网络有3条下井,连接井下11个分站,构成井下东、西、北三个方向的监测监控网络。 如1所示。

地面分站由另一条DH+网络连接,分别接束管系统、压风机系统和提风机房分站。

目前Rockwell的系统主要用于监测,基本未用于控制。

目前系统本身工作稳定,这为矿井综合自动化打下了良好的基础。但外系统接入数据很少。由于通信协议等方面的原因,井下的11个分站接入的监测监控数据也较少,或未接入成功。

另外,网络设计时采用了DH+为监测监控的主干网络,这在当时是先进的网络结构。随着技术的发展,Rockwell公司又推出了更为先进的三层结构网络系统,分别为:工业以太网、ControlNet和DeviceNet。三层网络结构更适用于综合自动化系统,尤其是将来的管控一体化的信息化模式。

鉴于网络使用现状和新技术的发展,以及煤矿对综合自动化提出的新的要求,需对网络进行升级改造。

2.2 环境监测及生产监测系统改造方案

井下环境监测及生产监控系统采用就近接入的原则,井下11个分站就近接入变电所或泵房、变电所的分站中。井下的ControlLogix控制分站与SLC监测分站使用的是同一厂家的产品,可以直接通过DH+网与控制分站连接,把采集的信号传输到ControlLogix控制分站中。具体连接如下:

中央变电所、泵房分站:

FZ01 井下中央变电所

FZ09井底车场安维中心值班室

FZ17井底车场绞轮车值班室

东部采区变电所分站:

FZ13 东部采区变电所

-665变电所、泵房分站:

FZ026301胶顺机头

FZ04(-665)变电所

西部采区变电所分站:

FZ05西部采区变电所

FZ08西辅底

西部胶带控制分站:

FZ10西胶机头配电硐室

四采变电所、北部泵房分站:

FZ18四采区泵房变电所

安全监测系统例7

大坝安全监测是通过仪器观测和巡视检查对水利水电工程主体结构、地基基础、两岸边坡、相关设施以及周围环境所作的测量及观察。“监测”既包括对建筑物固定测点按一定频次进行的仪器观测,也包括对建筑物外表及内部大范围对象的定期或不定期的直观检查和仪器探查。

在初期蓄水和长期运行中,大坝都存在着发生事故的可能性。大坝一旦出现异常状态,必须及时发现和处理,否则可能导致严重后果。大坝失事不仅要损失全部工程效益,而且溃坝洪水将使下游人民生命财产遭受毁灭性损失。大坝安全监测是水库工程管理工作中最重要的一项工作。

现将岗南水库大坝安全监测系统现状进行简介。

一、概况

岗南水库大坝安全监测系统建设于2005年6月,是由南京南瑞集团公司开发的,应用于大坝水平位移、主坝的渗流、绕渗等与大坝安全密切相关的参量,提供测值预报,进行视图分析,描绘趋势曲线。本系统包括岗南水库大坝安全监测系统除观测仪器及其现地监测单元(Mcu)间的电缆之外的全套设备及材料(含软件、缆线)。

二、大坝安全监测系统的总体构成

水库的大坝安全监测系统由三个基本部分组成:

1、现地监测单元

2、网络通信联接

3、大坝安全监测中心

岗南水库大坝安全监测自动化仪器共29个,依据仪器的分布设置3个现地监测单元和大坝安全监测中心。现地监测单元分别为:主坝2个;调度大楼1个。大坝安全监测中心位于岗南水库调度大楼。

三、岗南水库大坝安全监测仪器的分布情况

1、渗流渗压监测仪器

岗南水库自动观测的项目包括主坝坝体渗流压力观测、坝基渗流压力观测,自动观测仪器为渗压计,型号4500AL,类型振弦式。共安装29支仪器,其中15支仪器电缆引至桩号0+500;14支仪器引至桩号1+150测控单元室内。

水库的大坝安全监测系统分为安全监测仪器部分和自动化网络系统部分。岗南水库的安全监测仪器分布情况如下:

大坝安全监测仪器配置表

2、环境量监测仪器

大坝安全监测系统对坝区环境量监测,设置1台雨量计和1只温度计;接入环境监测用的1套测控单元。温度计安装于玻璃钢制成的百叶箱内。

3、 通信方式和工作体制

岗南水库大坝安全监测系统采用分层分布开放式数据采集系统,运行方式为分散控制方式,可命令各个现地监测单元按设定时间自动进行巡测、存储数据,并向大坝安全监测中心报送数据。

系统内部的网络通信采用有线联接的方式;通信介质采用光缆。

大坝安全监测中心与水库监控中心通讯采用网络方式;通信介质采用网络线。

四、系统功能

1、监测功能

包括各类传感器的数据采集功能和信号越限报警功能;本系统能按运行要求,对所有接入系统中的各类监测仪器进行一定方式的自动化测量,存储所测数据,并传送到中央控制装置集中储存或处理,在中央控制装置故障、总线故障或系统完全断电情况下,各台测控装置自动按设定时间进行巡测,自动存储数据等待提取。断电后自动运行,时间可持续一周。每台MCU均具备常规巡测、巡测、定时巡测、常规选测、检查选测、人工测量的功能。

2、显示功能

显示建筑物及监测系统的全貌、各现地监测单元的概貌、监测布置图、过程曲线、监控图、报警状态窗口显示等。

3、操作功能

在工业控制机或管理微机上可实现监控操作、输入/输出、显示打印、报告现在测值、调用历史数据、评估运行状态;根据程序执行的状态或系统工作状况发出相应的音响;整个系统的运行管理;包括系统调度、过程信息文件的形成、进库、通信等管理功能;利用键盘调度各级显示画面及修改相应的参数;修改系统配置、系统测试、系统维护。

4、数据通信功能

包括各个现地控制单元与大坝安全监测中心之间的数据通信、大坝安全监测中心与岗南水库监控中心之间的数据通信、大坝安全监测中心与省水利厅监控中心之间的数据通信。

5、综合信息管理功能

包括在线监测、大坝状态的离线分析、预测预报、报表制作、图文资料;数据库管理及安全评估。

安全监测系统例8

矿井监测系统是由单一的甲烷监测和就地断电控制的瓦斯遥测系统和简单的开关量监测模拟盘调度系统发展而来。随着传感器技术、电子技术、计算机技术和信息传输技术的发展和在煤矿的应用,为适应机械化采煤的需要,矿井监测系统由早期单一参数的监测系统发展为多参数单方面监测系统,这些系统均针对某一方面的多参数监控。煤矿技工学校学生应当在原有知识点的基础上更多地了解煤矿安全监测系统的组成及矿井通风专业安全监测系统所使用的设备及注意事项等常规知识,为今后的学习和工作奠定良好的基础。

一、矿井监测系统的组成

矿井监测系统由环境安全监测系统、轨道运输监测系统、胶带运输监测系统、提升运输监测系统、供电监测系统、排水监测系统、矿山压力监测系统、火灾监测系统、水灾监测系统、煤与瓦斯突出监测系统、大型机电设备健康状况监测系统等组成。

二、环境安全监测系统

1.名词解释:用于监测甲烷浓度、一氧化碳浓度、风速、风压、温度、湿度、烟雾、风门状态、风筒状态、局部通风机开停、主通风机开停,并实现甲烷超限声光报警、断电和甲烷风电闭锁控制的监测系统。

2.功能:具有模拟量、开关量、累积量采集、传输、存储、处理、显示、打印、声光报警、控制等功能。

3.组成:由主机、传输接口、分站、传感器、断电控制器、声光报警器、电源箱、避雷器等设备组成。

(备注:主机:主要用来接受监测信号、校正、报警判别、数据统计、磁盘存储、显示、声光报警、人机对话、输出控制、控制打印输出、与管理网联络等。分站:用于接收来自传感器的信号,并按预先约定的复用方式远距离传输给传输接口,同时,接收来自传输接口多路复用信号的装置。)

三、各传感器的功能

1.甲烷传感器:连续监测矿井环境气体中及抽放管道内甲烷浓度的装置,一般具有显示及声光报警的功能。

2.便携式甲烷监测报警仪:具有甲烷浓度数字显示及超限报警的功能。

3.风速传感器:连续监测矿井通风巷道中风速的大小。

4.风压传感器:连续监测矿井通风机、风门、密闭巷道、通风巷道等地点的通风压力。

5.温度传感器:连续监测矿井环境温度的高低。

6.一氧化碳传感器:连续监测矿井中煤尘自然发火及胶带输送机胶带等着火时产生的一氧化碳的浓度的装置。

7.烟雾传感器:连续监测矿井中胶带输送机胶带等着火时产生的烟雾的浓度。

四、甲烷传感器或便携式甲烷检测报警仪等的设置和报警浓度、断电浓度、复电浓度

1、设置:甲烷传感器应垂直悬挂,距顶板(顶梁、屋顶)不得大于300mm,距巷道侧壁(墙壁)不得小于200mm,并应安装维护方便,不影响行人和行车;一氧化碳传感器应垂直悬挂,距顶板(顶梁)不得大于300mm,距巷道侧壁(墙壁)不得小于200mm,并应安装维护方便,不影响行人和行车;风速传感器设在采区回风巷、一翼回风巷、总回风巷的测风站,应设置在巷道前后10米内无分支风流、无障碍、断面无变化,能准确计算风量的地点;风压传感器是在主要通风机的风硐内设置;温度传感器应垂直悬挂距顶板(顶梁)不得大于300mm,距巷道侧壁(墙壁)不得小于200mm,并应安装维护方便,不影响行人和行车;烟雾传感器设置在带式输送机滚筒下风测10米~15米处。

安全监测系统例9

中图分类号:TM72 文章编号:1009-2374(2016)35-0021-03 DOI:10.13535/ki.11-4406/n.2016.35.010

配电站的安全监测系统是电力系统的重要组成部分,专门用来监测10kV线路、高压电力设备、变压器、配电站内部温度、湿度等,便于让电力部门了解配电站的具体情况,并利用安全监测系统来保护电力系统安全。本文通过对配电站安全监测系统的组成结构分析,提出了一些配电站安全监测系统的监测方法,对配电站的安全监测工作有一定的帮助。

1 安全监测系统组成

1.1 10kV高压监测部分

高压监测部分主要是监测断路器、搭接头等易引起故障的位置,包括湿度监测、温度监测、烟雾监测等方面,主要设备有温度传感器、湿度传感器、通讯设备、信号接收设备等,通过传感器获得监测数据,将监测数据经过通讯设备传输到中心处理系统,中心处理系统经处理后将指令发送到信号接收设备。

1.2 0.4kV低压监测部分

低压部分可以直接为供电,所以对于低压部分的监测是十分重要的。一般情况下,低压部分相比高压部分的温度会更高,所以对于低压部分的温度监测就显得尤为重要。低压部分主要监测断路器、刀闸、电容器温度、外界温度、湿度等。

1.3 变压器监测部分

变压器是配电站的重要组成部分之一,其内部结构比较复杂,所以对于变压器的安全监测要格外关注。变压器部分的监测除了监测内部线路的电压电流以外,还需要关注油温的变化。油温可以在一定程度上反映出内部线圈的温度,再结合外界温度和变压器的散热装置,可以大概地算出变压器的温度。

2 安全监测实施方案

2.1 电气连接点的监测

2.1.1 监测点的选取。电气连接点的监测点选取断路器、隔离刀闸、电容器等位置。

2.1.2 监测系统安装方式。将传感器的绑带和金属线接触,如图1所示:

2.2 变压器的监测

2.2.1 监测点的选取。低压侧将军帽的套管接线端以及散热板的油温,如图2所示:

2.2.2 安装方式。

2.3 外界环境监测

2.3.1 温度、湿度与烟雾监测。配电站需要安装温度传感器、湿度传感器以及烟雾浓度报警系统,以全面掌握配电站的环境情况。

2.3.2 安装方式。温度传感器与湿度传感器的安装可以利用支架支撑将其安装在墙壁上,然后将支架固定好;烟雾浓度报警系统一般是安装在天花板上;渗水检测器一般是安装在容易发生渗水或积水的位置,如图4所示:

2.3.3 移动监测报警法。移动监测报警指的是通过将之前的图像与当前图像进行对比,如果差异过大则视为入侵行为。这种方法只有监测系统处于防御状态,而且开启了这项特殊功能时才可以使用。

2.3.4 监测方法。可以将红外扫描与移动监测报警法相结合,实现对监测区域的有效监测。

将红外扫描探测器安装在视野比较开阔的位置,摄像头朝向监测区域内,一旦有带热辐射的人体进入监测范围内,10秒之后自动开启移动监测系统,并发出报警信号。这样可以有效减少系统误判断,提高监测准确度。

2.4 配电箱的设置

传感器采集到的数据通过通讯装置传输到配电器的接收模块,然后配电器根据需求分配电能。配电箱通常是设置在配电室的墙壁上,由室内220V的正常电源供电。安装效果如图5所示:

2.5 巡检专用手机软件

该软件有三个主要组成部分:工作任务部分、数据采集部分以及用户资料部分,所有任务清单都是根据客户指定的要求发送到任务平台,然后由配电站工作人员分配任务,将巡检过后的结果统一发送到后台处理中心。

2.5.1 用户资料部分。用户资料部分是用户通过正确输入账号密码即可登陆软件。该部分会立即显示用户资料,包括姓名、岗位职责、所属部门等。

2.5.2 工作任务部分。工作任务部分是指用户所接到的工作任务,并将工作任务的完成程度进行分类,分成“已完成任务”“未完成任务”以及包含两者的“全部”三大块。根据工作任务部分的情况可合理安排用户的工作进度和任务完成顺序,有效提高用户的工作效率。

2.5.3 数据采集部分。利用热成像技术对巡检现场的情况进行数据采集、储存,并通过设置调整数据信息的显示方式。

2.6 热成像技术

将热成像技术应用于配电站巡检当中,出现了小型化的红外热成像模块。这种模块占用空间比较少,而且能量消耗也比较低,便于移动。只需要将该模块通过数据线与手机连接在一起,就可以形成一个热成像装置,再结合手机专用的巡检软件,可以有效提高巡检效率,降低巡检人员的工作量。

当前市场上也出现过专业的手持热成像仪,但是手持热成像仪占用的空间比较大,所以移动起来也不太方便,使得巡检人员巡检效率降低。而新型热成像模块可以与手机连接在一起,只需要携带手机和模块以及数据线就可以完成热成像巡检工作,方便快捷,如图6所示:

3 后台处理系统

3.1 后台处理系统的组成

后台处理系统位于中心控制室内,里面包含了整个配电站运行系统的监测数据,利用这些监测数据就可以对配电站每个部分的运行情况进行分析、处理。

温度监测系统可以显示每个监测部位的实时温度数据,并可制作成温度曲线、报表等,具有很好的开放性;数据库内数据储存量十分庞大,可以再次对数据库进行开发。从温度监测系统的界面上可以观察到每个监测点所在的详细位置,并清楚地反映了各个监测点的温度变化状态。

温度监测报表可以将采集到的温度数据进行整理,自动生成报表,便于温度数据的储存以及历史记录的

查询。

温度曲线图则可以将各个监测点温度变化趋势直观地表示出来,使得监测人员对配电站各部位的温度变化情况有整体的把握,便于工作人员进行温度调整工作。

3.2 间接测温故障诊断技术

间接测温点所测得的温度会受到许多因素的影响,比如电路的回路发热功率、测温触头处电阻的热量、外界的温度、电柜的散热等。将间接测温点的温度变化与这些影响因素的变化规律进行比较研究,利用这种变化规律可以对设备的故障进行诊断。因为在设备正常运转状态下,各项参数变化都是很稳定、很规律的,所以温度变化也会相对稳定,如果温度变化规律出现了异常,那么就说明设备某一部分出现了故障。这个变化规律可以通过计算机模型的方式得到。将设备温度场分布情况模拟出来,最后得到各监测点温度升高参数。

故障诊断软件还包括其他部分:通讯部分、数据分析部分、报警部分、故障诊断部分、短信通知部分、系统管理部分、日志记录部分、用户授权部分、安全管理部分、服务中心部分等。

3.3 后台处理系统功能

(1)对配电站内部各项设备、露天电力设备以及设备环境等进行24小时实时监测;(2)对于各电气设备的接地设施的温度进行实时监测;(3)利用网络技术实现安全监测系统当中各计算机之间的正常通信;(4)自动在工作任务平台上定时发送工作任务,由巡检人员接受并完成以后,及时检查巡检结果;(5)利用通信系统将采集到的数据储存到计算机的总数据库内,以便于后期的数据分析和处理;(6)可将各个时间段的监测点温度数据调出,制作成温度曲线,通过比较各时间段温度曲线的变化,分析该时间段内设备的运行情况;(7)当监测点的温度超过预定上限、温度上升的速度超过预定最快上升速度时,立即开启自动报警功能,并以短信的方式通知负责该监测点所在区域的负责人,及时进行处理;(8)所采集到的温度数据储存到数据库内,可随时查询历史记录;(9)通过比较温度上升参数进行设备的故障诊断;(10)数据报表的生成打印;(11)用户权限管理分级,一共可分为三级。

4 系统技术参数设置

4.1 后台处理系统技术参数

(1)监测点数量的选择:一般是选择512个监测点,如果需要更多,可以设置1024个监测点;(2)系统可靠度参数:遥测不合格率要控制在0.01%以下;(3)系统实时性参数:遥测超越限度和遥信传送之间的时间不能超过5秒,所测数据的刷新时间也不能超过5秒;(4)系统画面的刷新时间也要控制在5秒以内;(5)储存到数据库内的数据信息至少要能保存一年以上。

4.2 数据采集设备技术参数

4.2.1 温度传感器技术参数。(1)准确度:测量误差控制在1℃以内;(2)最小分度值:0.1℃;(3)每次传输数据的间隔一般设置为4分钟;(4)测温范围:0℃~125℃。

4.2.2 电流传感器技术参数。(1)额定工作电压:小于35kV;(2)额定电流:10~1500A不等;(3)温度范围:40℃~110℃;(4)测温准确度:2℃以内。

4.2.3 热成像技术参数。(1)保证测温效果的最佳距离:5m以内;(2)热灵敏度控制:50mK以内。

5 结语

配电站正常运行直接关系到住户的正常用电,所以其安全控制必不可少。通过对配电站安全监测系统的研究,采取合适的监测设备安装办法,正确选取监测点,对配电站实行实时监测。同时将专业巡检软件应用到巡检当中,使人工巡检与设备监测相结合,提高监测的准确度。利用后台处理系统将所测得的数据收集整理入数据库,并制作成报表和曲线图,便于监测人员对设备运行情况的分析,及时处理故障,使安全监测系统发挥应有的作用。

参考文献

[1] 何芸.配电站安全监控技术应用研究[J].通信电源技术,2011,28(5).

[2] 丁平,张晓光,蒋恒深,仝维仁,石晓妹.井下变电所及配电站在线监测监控系统的设计[J].矿山机械,2010,38(10).

安全监测系统例10

中图分类号: X924.2文献标识码: A 文章编号:

1引言

随着计算机技术的发展,变形监测技术也在不断的发展,作为海岸安全,提防稳定性判断,往往是在获得监测数据后,利用计算机软件建立安全监测系统,进行自动化数据处理以及自动安全稳定信息判断,本文主要是阐述在构建海岸堤防安全监测体系以及相关应用方面的一些经验。

2系统结构

监测系统的大体形式共有三种:集中式、分布式、混合式。现代自动监控方式,多数的设计者则采用监测预警系统中的分布式结构。监测预警系统的组成,共包括5个主要部分:量测仪器、自动采集控制器、信息传输设备,以及其相应的安全评价理论模块和系统软件。系统又分为采集站(即测控单元)、监控主站、远程信息管理中心(如洪指挥中心)。采集站多设立在堤防监测断面(或堤段),多个采集站会分别用微波将信号传送到监控主站。一个监控主站可同时控制多个采集站,并向各采集站发送传感器设置、采集参数、报警参数等指令。主站的数据则会通过电话公网的方式被传输到或其它任何地方。

1)量测传感器

一般来说,堤防监测项目主要包括变形监测(内外部变形)、渗压监测、渗流量监测、环境监测(包括海水位、海水潮位、气温、海风等)等。其中最主要的是对水土压力和位移的监测。对于一个实体的堤防来说,应该根据该堤防的水文、地质、环境等因素,来选择合理的监测项目,并在监测项目的布置上做出相应的优化设计。对于不同的监测项目来说,传感器类型和型号有很多种,但监测方式各不相同。为使监测结果更加有效可靠,应从环境适应性、先进性、长期运行、可以实现自动化数据采集等方面的标准,对各种传感器进行对比筛选。从成本的角度出发,可以将高精度但昂贵的传感器跟稍低精度但价低的传感器搭配在一起使用。

2)数据采集站

采集站的主要任务有:数据自动采集、存储、通信等等,通常由以下由部件:自动采集控制器、电源、微波天线(也可采用总线)、防雷装置等部分组成。在设置采集站过程中,最关键的一步是监测断面的选择,这一步对堤防安全状态的监控管理是至关重要的,既需要综合考察地质、水文、环境条件和往年险情情况,也需要考察堤防线路的长短,为避免电缆埋设过长,一般监测断面之间距离以百米或千米计,各个采集站之间、主站之间具有各自的独立性,因此,采集站可以在主站停机的情况下,自行采集和处理数据。自动采集控制器,应根据堤防监测项目所输出信号类型以及通道数要求来进行设计。在可能的情况下,最好选用标准化设置,这样一来,不同类型的传感器都可接入,且不同的采集站均采用相同的软硬件。采样的时间间隔应合理选择。例如:某系统研制的采集控制器分多段设置,分别为1min、5min、30min、2h、4h等,控制器既可以自动测定,也可以手动定点显示测量数据,系统采集控制器可以设立报警限值,通过报警系统每秒会闪烁若干次进行提示,可以实现多通道报警(如发送数据到防汛中心,短信提醒,在网警报,甚至可以安装鸣笛报警系统)。

3)主监控站

主站的作用是对各个采集站进行管理和控制、发送和接收采集的信号、评价安全状态、报警、向远程信息中心或防汛指挥中心发送数据。为了便于堤防的安全管理和系统维护,监控主站多设置在堤防管理机构的办公用房内。监控主站由以下部分组成:自动监测预警系统软件、控制微机、微波等通信模块、Modem(调制解调器)、电话线路、防雷装置等。

4) 通信网络

在传感器、采集站、监控主站、远程信息中心之间进行数据和命令传输方式有:电缆、微波、电话网等组成的通信网络,信息传输方式可以根据实际需要进行选择,通讯专用电缆、超短波、及地球同步数字卫星等均可以作为信息通讯的手段。通常,系统中包含有三种通信方式:传感器与采集器之间由电缆线连接;采集站与监控主站之间可用微波方式;主站信息会采用通过电话网络以及互联网将信号传至任何地方,各通讯环节都应该在使用前中进行数据精密的检测,以确保不会发生通信故障或失真的事件。

5)安全评价

在预警系统这一环节中,安全评价模块则是更为重要的部分,必须要有安全评价模块,才能根据监测数据评价堤防的安全。安全评价的可靠性,除了依赖监测数据的准确性,其余大部分都取决于评价模块的合理性。因此,在预警系统设计过程中,一定要建立针对堤防具体条件和运行环境的合理的安全评价模块。从实际出发,由于现实问题的复杂性,更为合理的安全评价模块有待于在监测实践中进一步探究摸索。堤防渗流作用是介于饱和-非饱和、非稳定-稳定发展的一个阶段,加之,渗流场又有不同程度上的非均质,几何形状跟边界条件又很复杂。使得在采用确定的方法来计算堤防的汛期动态渗流变得异常困难,难以精确计算和考虑各种各样复杂的情况。一般,对于部分信息环境有非确定性的、会发生动态变化的状况,应该对现场观测的数据进行统计、处理、推断,直接用于堤防渗流险情的判断和预报比较合理。基于预警系统需要以及上述现状的研究,应建立以监测数据为基础的安全评价模块、滑坡预测模块这两种模块。前者主要观测土层实际承受的渗透水力坡降和土的临界水力坡降,对两者进行比较,然后分为安全、轻度危险、严重危险、即将破坏这四个级别的标准;后者采用灰色突变理论对堤坡位移和滑坡形式进行预测。另外,为了对下一时刻的渗流安全进行预测,项目系统还应建立流安全灰色预测模块。

3 监测系统软件

系统软件实现的主要功能包括以下几个环节:采集、检测、控制、存储、计算处理、安全评价及预测、通信等。

1)软件开发工具,软件开发平台选用普遍使用Windows操作系统的PC电脑,即可以满足一般预警系统的开发要求。设计者通常会选C#或者VC++、VB等通用语言作为标准的开发环境,这样一来可以广泛的利用Windows下的各种资源,如控件、OLE对象等。

2) 实现的功能,软件采用的模块结构,主要有数据的采集处理和安全评价预警这两大模块。软件的实现的功能有:

(1)数据采集处理模块:设采集站的选择菜单,监测所得的剖面图形既可以绘制也可以对其进行一定的局部修改;传感器,可以逐个的在监测剖面上进行安装或撤消,最后可以以填表的形式输入编号,类型、型号、量测范围等;可以随时设置或取消报警的限值;采集的数据会以传感器编号顺序形成列表,并标注采集的时间;以采集值的时间为轴,显示信号随时间的变化情况,时间轴可以自行定义,如秒、分、小时、天等;通过数据库总台可以随时调出、查看、编辑,甚至于另行存储。

安全评价预警模块:设有采集站的选择菜单,调用采集处理模块的数据;模块中含有渗流评价、预测模块、滑坡预测模块;评价结果自动弹出,因此当有警情时自动弹出报警窗口的同时,也会报警蜂鸣或电话拨号等指令。

(3)远程信息管理:接收监测主控站的参数和数据,随时了解堤防的运行现状;安装与主站相同的安全评价预警软件,使主站能够方便的对各采集站进行远程的安全评价和预测。系统软件应具备灵活适用、功能齐全等特点,才能适用于堤防的监测与安全预警。

4 结语

提防安全监测系统的构建并不仅仅是软件系统,整个系统构建还需要合理的监测方法和科学布置的监测点,自动化的监测数据采集系统和数据通讯传输技术;完善的安全评价和预测理论数据处理软件。综上所述,提防安全监测系统是一个由多项体系构成的综合系统。

参考文献: