期刊在线咨询服务,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

期刊咨询 杂志订阅 购物车(0)

温室效应现象模板(10篇)

时间:2024-04-10 14:52:01

温室效应现象

温室效应现象例1

引言

随着人们对建筑工程施工质量要求不断提高,尤其是对影响建筑使用功能的建筑屋面、厨房卫生间、外墙门窗以及地下室渗漏等问题要求越来越高,其反应也更为强烈,尤其是地下室结露问题其处理措施难度较大,因此分析地下室结露的形成原因并针对性的提出解决措施对提高建筑使用功能延长使用寿命具有重要意义。

1 结露现象概述

结露即在温差较大、空气湿度较大的季节,当空气内饱和的水汽遇到冷热温差,室内壁表面温度低于室内露点温度或接近墙壁表面温度,则空气内水蒸气则达到饱和状态并液化为水,水凝结后在墙体表面出现水滴附着的现象,水蒸气开始液化时的温度成为露点温度,简称露点,一旦环境温度继续下降到露点以下,则空气中超饱和的水蒸气将在地下室墙壁或其他物体表面凝结成为水滴。该种现象尤其在地下室内墙壁、地面,特别是当地下室通风不畅并且与地下室外土壤直接接触的地下室内阴角部位表现更为突出,该现象如长期存在则会导致内墙面长霉而影响使用,该现象在北方多发生在秋冬季节,在南方则多发生在梅雨季节【1】。

2 地下室结露原因分析

2.1 外墙裂缝渗漏

若地下室外墙裂缝或渗漏则易造成地下室积水,湿度过大最终导致墙体潮湿、结露,该种原因导致的结露往往在裂缝部位存在明显积水、渗水,且地下室外墙内侧普遍结露,同样不存在裂缝的房间内也存在结露现象,若通过对墙面裂缝部位混凝土进行剔凿其内部含水率应从内到外均偏高;

2.2 墙体孔隙渗水

该种现象形成原因主要是由于外墙内存在孔隙,或施工过程中混凝土振捣不密实,采用商品混凝土为掺加抗渗剂或抗渗剂效果较差,但若由于该种现象导致则其外墙防水也已经失效,若由于该种原因导致渗水结露则对墙体任何部位进行剔凿则内部均为湿润状态。

2.3 地下室湿度偏大

在夏季高温季节,根据热传导规律,在地下室外侧土壤温度、室内温度以及地下室墙体温度间存在以下关系:土壤温度低于墙面温度及室内温度,墙面温度低于室内温度。而结露现象的发生与空气湿度、温度密切相关,当高温雨季空气湿度加大,且该时段地下室内空气流通不畅,并且由于地下室地势较低,内部重的空气流向低处而加大了地下室的空气湿度,并且室内长期不见阳光,导致室内空气湿度接近甚至超过饱和状态,而地下室外墙外侧与周围土壤直接接触,且期间温差较大,尤其当室外地下水位偏高,外墙温度偏低,内外温差大,加上混凝土的导热系数较高,因此湿热空气接触到较冷的内墙面时则易形成结露现象,该种现象在新建或刚刚装修过的地下室尤为严重,由于该阶段地下室尚未完全干透,墙体或装修过的砂浆、涂料内的水分水温度上升而逐步挥发出来,因此在很大程度上增加了空气的湿度,即增加了结露的诱因,因此更易出现结露【2】。

3 防治措施

3.1 设计要素

设计过程中应充分考虑地下室排湿、通风措施,避免由于排湿及通风不良导致室内外湿度偏差大,而混凝土的导热系数偏高,因此宜形成结露现象,因此应在设计过程中应充分考虑通风及排湿措施;而一旦发生结露现象则首先可采用碘钨灯在室内连续进行烘烤以改变室内空气环境装填,加速墙面潮气消失,将墙面进行干燥;处理后则可在地下室外墙内表面做保温处理,利用保温层的隔热作用阻止周围土壤低温不能传递到外墙内表面,从而破坏结露形成的条件,使地下室内环境空气内的水汽不能在外墙内表面凝结为露珠。

3.2 施工要素

在地下室外墙、地面及顶板混凝土施工时应严格按照施工防水抗渗要求进行,切实做好防止室外水体渗漏现象,并可通过增加混凝土内钢筋的保护层厚度来免除水分对钢筋锈蚀;在进行地下室内墙装修时应尽量将表面做成麻面状,并应保证所有的电气、线路等有良好的绝缘和防潮功能,对外露金属部件应做好防锈处理;地下室内墙壁应喷涂或滚涂防结露涂料,该种材料由超强吸水高分子材料制成,其防结露的机理是其吸湿性,涂料所形成的涂抹具有一定厚度且其本身为多孔性,其内部性成的具有联通的孔隙可容纳表面吸附的凝结水,该种情况下空气中的水分由于温差在涂抹表面形成结露则结露水被吸收在涂膜内,从而可防止表面露珠的出现以防止结露的出现,并且涂料涂膜的吸附性越强则单位体积内所能容纳的水分越多,其防结露的效果也越好,并且贮存于涂膜内的水分在空气调价发生变化时则会从涂膜内通过蒸发现象而进入空气中,涂膜则逐步恢复干燥状态,而当水分过多导致结露现象再次出现则涂抹又可吸附凝结水而防止结露。该种涂料施工时应先按照一般涂料采用涂刷或喷涂方法进行,使用前必须将其搅拌均匀,若才搅拌过程中其粘度过大则可加入不超过5%的水分进行稀释,该种涂料的用量一般不超过3kg/m2,在容易发生结露的部位则应加大用量或增加涂刷遍数,在两次涂刷的间隔时间不应少于8h,在涂刷前应将基层表面清理干净并应保持表面干燥,整个涂刷过程应在结露现象生成前完成;对具有商业功能的地下室则应通过调节室内温度和湿度的措施来避免结露现象【3】。

3.3 结露收集、疏导

对于功能单一、观感要求不高的地下室可通过设置排水沟将结露水收集并排放,过程中为避免收集过程中墙面涂料面层脱落或霉变,可在观感和造价指标要求下选择低标号混合砂浆,并可采用环氧树脂防水涂料墙面,并沿墙面设置截水沟并将其通入集水井内;由于顶面温度变化较墙面变化幅度较大且其影响实际散热效果,因此应根据理论计算的热量与实测散失热量进行比较后决定截排水沟槽。

4 结语

在预防地下室结露现象时为预防地下室湿度过大可采取加强室内通风,通风措施可采用机械通风或自然通风,同时应结合混凝土导热系数偏大的现实可采取地下室外墙内保温或外墙外保温,并选用传热系数小的材料等措施来降低室内外温差,并可采用专用涂料以降低结露现象,最终保证地下室的使用功能,充分实现其经济效益。

参考文献:

温室效应现象例2

Abstract:Aiming at the importance of environment control technology in greenhouse,this paper summarized the research status on the development of greenhouse environment control methods at home and abroad,and analyzed the features and structures of greenhouse control systems.The main methods of greenhouse environmental control include PID,Expert System,Fuzzy Control,Neural Network,Evolutionary Algorithm and so on.Each control algorithm has its own advantages and disadvantages,the adoption of a single control algorithm can not satisfy the precision requirements of the environmental control of the greenhouse.Hybrid control algorithm that combined different algorithms can meet the control demands of modern greenhouse environment intelligent control well or to seek new robust control method.Their drawbacks were pointed out,and the development tendency of greenhouse environment control was expected too.

Key words:greenhouse;environmental control;intelligent control;genetic algorithm

1.引言

温室作物生产是高度集约化的设施农业产业,在解决我国三农问题和提高农业生产效率中的作用越来越突出。目前我国已是世界设施作物栽培第一大国,设施作物栽培面积超过了300万公顷。但与国外先进水平相比,目前最突出的问题是温室作物生产的产量低、能耗等生产成本高,因而经济效益较低。

温室是一个包括作物、设施、环境、栽培管理措施等诸多因子及其相互作用的复杂系统。如何协调这些因子的关系,以最小的投入为温室作物提供适宜的生长环境,从而达到高产、优质、高效和生态安全的温室生产目标,一直是国内外设施农业领域中研究的重点与热点问题。

温室环境控制即通过对相关的设施(如加热、通风、CO2施肥、肥水灌溉等设备)对温室环境进行自动调控,获得作物生长所需的适宜环境,从而大大提高作物产量与质量。因此,温室环境控制是解决以上突出问题的核心技术手段之一。本文对目前国内外温室环境控制的研究进展和成果进行综述,指出温室环境控制中的现存问题和发展方向。

2.温室环境控制研究现状

温室环境控制有3个不同的层次,即人工控制、自动控制和智能控制。3种控制方法在我国的生产生活中均有应用,其中自动控制在现代温室环境控制中应用最多,而智能控制具有处理非线性、时变和不确定信息等优点,理想的智能控制系统除了满足一般控制系统的性能要求外,还应具有自学习、自适应、自组织和自结构等功能。现代温室环境的智能控制[1]是目前的研究热点。

2.1 温室控制技术概况

温室智能控制系统作为一种资源节约型的高效农业技术,主要是在计算机综合控制下,创造适宜于作物生长的环境,实现优质、高效、低耗的工业化规模生产。要提高测控系统的性能除了硬件系统以外,控制算法也不可缺少。只有采用合理的控制算法,才能使温室环境的综合因子达到最优的控制效果,才能使温室控制系统达到智能化的水平。

目前温室环境控制中普遍采用的智能控制方法包括专家控制、模糊控制、神经网络、遗传算法和混合控制等。其中,混合控制将基于知识和经验的专家系统、基于模糊逻辑推理的模糊控制和基于人工神经网络的神经网络控制等方法交叉并融合,相互优势互补,使智能控制系统性能更理想,成为当今智能控制方面的研究热点之一。

2.2 控制算法在温室环境控制中的应用

温室环境控制系统是一个非线性、大滞后、多输入和多输出的复杂系统,其问题可以描述为:给定温室内植物在某一时刻生长发育所需的信息,该信息与控制系统检测部件所检测的信息比较,在控制器一定控制算法的决策下,各执行机构合理动作,创造出温室内植物最适宜的生长发育环境,实现优质、高产、低成本和低能耗的目标。

2.2.1 PID控制算法及应用

PID控制是自动控制中产生最早、应用最广的一种控制方法,在温室环境控制中应用最早。PID调节的实质是根据输入的偏差值,按比例、积分、微分的函数关系进行运算,将其结果用于输出控制。

PID控制适合一些较为简单的单输入、单输出线性系统,它靠控制目标与实际状态之间的误差来确定消除此误差的控制策略。采用常规PID控制器,参数不易在线调整,容易产生超调,抗干扰能力差,不能满足现代温室环境参数监控的要求。因此,在温室实际控制过程中,为了提高系统动态调节品质和控制精度,通常对常规PID控制进行改进。

朱虹通过对历史温室环境数据的合理分析,将温室的温度控制模型近似为一阶惯性加时滞环节,基于该温度近似模型用时间为权误差积分指标最优的参数自整定公式来整定PID控制器参数,将整定后的PID控制器应用于温室控制。余泳昌等研究的改进型PID控制算法在现代温室参数控制中进行了应用,其抗干扰能力方面比传统PID算法有一定的提高,使参数得到较精确的调整,使温室温度保持在最适宜的范围。Albert Setiawan等[2]在研究了温室控制算法PI控制器后,提出了拟微分反馈(PDF)控制方案,实验结果表明,PDF的控制效果在性能上(温室控制过程的静态误差,过渡过程时间,最大超调量)优于PI控制器的性能。但这种控制器的设计还是基于被控对象的数学模型,把温室的控制系统对象建模成一阶惯性滞后环节。这样对象模型的参数不同程度上随温室内空气流速,光照强度而变化,也随时间的变化而变化。因此被控对象是一个时变的对象,同时也是若干变量的函数,要想获得优化控制,创造一个适合作物生长的最佳环境有一定的难度。因此国内外学者目前大多采用智能控制方法对现代温室环境进行智能控制,并做了很多的研究,以下是温室环境智能方法控制方面的研究工作。

2.2.2 专家系统及应用

专家系统作为一种知识的载体,所表现出来的可靠性、客观性、永久性及其易于传播和复制的特性,是人类专家所不及的,因此在处理与解决某些领域问题时具有不可取代的重要作用。在温室生产中,影响作物生长的有室内和室外各种环境因子,作物和环境因子之间的关系非常复杂,难以模型化与定量描述。因此,在现代温室中可以利用专家经验知识建立作物生长参数与环境因素之间的关联系数。专家系统是应用人工智能技术,根据一个或多个专家提供的领域知识进行推理,模拟农业专家做决定的过程来解决那些复杂问题。

专家系统的基本结构由知识库、推理机、数据库、人机接口、解释机构及知识获取6部分组成[3]。专家系统善于解决不确定性的、非结构性的问题;它是靠知识和推理来解决问题,是基于知识的智能问题求解系统;它内部的知识和推理是相分离的,系统具有很好的灵活性和扩展性;它不仅能回答用户提出的问题,而且能够对最后的结论或处理问题的过程做出解释;它还有自学习能力,能不断的对自己的知识进行扩充、完善和提炼。沈天飞等在温室计算机控制系统的基础上,构建了一种专家控制平台,采用可组态的规则库和推理机制,以温室作物的生长指标作为依据,使农业科研人员能通过专家系统软件平台建立具体温室作物的计算机控制专家系统。龙利平等研究的加热实时专家控制系统,在外温的强扰动作用下,系统精度控制在0.5℃左右,完全满足温室温度控制的要求。文献[4]从工程实际出发,分析了温室气候计算机控制系统的要求,系统研究了温室气候计算机专家控制系统的设计与实现技术,对于提高温室气候的控制质量具有重要意义。

2.2.3 模糊控制算法及应用

温室环境系统是一个多变量,多耦合,非线性,大滞后的复杂动态系统,很难建立精确的数学模型。模糊控制不需要建立被控对象的精确数学模型,它是通过计算机完成人们用自然语言所描述的控制活动,其控制算法是把各种环境参数综合起来分析考虑,然后进行模糊控制[5]。模糊控制有许多良好的特性,它不需要事先知道对象的数学模型,具有响应速度快、超调小、过度时间短等优点,比PID控制调节速度快、鲁棒性好,但模糊控制稳态精度欠佳,只能实现粗略控制。

于海业等提出一种基于模糊控制算法的温室分季节、分时段的变温管理的控制方法。该系统能够很好的适应北方温室科学生产和自动化管理的要求,可满足温室作物栽培的需要。胥芳等建立了温室环境温度模糊专家控制系统的MATLAB仿真模型,仿真结果证明了该温室环境温度模糊控制策略的有效性及合理性。卢佩等采用模糊控制方法,通过建立模糊控制系统模型和对模糊控制器的设计,引入解耦参数,实现系统的温湿度解耦控制,提高了温湿度控制的精度。杨泽林等通过数据挖掘,利用采集的温室内、外温度及室内湿度数据对温室状态进行分类,提出一种基于各类别中的温室温、湿度变化率相关性进行模糊解耦控制。黄力栎等针对温室气候控制方法中温湿度之间的耦合作用,提出以温度控制为主、湿度控制为辅的控制策略,并建立两变量输入、三变量输出的控制主回路和补偿回路模糊控制系统,从而为温湿度控制提供了一种行之有效的方法。程昱宁等研究了温室冬季加热模式控制,采用Smith预测器先补偿掉系统大的延时,然后在Smith预测器前增加了模糊控制器,实现对温室的模糊控制。这种控制方式要比简单的模糊控制方式[6]在动态性能上有所改善。

2.2.4 神经网络控制算法及应用

神经网络采用黑箱方法能把复杂的系统通过有限的参数进行表达,具有自组织、自学习、非线性动态处理等特征,具有联想推理和自适应识别能力,不需要建立精确模型。神经网络优点是具有灵活性,适用于非线性和非物理数据,主要缺点是训练需要大量多维数据集,以减少推断风险[7]。

采用最常用的BP网络能对环境因子达到良好的控制效果。BP网络基本思想是最小二乘法,它采用梯度搜索技术,使网络的实际输出值与期望输出值的均方差最小。它由输入层、输出层和隐含层组成,隐含层可能含有一个或多个,每层由若干神经元组成。BP神经网络确实给温室检测系统模型的建立带来了方便,但神经网络是非线性的,进行稳定性分析相当困难。

Fathi Fourati等采用递归神经网络对温室进行直接动力学仿真,逆向神经网络与神经网络模型相结合以使系统的输出所需数值,给出仿真结果对温室的控制性能进行验证。R.Linker等建立可靠的温室环境和作物响应模型,通过消除不必要的输入,分别预测温度和CO2浓度使模型最简化,利用在小温室中两个夏季收集到的数据训练神经网络温室模型,实现温室内CO2注入和通风之间的平衡,达到了良好的CO2优化控制效果。P.M.Ferreira等[8]对混合离散训练方法和在线学习算法进行了分析,将离线方法应用于在线学习,利用线性非线性结构建立径向基函数神经网络,预测温室温度。

2.2.5 进化算法及应用

遗传算法是一种基于自然选择和群体遗传机理的搜索算法,它模拟了自然选择和遗传过程中的繁殖、和变异现象,遗传算法对复杂的优化问题不需要进行复杂的计算,只用遗传算法的3种算子就能得到最优解[9]。它的优点在于:通过参数空间编码并用随机选择的方法引导搜索向更高效的方向发展,对寻优函数基本无限制;通过目标函数来计算适配值而不需要其他推导和辅助信息,对问题的依赖性小;采用全局搜索,不易陷入局部最优点,更适合复杂大规模问题优化。

同济大学徐立鸿团队从97年开始在引进的荷兰温室中进行消化吸收其先进方法并针对本国温室环境系统特点进行研究工作,先后提出了基于栽培经验和参数辨识的温室环境多因子协调控制方法和基于温室环境动态模型和进化计算参数估计的多因子协调控制方法;基于Pareto最优的思想,利用多目标遗传算法对温室环境节能控制方法进行了有益的探讨,提出了相容优化控制算法;提出了对系统状态初值的不确定性鲁棒的温室环境系统相容优化控制方法;提出了基于温室环境动态模型对理想环境目标和能耗目标进行综合优化控制的新方法等。邓璐娟等采用多级控制策略,优化设定系统目标值来解决温室环境系统中多个时间响应常数相差过大的问题。设定系统优化目标值时,白天使植物获得最大的光合速率,夜间在满足植物生长和积温要求的前提下使温室处在能耗最小的状态下运行。构建了能量消耗为零(无加热、无制冷和无机械通风)时计算温室内部温度的模型,采用遗传算法对最优目标值进行搜索。计算结果取得了较高的效率又能节能。Hartmut Pohlheim等利用进化算法来计算温室系统的最优控制状态,每隔15-60分钟综合模型(短时间尺度模型)检测一下温室内的温度、湿度、CO2浓度,在约束条件下利用进化算法来优化温室环境控制以实现最大利润。

2.2.6 混合算法

(1)模糊PID控制算法

PID算法简单,可以实现精细控制,使系统准确跟踪设定值。模糊控制可充分利用现场和专家的经验,调节速度快,鲁棒性好,但只能实现粗略控制。对此将PID控制和模糊控制相结合,互补不足,采用混合模糊PID控制方法,解决温室环境调控中存在的时滞和模糊性问题。温室系统的延迟问题应该说是调控中很难处理的问题,任雪玲等运用预测技术解决了延迟问题,采用具有优化技术的PI和模糊控制混合技术进行调节,解决了粗调问题和细调问题。屈毅等针对温室控制对象存在的大滞后、大惯性等属性,传统控制方法的控制效果不甚理想的问题,在温室控制系统中,引入模糊PID控制方法。该方法能使温室温度控制系统根据季节的交替,时令的变化,实现优化控制,为农作物的生长发育提供合适的温度环境。

(2)基于遗传算法的优化模糊控制算法

遗传算法是模拟生物在自然环境中的遗传和进化过程而形成的一种自适应全局优化概率搜索算法。GA相比其它优化方法能更有效的求解复杂的寻优问题,为了解决模糊控制器设计中的困难,很多学者采用GA优化模糊控制规则,采用二进制编码法对控制规则进行编码,从而设计出具有自学习能力的模糊控制器。用GA调控模糊控制规则,既避免了GA优化过程的早熟现象,又可提高优化控制规则的速度。江苏大学毛罕平团队采用遗传算法优化隶属函数实现模糊控制器优化设计的方法,并将这种优化设计的模糊控制器应用于温室集散控制系统中[10]。

(3)模糊神经网络控制算法

模糊控制与神经网络相结合是一种新的技术,其主要特点是利用神经网络调整模糊推理系统的隶属度函数和推理规则,利用模糊推理规则的形式构造前向传播结构。另外,两者具有各自特性的互补性,神经网络完成的是从输入到输出的“黑箱”式非线性映射,但不具备象模糊控制那样因果规律以及模糊逻辑推理较强的知识表达能力。将两者有机地结合起来,神经网络强大的学习能力则可避免模糊控制规则和隶属函数的主观性,从而提高模糊控制的置信度,能更好的适应温室系统的非线性和时变特性。李红军等利用模糊神经网络控制器调节温室的温度因子,采用遗传算法优化高斯隶属函数的中心值和阈宽,用BP算法优化网络权值,提高了控制器的学习和调整能力。

2.2.7 其它方法的应用

Rodr’guez F.等采用分层控制法对温室作物生长进行控制,并进行了试验研究。第一个试验用自适应和反馈算法控制温室显示出良好的性能,第二个试验通过模型预测控制算法控制执行机构以获得良好的跟踪性能同时减小燃料消耗费用。J.P.Coelho等提出用粒子群优化算法设计基于模型的温室空气温度预测控制器,并与用遗传算法和逐步二次规划算法设计的控制器进行了比较,仿真结果显示用粒子群优化算法设计的基于模型的温室空气温度预测控制器效率更高。刘东利等采用神经网络模糊PID算法对温室内温度进行控制,取得了较好的动静态特性、鲁棒性和抗干扰能力。沈敏等考虑开关设备组合作用下温室测控系统的非线性动态特性,提出结构简单、不需复杂数值计算的离散预测模型,对设备组合进行滚动优化预测控制,大大简化温室测控系统预测控制算法的复杂性,缓解了测控系统分布大时滞问题。Tetsuo Morimoto等提出基于作物生长需求(Speaking Plant Approach),以及预测环境模型(PEM)方法来调控温室环境。这种做法[11]早在1980就提出了。只是当时的智能控制这一技术还没引起农业界的高度重视。随着科学技术的发展,现在基于神经网络,专家系统控制,模糊控制等技术使得基于SPA或PEM模型的温室调控成为可能。

3.存在的主要问题

各种控制算法各有优缺点,单一的采用某种控制算法,不能满足温室环境控制的精度要求。如模糊控制响应速度快、超调小、过渡时间短,但稳态精度欠佳,只能实现粗略控制。神经网络确实给温室系统模型的建立带来了方便,但神经网络是非线性的,进行稳定性分析相当困难。

国内有效的温室环境输入输出动态模型成果不多,并且在作物生长对温室环境反馈作用的方面研究的还不深入,所采用的模型在很大程度上进行了简化和近似,由于温室系统的复杂性以及存在的不确定性等因素,大大影响了实际中的控制效果,此外控制方法也是针对系统的部分特点难点有效,综合控制效果并不明显。

目前国内温室环境控制主要针对温度和湿度的控制进行研究,温室环境调控指标含糊,控制精度低,不能做到多环境因子综合控制。另外,国内外越来越重视对能源的节约,但是在节约能源的具体实现方法上还有待进一步研究。

4.展望

通过对目前国内外温室环境控制的研究现状进行分析,提出了今后温室环境控制系统的发展方向:

控制算法集成。由于现代温室环境控制系统是一个非线性、大滞后、多输入和多输出的复杂系统,单一的控制算法很难满足现代温室环境智能控制的要求,将多种智能控制算法集成,能进一步提高智能控制系统的性能,有效地为温室内作物创造最适宜的生长发育环境。

深入研究作物对温室环境的反馈作用机制,建立面向控制的适合我国温室的多环境因子综合环境控制输入输出动态模型。

进一步研究环境控制目标间冲突问题(如温度和湿度,CO2施肥的影响),环境控制精度和能耗目标冲突问题,对环境因子综合控制,并实现节能。

总之,未来的温室环境控制系统必将越来越以植物生长的最适宜环境为中心,以高效、节能为目标,大大促进设施农业的全面发展。

参考文献

[1]李锡文,杨明金,杨仁全.现代温室环境智能控制的发展现状及展望[J].农机化研究,2008(4):9-13.

[2]Albert Setiawan,Louis D.A.,Richard M.P..Application of Pseudo-derivative-feedback Algorithm in Greenhouse Air Temperature Control[J].Computers and Electronics in Agriculture,2000,26(3):283-302.

[3]李军,邹志荣,程瑞锋等.农业专家系统及其在园艺业中的研究与应用[J].陕西农业科学,2002(11):22-25.

[4]郑秀莲.现代温室气候的专家控制系统[J].机电工程, 2003,20(3):42-45.

[5]蓝淑渊,璩柏青.自寻优模糊控制器及其在温室温控中的应用[J].计算机时代,2005(10):20-21.

[6]朱伟兴,毛罕平,李萍萍等.基于模糊控制的温室加热器的研究[J].农业工程学报,2002(3):72-75.

[7]Ido Seginer.Some Artificial Neural Network Applications to Greenhouse Environmental Control[J].Computers and Electronics in Agriculture,1997,18:167-186.

[8]索兴梅,王崇桃.人工神经网络在农业中的应用研究[J].计算机与农业,2002(2):6-7.

[9]任雪玲.温室环境多因子协调控制方法研究[D].上海:同济大学,2001.

[10]朱伟兴,毛罕平,李萍萍等.遗传优化模糊控制器在温室控制系统中的应用[J].农业机械学报,2002,33(3):76-78.

温室效应现象例3

关键词:城市化空调负荷住宅建筑热岛效应

Abstract

Urbanizationcausestemperaturedifferencebetweenurbanandruralareas.UsingtheCTTCmodeltosimulatetemperatureofanurbanbuildinggroup.Thetemperaturewasusedtocalculatethecoolingheatingloadinsteadoftemperaturemeasuredatthelocalmeteorologicalstationasoutdoordesigntemperature.Itisshownforanordinaryresidentialbuildingthatthecalculatedcoolingloadisabout10to35percentwiththetemperatureofanurbanbuildinggroupthanthatwiththeoutdoortemperaturefromthelocalmeteorologicalstation.Butthedifferenceofheatingloadbetweenthemislessthan10percent.

Keywords:urbanizationcoolingloadresidentialbuildingheatislandeffect

0引言

早在公元前4世纪,人们就注意到了城市和乡村的气候是有差别的。19世纪,英国的贺华德(LakeHoward)对伦敦市内和郊区的气象记录进行对比分析,从大量资料中总结出伦敦城市气候的特点,其中有一个著名的发现:伦敦城市中心的温度比四周郊区高[1]。后来各国学者对不同纬度、不同类型、不同规模的城市陆续做了大量对比测试,发现了类似现象。人们把这种现象称为"城市热岛"。

然而,我们在计算某栋建筑物的室内冷热负荷时,使用的室外参数都是来源于建筑所在地区的一个大范围内的气象资料,而这些气象资料又是由气象人员在空旷的城市远近郊监测而得。既然许多研究资料都已证明城区气温与郊区气温确实存在着较大的差别,那么如果在对建筑物室内冷热负荷进行各种分析计算中把这些由气象台站测出的气象数据作为城区内建筑的室外计算参数,其结果就很可能会出现偏差,并由此得出不准确甚至错误的结论。澳大利亚的M.M.Elnahls等对这个问题曾做过实验和模拟,在阿德莱德地区建造了一个典型的建筑群,结果表明,冬、夏两季建筑群内的空气温度都高于气象温度。对空调系统而言,在对室内加热时减少10%的能耗,在供冷时增加15%的能耗。两种算法的能耗总和(加热+供冷)相差不多。但"这并不意味着因为相互抵消就可以忽略对空气温度的修正。忽略了修正温度的影响就意味着对冷负荷估计不足,对热负荷估计过高"[2]。因此,建筑群的"热岛效应"的确会对负荷计算造成不可忽视的影响,需要我们进一步关注和研究。

1建筑群室外温度的模拟计算

关于建筑群内空气温度的模型,前人已经做了不少的研究工作。笔者在比较前人对城市气候和建筑局部微气候的研究方面和研究模型之后,选择了简明实用的CTTC模型及其系列改进模型作为研究开发的切入点。

CTTC模型把特定的地点的湿度视为几个独立过程温度效应的叠加,用公式表示如下[3]:

ΔTa(t)=To+ΔTa,solar(t)-ΔTNLWR(t)

式中Ta(t)为需计算的t时刻的大气温度:To为基准(背景)温度;ΔTa,solar(t)为因城市覆盖层表面吸收太阳辐射而导致的大气温升;ΔTNLWR(t)为净长波辐射吸收失热而导致的温度变化。正是在计算ΔTNLWR(t)时使用了CTTC模型数,可由下式进行计算:

(2)

式中t是计算时刻,m是下垫面对太阳辐射的吸收率,h是综合换热系数,Ipen(t)是建筑群在t时刻接受到单位面积上的平均太阳辐射照度,CTTC是建筑群热时间常数。

斯沃德(HannaSwaid)和霍夫曼(MiloE.Hoffman)按理论公式计算出ΔTa,solar(t)和ΔTNLWR(t),并经实验测出当ΔTa,solar(t)为昼夜最小值时的空气温度Ta(t),则由式(1)可计算出To。他们发现同一个城市不同建筑群的基准温度值很接近,误差不超过0.5℃,且与乡村日平均空气温度相等。

1997年,艾那汉斯(M.M.Elnahls)和威利斯姆森(T.J.Willismoson)在CTTC模型基础上提出了改进的CTTC模型,其计算空气温度的思路与CTTC模型完全一致。改进模型将通常位于市郊的气象站测量的逐时气温作为输入温度,而不是把乡村的日平均气温和为输入温度计。通过比较气象站和待计算建筑群的建筑几何特征、规划、热量排放等因素造成的热量收支差异,计算这些差异给这两种下垫面上方空气温度带来的差别,通过气象站的实测温度以及计算的温度差别就可以得到待计算建筑群处的空气温度。用公式表示如下[2]:

Ta(t)urb=Tb+ΔTsol(t)urb-ΔTlw(t)urb(3)

Ta(t)net=Tb+ΔTsol(t)met-ΔTlw(t)met(4)

则有

ΔTa(t)urb=Ta(t)net+[ΔTsol(t)urb-ΔTsol(t)met]-[ΔTlw(t)urb-ΔTlw(t)met](5)

式中:Ta(t)urb是建筑群处在t时刻的空气温度;Ta(t)net是气象站在t时刻测量的空气温度;Tb是基准温度;ΔTsol(t)urb是建筑群因吸收太阳;而导致的空气温度变化;ΔTsol(t)met是气象站因吸收太阳辐射而导致的空气温度变化;ΔTlw(t)urb是建筑群因天空长波辐射而导致的空气温度变化;ΔTlw(t)met是气象站因天空长波辐射而导致的空气温度变化。

基于改进的CTTC算法模型,笔者编制了CTE(clusterthermalenvironment)计算程序,考虑了太阳辐射、风、小区规划和单体建筑等对小区室外热环境的影响,从整体的、动态的角度来预测和分析实际建筑群的温度环境[4]。

2.负荷计算

选取一个典型的住宅小区建筑群来进行负荷计算,该建筑群由9栋(3排3列)5层的建筑组成,绿化率为0.3。

模拟计算结果见图1,2。从图中可以看出,利用CTE程序计算得到的小区室外空气温度和气象站空气温度存在明显的差别。

图1夏季小区计算温度和气象站温度的比较

图2冬季小区计算温度和气象站温度的比较

选取该建筑群中的3个房间进行负荷计算,这3个房间分界位于建筑的南、东北角和东南角,且均在建筑的3层,如图3所示。

图3计算房间示意图

建造外墙为37砖墙,每个计算房间有一扇外窗,位于房间的南侧或北侧,双层钢窗,无内外遮阳。室内发热设备为计算机和灯光照明,人员为1人。夏季室内设定温度为27℃,冬季室内设定温度为18℃,换气次数为2h-1。按照常规的冷、热负荷计算方法,分别将气象站提供的计算温度和用CTE程度计算出来的小区空气温度作为室外计算温度来计算室内负荷。

图4是夏季逐时冷负荷计算结果。

图4夏季逐时冷负荷计算结果

从图4中可以看出,以小区计算温度和气象站提供的设计室外温度来计算室内负荷,不同方位的房间负荷都有差别。这种差别随时间的不同而不同,在本例中约占总负荷的10%~35%。

图5可以更清楚地反映因室外计算温度不同而带来的冷负荷的逐时差异。考察冷负荷的组成可以看出,室外温度对冷负荷的影响主要体现在三方面:通过窗玻璃的传热、通过外墙的传热和新风负荷。当室内外温度接近的时候,室外温度对这3项负荷会产生很大的影响。在本例中考虑热岛效应后围护结构的传热负荷是原来的1.2~1.5倍,而新风负荷受室外温度的影响更明显,甚至负荷正负都可能相反,在新风负荷最大的瞬时考虑热岛效应后新风负荷是原来的1.2倍。

图5室外计算温度不同而带来的冷负荷的差异

图6和图7是本例计算房间无内热源情况下的计算结果,它们反映了建筑群本身对室内负荷的影响。从计算结果来看,在不考虑房间内热源的情况下,由于室外计算温度不同而导致的室内冷负荷的差异一般在20%~50%之间,夜间最大时甚至能够达到70%。

图6计算房间无内热源时夏季逐时冷负荷计算结果

图7计算房间无内热源时不同朝向夏季冷负荷的差异

同理可能计算不同室外气温参数对冬季的室内热负荷造成的差别。计算结果表明,室外温度不同导致的热负荷差别不到10%。这是因为冬季室内外温差本来就比较大,建筑群和气象站之间的温差相比较而言仅占一小部分。

上述结果是针对一具体建筑得到的,对于不同城市、不同布局的住宅建筑会存在着差异,即夏季冷负荷和冬季热负荷的变化比例会有所有同。但总体而言,城市化的程度越高,热岛现象越显著,用气象站资料得到的夏季空调负荷值与实际的偏差越大。

3结论

从以上的计算结果和分析中可以看出,由于夏季室内外温差较小,城市热岛效应造成的温升可能对室内负荷计算造成较大的影响。这种影响在冷负荷主要以护结构传热和新风为主的民用建筑中是不可忽略的。冬季由于热岛效应带来的温差相对室内外温差而言较小,因此在计算热负荷时可以忽略。

以上的计算和分析是针对住宅建筑进行的,同样也适用于对商业建筑的分析。但由于商用建筑的空调负荷组成中围护结构和新风部分所占比例不大,所以城市化对室内负荷的影响不是太明显。

随着城市化进程的加快,城市的日益发展,热必会使城市热岛效应愈加显著。美国、日本和我国上海等城市连年的实测资料表明[5]:在郊区空气温度几乎不变甚至下降的情况下,城市内的气温却逐年升高。因此,在进行城市建筑的空调设计时应将气象资料进行修正。本文提出的修正的CTTC模型是一种简单、行之有效的修正方法,可以作为大中型城市建筑空调设计的一个参考。

参考文献

1HemutELandsberg.都市气候学,郑师中,译,台湾:世界图书出版公司,1990.

2ElnahlsMM,WilliamsonTJ.AnimprovementoftheCTTCmodelforpredictingurbanairtemperatures.EnergyandBuildings,1997,25(1):41-49.

温室效应现象例4

1、一般情况下,在室内贴墙布的时候,室内温度应该超过10度,绝对不可以低于5度。当室内温度低于5度的时候,就不可以室内进行贴墙布施工,若是强行在墙面上贴墙布的话,就会影响到墙布的铺贴效果和施工质量。

2、贴墙布的时候,室内温度不可以过高,但是也不可以过低。假如室内温度过高的话,那么在贴墙布的时候就容易出现墙布开裂的现象。假如室内温过低的话,又容易导致胶水凝结成冻,影响到胶水的粘接效果,导致墙布在后期使用过程中出现脱落、空鼓等现象。

3、墙布贴好以后,一般都是要自然阴干的,墙布若要自然阴干的话,那么室内就必须保持一定的湿度。墙布贴好以后,绝对不可以开空调进行吹干,也不可以把门窗打开进行通风,否则容易导致墙布出现开胶、缩缝等现象。

贴墙布的最佳温度是多少?

1、20度左右为贴墙最佳温度。贴墙布的室内温度最低不能低于5摄氏度。

2、贴墙布对温度确实有要求,根据热涨冷缩的物理原理,温度高时帖的容易开裂,温度过低时,胶容易上冻,粘度会降低,造成空鼓、脱落的现象。

3、若室内温度低于5摄氏度时,不宜墙布铺贴,这样会影响墙布的铺贴质量与铺贴效果。

温室效应现象例5

长江汛期出现反常的枯水现象与上游四川盆地和嘉陵江流域持续干旱和高温天气有关。今夏四川盆地的天气异常,则可能与今年3月25日重庆开县发生严重天然气泄漏有关,由于天然气泄漏发生在舂末夏初,没有强冷空气的对流,加上四川盆地地形较为封闭,空气中的甲烷难以很快稀释,使得盆地内温室效应明显增强,泄漏的甲烷是温室效应很强的气体,其温室效应指数是二氧化碳的30倍,即1升甲烷产生的温室效应相当于30升二氧化碳的温室效应。大量甲烷泄漏进入大气层,使四川盆地的温室效应显著增强,异常强烈的温室效应很可能是四川、重庆今年自5月中旬以来出现持续高温干旱天气的重要原因。当然全球温室气体浓度的逐年增加和四川盆地内二氧化碳等温室气体排放水平的逐年提高也难辞其咎。

温室效应现象例6

DOIDOI:10.11907/rjdk.171197

中图分类号:TP319

文献标识码:A 文章编号:1672-7800(2017)006-0100-04

0 引言

随着计算机和网络技术的快速发展,温室环境的控制正在向智能化、自动化的方向迈进,利用物联网技术对温室环境进行有效调控可以改善农业生态,提高农作物质量和产量。但温室环境是一个多变量、强耦合、大滞后且时变的被控对象[1],且江浙地区四季气候变化明显,夏季炎热湿润,冬季寒冷干燥,昼夜温差及湿度差较大,常规控制方法难以取得理想效果,而现有控制系统控制模式固定,不能适应环境变化,因此建立一套适应性强、响应快、稳定性好的智能温室测控系统是现代精细农业的迫切需求。

目前,已有的控制方案中采用传统PID控制来实现,但PID参数恒定,无法适应非线性系统的控制需求。因此,本文将模糊理论与PID控制相结合,运用模糊推理对PID控制器的3个参数进行调整,提高了系统的自适应性和灵活性,改善了系统动态性能。

1 模糊PID控制器原理

1.1 模糊控制原理

在传统控制领域里,对系统的动态信息描述越精确,控制效果越好,然而对于复杂系统,由于变量太多,往往无法精确表示系统的动态信息,这时可以考虑使用模糊控制来解决。模糊控制是一种非线性控制方法,其不依赖于被控对象的精确数学模型,而是通过大量的实际操作数据及专家经验总结出控制规则,用自然语言描述控制策略,模拟人对事物的决策实现对系统的控制。温室环境复杂多变且干扰因子众多,常规方法难以取得理想的控制效果,所以使用模糊控制实现对温室环境的调控比较合适。

在模糊控制系统中,模糊控制器设计是其核心部分,控制器结构如图1所示,主要由4个部分构成:模糊化处理、规则库、模糊推理及解模糊[2]。

1.2 PID控制器原理

在工程实际中,PID控制因其简单、可靠性高及鲁棒性好等特点被广泛应用于工业及设施农业的过程控制中,并取得较理想的控制效果。所谓PID控制即:比例(P)-积分(I)-微分(D)控制[3],结构图如图2所示,其控制算式如下:

u(t)=Kp[e(t)+1/Ki∫t0e(t)dt+Kd*de(t)/dt](1)

式(1)中,Kp、Ki和Kd分别为比例、积分和微分系数,e(t) = r(t) - c(t),r(t)为设定值,c(t)为实际测量值,e(t)为控制器的输入,它是设定值与实际测量值的偏差,u(t)为控制器输出。PID控制器中Kp、Ki和Kd的调节会对系统的动静态性能产生较大影响,3个参数的作用具体如下:(1)比例控制Kp:使系统反应灵敏,可以迅速调节系统误差;(2)积分控制Ki:系统在进入稳态后存在稳态误差,Ki用来消除稳态误差;(3)微分控制Kd:提前预测系统误差变化的趋势,使误差提前为零,Kd是一种超前调节。

2 温室测控系统分析与设计

2.1 叶菜温室环境因子分析

叶菜温室环境包含因子众多,包括环境温度、光照强度、空气湿度、CO2浓度、土壤水分和肥力等,这些环境因子在温室环境中相互联系、相互耦合,一同作用于温室这个小气候环境[4]。各个因子对叶菜生长的影响及调控如下:

2.1.1 温度

环境温度是影响叶菜干物质分配及叶片生长最重要的环境因子。若环境温度偏低会导致叶菜生长缓慢甚至停滞,长时间低温更容易引起低温危害。若温度偏高会导致呼吸消耗增加,叶菜植株积累的干物质减少,所富含的能量减少。对温室内温度的调控主要包括:升乜刂萍敖滴驴刂啤

(1)升温控制。当对温室进行升温控制时,首先关闭天窗及侧窗,然后开启内保温膜和内循环促进温室内空气的流通,之后开启暖气、空调等设备进行升温。

(2)降温控制。温室温度调控中常用的降温措施有:自然通风(侧窗和天窗等)、人工强制通风(排风机)、开启遮阳网(内遮阳和外遮阳)、湿帘冷风机降温等。

2.1.2 湿度

空气相对湿度对叶菜生长的蒸腾作用有较大影响。若空气湿度过高,叶菜根部呼吸困难,不仅影响正常生长发育,而且容易诱发病害;若空气湿度过低,土壤湿度也会随之降低,可能会导致作物缺水而出现萎蔫现象。对于叶菜而言,长期处于空气湿度较低的环境中生长时,容易导致叶菜的叶片小而厚,阻碍了叶菜的生长。对湿度的调控包括:加湿和除湿。温室内常用加湿方法有喷雾加湿和湿帘加湿;温室内除湿控制可以采用自然通风或强制通风,在温室内空气含量一定的情况下,也可采用加温除湿来降低温室内的空气湿度。

2.1.3 光照

光照是作物进行光合作用的能量来源,它影响到幼苗的素质、植株的生长和产量高低。光照太强会灼伤作物,光照不足时光合作用会减弱,对温室内光照的控制包括遮光和补光。

其中,遮光控制可以通过开启内外遮阳网来减弱温室内部的光照强度;补光控制在连续阴雨或者光照不足的情况下,为了促进作物生长,可以通过开启补光灯的方式增加温室内的光照强度。

2.1.4 CO2

CO2浓度是作物进行光合作用不可缺少的条件,它直接影响着有机物的合成。CO2浓度的控制可以通过通风换气或者CO2发生器。

此外,环境温湿度在一定条件下是相互耦合的,当温度上升时湿度呈下降趋势,温度下降时湿度呈上升趋势,同时空气湿度变化又会影响环境温度[5],而光照变化也会对温湿度产生影响,如当光照增强时,温度会上升等,所以设计温室测控系统的输出需要考虑环境因素间的耦合作用。

2.2 模糊PID控制器设计

PID控制器在过程控制中被广泛应用,但其参数整定是控制器设计的核心内容。常规的PID控制器使用工程整定方式,参数设定后一般固定不变,对系统运行变化的适应能力、抗干扰能力不足,所以本文采用模糊控制对PID控制器的参数Kp、Ki和Kd进行在线整定[6],使控制器能够及时响应系统环境的实时变化,使系统具有更强的灵活性。

温室测控系统是一个多变量间相互耦合且时变的复杂系统,理论上来说,如果一个模糊控制系统能够做到将所有影响温室内环境指标的因素作为控制器的输入,那么该控制器的输出一定非常准确,但事实上这样做是不现实的,因为将越多的环境变量作为输入,环境因子之间的相互耦合关系就越多,控制系统就越复杂,控制器的规则库就无法定义。从上文对温室环境的分析中可看出,在众多的环境因子中,温度和湿度两大因子对温室环境的影响最为明显,光照其次,其它如CO2等因素的控制相对单一,且耦合作用相对较小。因此,本系统在设计时综合考虑温室内光温湿的测量与调控,其它因子暂不考虑。

模糊PID控制器的结构图如图3所示,在设计系统的输出时,充分考虑湿度和光照的耦合作用进行综合调控。当环境因子的调控发送冲突时,以温度调控为先,湿度其次。

其中,r(t)为温度设定值,c(t)为温度实际测量值,u(t)为PID控制器的输出,为控制温湿度相关执行机构的变量[7],控制器的输入为温度偏差e和偏差变化率ec,控制器可根据系统实际运行情况模糊推理出Kp、Ki和Kd的增量ΔKp、ΔKi和ΔKd。

根据温室测控系统的实际情况,将e、ec、ΔKp、ΔKi和ΔKd的模糊论域划分为5个等级:{NB、NS、ZO、PS、PB},其含义分别为:{负大、负小、零、正小、正大},论域范围为[-4, 4]。两个输入变量e、ec及3个输出变量ΔKp、ΔKi和ΔKd的隶属度函数均为三角形隶属度函数。控制规则采用“if A and B then C”的条件句式,依据模糊推理原则,总结出模糊控制规则表如表1所示。

控制器将系统运行时的温度偏差和偏差变化率进行模糊处理后得到e和ec的模糊度,通过查询模糊规则表得出ΔKp、ΔKi和ΔKd的模糊度,再对照模糊论域将3个参数的模糊度解模糊成具体数值,从而计算出新的Kp、Ki和Kd,最后将计算结果代入PID控制算式,计算出系统输出量,则该输出量即为控制温湿度相关执行机构的变量,由该变量推导出当前的控制组合。

2.3 系统总体结构

根据系统需求,本文所设计的叶菜温室测控系统总体结构图如图4所示。

系统层次结构从左至右可以分为3个部分:①传感器、风机等硬件设备;②嵌入式网关;③上层应用(云服务与温室管理平台)。其中,嵌入式网关为温室测控系统的核心部分,是连接上层软件和底层硬件的中枢[8]。网关通过RS485串口通信采集现场传感器、气象站的实时数据,控制风机、水泵等现场执行设备,对环境数据进行分析过滤之后,首先在本地嵌入式数据库sqlite中存储,之后将数据上传至云服务器存储到sqlserver中。用户也能够通过PC或手机登录温室管理平台进行实时环境数据查询、设备控制、现场实时视频查看及自动运行设定等。

3 系统功能模块设计

3.1 嵌入式模块硬件选择

叶菜温室环境复杂多变,干扰因子众多,尤其夏季很可能长期处于高温高湿的环境之中,而嵌入式网关作为温室测控系统的核心部分,必须选择工业级的产品保证其稳定性和可靠性。

本系统选择基于Linux内核的GT6502嵌入式工业计算机作为嵌入式核心控制模块。该模块CPU采用成熟的高性能工业处理器ARM926EJ,且为了保证能达到工业设备需要的稳定性,整板设计采用全工业布线,在材质上选用高品质的PCB板材,稳定的硬件设计能保证系统长时间正常运行。此外,模块具备多重电源保护,抗静电、过流、防反接等保护能有效保证在野外等恶劣环境下的可靠运行。

3.2 嵌入式模块软件设计

在叶菜温室测控系统中,嵌入式模块软件的主要功能是:①采集实时环境数据,分析过滤后存储;②实时响应用户的数据查询、设备控制等需求;③根据用户设置和当前环境数据进行自动调控温室环境。根据嵌入式模块软件的功能设计,其程序实现流程如图5所示。主线程负责子线程的创建与线程资源的回收,所创建的3个子线程分别为:监听线程、断线检测线程及自动控制线程。

(1)监听线程:接收用户设备控制、实时数据查询、配置信息查询等指令,作出响应后向用户反馈执行结果;

(2)断线检测:检测设备与云服务器的长连接,若检测到当前设备断线,则执行重连操作保证设备一直与服务器保持长连接;

(3)自动控制:收集实时环境数据,分析过滤后存储,并将当前环境数据输入到模糊PID控制器中,根据控制的输出进行温室环境调控。

3.3 服务器模块设计

基于高内聚低耦合的软件设计思想[9],本系统将服务器模块按照功能分为通信服务器与数据服务器。通信服务器负责与嵌入式网关、温室管理平台的通信。当前服务器应用在农业示范基地,考虑到应用场景可能被拓展,用户数及设备数可能会增加,通信实现需能够响应弹性的用户数及并发需求,实现资源自动分配,所以通信服务器是基于Linux下的C++开发,选用多路I/O复用模型epoll实现通信并发,通过创建线程池的方式实现连接的负载均衡。数据服务器负责环境信息的存储和历史数据的查询,使用HTTP协议实现数据查询与响应。两个模块分开设计,独立开发,保证通信服务与数据服务互不影响,模块间的通信使用进程间通信现。

4 温室测控系统的效果验证与分析

为了验证系统实际运行效果,课题以江苏省农科院六合农业示范基地为试验对象进行测试,选取该示范基地中一个连栋生菜温室为实施地点。该生菜温室包含4个区域,每个区域包含2个光温湿三合一传感器,整个温室内共有8个三合一传感器,且具有侧窗、内外遮阳、环流风机、水泵等多种执行设备,温室内还接入了4个高清网络摄像机便于查看实时视频。温室外安装一个包含光、温、湿、风速、风向、雨量6种传感器的气象站,用于感知室外环境信息。本测试时间为2016年12月12日,选取温室内环境温湿度为测试对象,对9:00-16:00的温湿度调控状况进行测试。由于当前生菜处于莲座期,生长最佳的温度范围为18~22℃,湿度为70%~80%,因此设定温度值为20℃,湿度值为75%。将温湿度设定值输入系统之后启动系统的自动控制,由测试数据生成的变化曲线图如下:

如图6所示,温室内温度变化范围为17.5~22.3℃,湿度为73.2%~83.1%,由数据可见,系统运行正常并且能够根据设定值及时响应,保持温湿度在合理的范围内,达到了预期的控制效果。

5 结语

构建了基于模糊PID控制器的叶菜温室测控系统。通过对叶菜生长环境的研究,利用模糊推理对PID控制器的参数进行调整,提升了系统的动态性能,实现了叶菜温室环境的自动调控。试验表明,系统运行稳定、响应迅速,具有很强的鲁棒性。

参考文献:

[1]王君.基于模糊控制策略的温室远程智能控制系统的研究[D].长春:吉林大学,2015.

[2]兰富军.基于模糊控制与神经网络的智能温室温度控制研究[J].安徽农业科学,2012,40(7):4437-4438.

[3]屈毅,宁铎,赖展翅,等.温室温度控制系统的神经网络PID控制[J].农业工程学报,2011,27(2):307-311.

[4]王立舒,侯涛,姜森.基于改进多目标进化算法的温室环境优化控制[J].农业工程学报,2014,30(5):131-137.

[5]杨小虎.面向温室智能控制的模糊控制算法研究[D].杨凌:西北农林科技大学,2014.

[6]岳文杰,谢守勇,种,等.基于模糊PID的温室温度控制器设计与仿真[J].农机化研究,2014,36(4):194-197.

温室效应现象例7

一、前言:

随着生活质量的提高,全国各地大量兴建室内游泳馆。在游泳馆设计时除需考虑水处理设施外,还须考虑防结露措施。所谓结露,是指室内湿热空气在温度降到露点时产生液态水的现象。由于游泳馆内存在大量水,湿度远远高于其它建筑,此外北方地区游泳馆,除夏季外室内外温差较大,很容易产生室内结露现象。

二、结露现象的危害

1、降低游泳馆使用寿命

受湿热空气及露水的频繁侵蚀,网架、檩条、吊顶、各管道等防腐漆膜寿命降低,漆膜一旦破坏,含氯离子的湿热空气及露水对钢结构的侵蚀将急剧加速,导致钢结构在3~5年内破坏,大大降低其使用寿命。

照明灯具、消防自动报警设施、电子计分系统、LED大屏幕等电气线路、设备通常不能做到全部耐水封闭,一旦露水沿管线进入电器设施内部或线缆接头部位,轻则加速设备老化腐蚀,重则直接导致接地或短路破坏。

2、热量散失快,增大运行成本。

由于钢结构屋面多采用保温岩棉作为保温层,一旦出现结露现象,保温层会因饱和水而失效。导致室内外发生热交换,热量迅速散失,需要不断加热池水,加大冬季运行成本。

3、影响建筑物的美观及业绩

出现结露现象后,锈水下滴,顶棚、墙体、门窗玻璃、地面等均会产生黄色锈水印记,严重影响建筑物的美观。另外锈水可能会滴落到泳池内,影响水质。甚至会直接滴至顾客身上,给顾客带来不舒服的感觉,直接影响营业绩效。

三、结露原因分析

1、保温层厚度不足

保温层厚度不足,将导致其围护结构内表面与室内湿热空气中间出现温度差,满足露点条件。目前一些设计人员为了美观,将钢结构屋面的主次檩条隐蔽到屋面板内,降低主次檩条部位保温层的厚度,甚至取消主次檩条处的保温层材料,直接在屋面上设置若干人为“冷桥”。

2、屋面构造气密性不够

目前,钢结构屋面保温层多采用保温岩棉,其下层如不设置封闭性能良好的隔气层,必然会造成游泳馆内的湿热空气穿透保温层,直达屋面上层钢板下表面。温度的差异导致钢板下表面出现结露,使保温层吸水饱和后失效,加剧室内外热量交换,造成结露现象恶性循环。

3、相对湿度过大

相对湿度是导致游泳馆结露的一个重要因素,相对湿度越高,水蒸气的分子压力越大,露点温度就越高,室内温度与露点温度之间的温差就越小,越容易出现结露现象。所以设计时通常要求相对湿度要低于70%。

4、通风量不适宜

通风量主要是指排风量。理论上说,排风量应等于新风量。当排风量较大时,空调的负荷也较大。如空调负荷不足,则会使室内温度较低;而当排风量较小时,新风量也较小,不能有效降低室内的相对湿度。所以控制室内的排风量可以控制室内所需要的热负荷,进而降低日常运行的费用。

四、某游泳馆结露改造工程实例

1、工程概况及结露现象

该工程于2012年9月28日竣工,同期投入使用。建筑结构形式及屋面做法:框架结构、空心砖填充墙,网架、双层压型钢板屋面、保温层为125mm厚的苯板。于10月下旬开始出现轻微结露,且随室外温度降低逐渐加剧。至11月下旬,结露情况十分严重,室内电气设备管线、大白工程、地板工程均受到不同程度破坏。

2、原因调查

连续一周内,在不同位置布置多个测控点以监测室内空气的温湿度,实测结果为:温度在26~30度之间,湿度在45%~60%之间。

现场组织技术人员会同甲方、监理和分包单位施工人员,掀开屋面板。经检查发现:屋面板下结满露滴且岩棉保温层含水率接近饱和状态。屋面钢结构主次檩条旁没有保温和断桥措施,且保温层、隔气层及保温玻璃棉与钢檩条之间未充分密封。接近顶棚的墙体未出现结露现象,但顶棚结露严重。说明现室内温度湿度条件下,屋面保温层、隔气层失效及“冷桥”是游泳馆结露的主要原因。

游泳馆屋面消防排烟风机在未通电情况下自转,说明空调回风不畅,室内湿热空气滞留,存在正压。

3、整改措施方案

拆除原有保温层,隔气层。选取憎水性好且不透气的新型防火轻质复合保温屋面板,消除“冷桥”部位;屋面增设无动力排风机,排除室内滞留的湿热空气,同时调节回风量,降低室内空气正压;改造前后屋面做法如图1所示。

如图1改造前后屋面做法对比

4、露点及保温层热阻计算

计算依据为《民用建筑热工设计规范》GB50176-93

(1)屋顶内表面温度θi=ti-( ti C te) *Ri/ R0

θi―屋面内表面温度;

ti ―冬季室内计算温度(℃);本工程取28℃;

te ―冬季室外计算温度(℃);本工程取-18℃;

R0 ―围护结构的传热阻;

Ri ―内表面换热阻(m2・k/w);取为0.11。

假定屋顶室内计算温度28℃,查得露点温度为24.2℃,根据经验屋面内表面温度高于露点温度2℃以上可保证不结露,因此屋面内表面温度为26.2℃,带入公式:θi=ti-( ti C te) *Ri/ R0,得R0=2.81 m2・k/w;

(2)屋面围护结构热阻的计算公式:R0= Ri + R + Ri

Ri ―内表面换热阻(m2・k/w);取为0.11;

Re ―外表面换热阻(m2・k/w);取为0.04;

R ―围护结构热阻(m2・k/w)。

带入公式:2.81 m2・k/w=0.11 m2・k/w+R+0.04 m2・k/w,得R=2.66 m2・k/w,即当屋面围护结构热阻≥2.66 m2・k/w时,满足要求。

五、结语

综上所述,笔者认为室内钢结构游泳馆设计时,应重视防结露措施的应用,保证围护结构保温层的厚度和隔气层的气密性。以上观点是多位专家共同论证,且经过工程实例检验后的设计经验,望各位业内人士应用后加以验证和推广。

参考文献:

[1] 国际游泳联合会游泳设施手册[S]. 2009-2013

[2] GB9667-1996,游泳场所卫生标准[S]. 北京:中国标准出版社,1996.

[3] 陆耀庆.实用供热空调设计手册(第二版) [M]. 北京:中国建筑工业出版社,2004.

[4] 陆亚俊,马最良.暖通空调(第二版) [M]. 北京:中国建筑工业出版社,2007.

温室效应现象例8

中图分类号:S625文献标识码: A 文章编号:

1 我国的温室种类与种植面积

温室(greenhouse)是设施农业研究的最主要对象。温室的分类方法多种多样,但主流分类方式,还是按照其在生产中的使用性能来划分。对同种温室类型中不同形式,则再按覆盖材料的不同来加以区分细化。目前,国内常用的温室类型主要有塑料大棚、日光温室和连栋温室,分别如图1至图3所示。[1-3]

图1 大棚温室

图2 日光温室(摄于野马图草莓种植温室)

图3 薄膜连栋温室(摄于内蒙古蒙草抗旱有限公司和林培育基地)

2004年,我国温室种植面积为662423公顷;而到了2010年,我国温室种植面积达到了1133995.59公顷,几乎是2004年温室种植面积的两倍。2004、2006、2009、2010年全国温室种植面积对比情况见图4。

图4 全国温室种植面积(此数据来源于《2011年中国农业年鉴》)

2 日光温室在内蒙古自治区的应用规模和重要作用

应用于内蒙古自治区的温室主要有连栋温室和日光温室。由于日光温室具有结构简单、造价低、维护方便等特点,再加上政府在政策和经济上的有力推动与支持,在内蒙古地区获得了极为广泛的应用,其种面积也远远大于连栋温室。

2010年,全国温室种植面积位居前五的省份分别为山东、河北、辽宁、江苏、河南,而内蒙古自治区仅次于浙江,以种植面积36875公顷位居第七。在内蒙古自治区十二五规划展望中,预计在2015年,温室种植面积将达到141775公顷。以呼和浩特市市郊野马图、讨思号村温室种植发展规模为例,2012年新增日光温室面积比2010年的日光温室面积增长约达到了70-80%。2010年全国部分省市温室种植面积对比情况见图5。

图5 2010年全国部分省(自治区)温室种植面积(此数据来源于《2011年中国农业年鉴》)

内蒙古自治区的气候具有独特性,为中温带季风气候,降水量少而不匀,寒暑温差剧烈,冬季漫长而寒冷,多数地区冷季长达5个月到半年之久。其从东向西由湿润、半湿润区逐步过渡到半干旱、干旱区,是日光温室应用最广泛的地区之一。目前我区日光温室种植面积已超过120万亩,占全区农业种植面积的1%以上,产值达全区农业总产值的30%,形成了以日光温室为主体的设施农业栽培体系。虽然内蒙古地区日光温室种植面积庞大,但其相对落后的管理手段和控制水平,不仅影响了农作物产品质量,而且不利于生产资源利用率提高和生产成本的降低,是制约我区设施农业发展的瓶颈之一。

3 内蒙古自治区日光温室研究的意义及现状

为解决我区日光温室管理手段和控制水平落后的问题,有必要建立适我区气候特征的温室作物小环境模型。因此,以内蒙古自治区作为寒冷干旱地区的代表,以该地区典型日光温室作为研究对象,根据所获取的温室作物生长环境信息,准确构建日光温室作物小环境模型,进而对温室作物种植环境信息进行智能化处理,分析不同状态下温室环境的变化特点,对于优化温室结构及对温室环境进行合理调控有重要参考和应用价值。[4-6]

国内外相关机构和专家学者对温室相关问题已进行了广泛深入的研究,主要集中在温室环境硬件控制系统、温室环境的控制策略和温室环境模拟等三个方面,获得了丰硕成果和丰富的经验,中国农业大学、浙江大学、沈阳农业大学等高校的研究水平都处于领先位置。 [7-8]

日光温室模型不具备通适性,对不同地区、不同气候的参考意义极为有限。而内蒙古自治区西部气候条件独特,冬季气候寒冷而干燥,日光温室内外温、湿度差异很大。因此,建立适合于内蒙古自治区独特气候的日光温室模型,并对其进行相关研究、模拟和控制,来解决我去日光温室在建设、管理、控制、优化所遇到的问题,是非常必要的。[9-11]

随着物联网的发展,物联网结合温室数据采集、控制、优化以及专家决策系统成为越来越主要的发展方向。以内蒙古自治区西部作为寒冷干旱地区的代表,以本内蒙古典型的日光温室为研究对象,建立日光温室作物小环境信息物联网系统,为日光温室控制决策提供依据,具有重要的科学意义和实践价值。

4 当前日光温室研究存在的问题

虽然日光温室的研究取得了诸多进展,但仍有许多问题值得继续探讨和深入研究。如如何有效实现日光温室规模、高效的控制和管理;理论研究较多,但缺乏不同结构日光温室实物间的比较、测量和分析相关研究;如何使日光温室建设和管理的标准化、规范化;解决对北方干旱地区冬季需加温的典型日光温室的研究较少的现状;如何最大限度降低能耗和提高生产效率;如何合理有效得将现代化引入日光温室的建设和管理中等问题[12-13]。

农业是一个国家的根本,如何提高设施农的生产效率、降低生产成本、保证生产安全,尽快实现农业现代化和农业生产的可持续发展,需要每一个设施农业研究者进行不断探索和努力。

参考文献:

[1] 邹秋滢.温室小气候模型的建立及其控制策略研究. 《沈阳农业大学博士论文》. 2010-05-06

[2] 秦琳琳. 深液流栽培试验温室温度系统的建模与控制. 《中国科学技术大学博士论文》. 2008-10-01.

[3] 王明喜. 大棚型日光温室主要气象指标及生产性能的研究. 《内蒙古农业大学硕士论文》- 2008-05-01

[4] 刘宏军. 关于我国设施农业、设施园艺业发展现状与对策研究. 《农业与技术》- 2007-08-15.

温室效应现象例9

吉木萨尔县位于欧亚大陆腹地,在新疆首府乌鲁木齐市以东150km,北靠准噶尔盆地,南依天山北麓。地貌总轮廓由南向北分为南部山区、中部绿洲平原、北部沙漠三大部分。吉木萨尔县气候干燥,降水量少,寒暑变化悬殊,属于典型温带中纬度大陆性干旱半干旱气候。冬季寒冷、夏季炎热,冬季常处于高压控制下,气候稳定,低温严寒。根据近年新建区域自动气象站资料显示,县域南部山区有明显的逆温带存在,对发展设施农业极为有利。

近年来,随着农业种植业结构调整和农业产业化发展进程,吉木萨尔县开始向农副产品供应基地转变的目标进发。2009年,县委、政府出台一系列惠农政策,特别对设施农业的发展给予更大的支持和鼓励,温室蔬菜大棚由年初的300座迅猛发展到入冬前的近2 000座,为大力发展“菜篮子”工程和农民增收致富奠定了基础。目前,全县设施农业已进入全面运行时期,为使每座大棚充分发挥效益,实现农牧民收入持续快速增长,笔者根据当地冬季气象条件,针对温室大棚的管理提出建议,以便于在设施农业生产管理中作为参考依据。

1科学建设温室大棚

设施农业是通过人工建造温室大棚利用冬季有限气候资源发展农业经济。设施农业可以达到“冬增温、春提早、秋延晚”的效果,进行反季节农业生产的措施来提高经济效益。发展设施农业在建设中,尤其在地域选择、走向、坡度等方面都要按照一定的要求搭配合理、科学修建。如果建造不合理,进入冬季光照弱、温度低、湿度大、通气不良,易影响温室效益,造成温室蔬菜多种生理性病害和落花落果现象[1]。

一般在气候学上修建温棚应考虑太阳高度角。太阳高度角的大小,是水平面单位面积获得太阳辐射能量多少的决定因素,太阳高度角越大,所获太阳辐射能量就越多,反则就越少[2]。太阳高度角(h)与该地区的地理纬度(ψ)、太阳赤纬(δ)以及时刻(ω)有关,太阳高度角的求算公式为:

sinh=sinψ·sinδ·cosψ+cosδ·cosω

吉木萨尔县存在逆温效应的地区海拔高度在1 100~1 500m的前山区,一般纬度约为43°55′的区域。根据公式计算得出:该地区修建温棚的坡度应设计在55~60°比较合适,走向应该为正南偏东5~10°为佳,这样既能得到充足的阳光,又利于通风透气。

2合理调节温度

温度调节是冬季蔬菜管理的核心和关键。进入11月以后,吉木萨尔县基本进入冬季,蔬菜生产管理也进入关键时期。因为这一时期温度逐渐降低,昼夜温差大,一般晚上温度将下降到-5℃以下,日照时间缩短,且温度变化较大,生产管理上要格外注意天气变化。如有降温天气过程,温室内温度偏低应及时加火升温,并及时加盖草帘等覆盖物,棚膜最好选用新膜;白天棚内温度较高时,可打开上部通风口,使棚内温度白天保持在25~30℃,夜晚则应在棚膜上加盖草帘进行保温,使温度保持在15~18℃。另一方面要积极推行温室多层覆盖,可在温室薄膜的下方、拴吊绳的铁丝上方,再反搭1层薄膜,这样2层膜中间隔有空气,可明显提高室内温度[3]。此外,入冬前秋延晚果菜已进入生长后期,在做好保温措施的前提下,要尽量延长结果时间,以增加温室生产的效益[4]。

3强化光照管理

注意采取多种有效措施增加光照时间、提高光照强度,促进蔬菜的光合作用。一方面要注意选择透光性好、寿命长的无滴膜,并注意经常清扫膜面,保持薄膜较高的透光率;另一方面在保持室内温度不降低的前提下,尽量早揭晚盖,使室内蔬菜早见光、多见光,以更多地增加光合产物的积累。如遇连阴天,只要不下雪,就应拉起草帘增加光照;若遇下雪天,应及时清扫积雪,以免压损大棚,并维持蔬菜正常生长所需的光照条件。

4合理浇水

冬季由于蒸发量小,蔬菜对水分的需求量不是很大,因此蔬菜定植后可将包括走道在内的所有温室地面一律用地膜覆盖起来,以尽量减少水分蒸发、降低空气湿度。浇水时要根据天气预报、土壤墒情、蔬菜长势来确定浇水时间,做到晴天浇水,阴天不浇;晴天上午浇水,下午不浇;浇温水,不浇冷水;于地膜下沟内浇暗水,不在沟里浇明水;不大水漫灌。根据不同的蔬菜长势特点结合浇水进行氮肥、磷钾肥配合追肥。

5加强灾害性天气的预防和管理

遇到寒冷、连

阴、下雪天气时,要在保持室内温度满足蔬菜生长需求的前提下,尽量早揭、晚盖草帘,决不能因天气寒冷、连阴天,怕蔬菜受冻而整天不揭草帘。白天下雪时不必盖草帘,雪停后立即扫去棚上积雪,下午提前盖帘,再在草帘上盖1层薄膜以加强保温。遇连阴天后突然转晴,切不可猛然全部揭开草帘,应陆续间隔揭开,遇强光时再将帘子放下,光照弱时再揭开,使蔬菜慢慢适应阳光的照射,否则会出现生理性萎蔫,甚至死亡。在遇到连续低温、连阴天、下雪天气,室温持续下降的情况,为避免蔬菜冻害发生,可进行人工加温。管理中要时刻注意室温的变化,当室温已降至10℃时,如果还继续下降,且根据天气预报第2天也不转晴时,可采取人工辅助加温的方法,提高室内温度。

6病虫害防治

由于温室温度大、通气性差,蔬菜虫害主要有白粉虱、蚜虫、潜叶蝇等。它们不仅能直接危害蔬菜的生长,而且能够传播各种病毒,管理中要注意及时做好防治。蚜虫、白粉虱可采用黄板诱杀的方法,即在温室内悬挂黄色粘虫板或黄色板条(25cm×40cm)来诱杀害虫;也可采用蚜虱一熏净进行熏烟防治。防治中要以烟熏剂和粉尘剂为主,尽量少喷雾,减轻棚室内湿度,以利于控制病害的发生和蔓延。病害防治主要采取通风降湿并及时摘除病、残、老叶及增加通风透光性,可通过叶面喷肥,补充植株生长需求。叶面喷醋可防病驱虫,与白糖和过磷酸钙混用,不仅可以起到根外追肥的作用,而且可以增加叶肉含糖量,提高抗寒性,减少病害的发生。

7推广应用嫁接栽培技术

嫁接栽培技术是当前解决土壤连作障碍和土传病害、防止根病发生、大幅度提高蔬菜产量和质量的有效途径。黄瓜、西葫芦、茄子等蔬菜砧木品种抗病能力强,可同时抗黄萎病、枯萎病、青枯病、线虫病等4种土传病害,达到高抗或免疫程度。嫁接苗对土壤传播的病害具有高度抗性,同时具有耐低温、根系发达、吸收肥水能力强等特点,长势强、结果早、产量高。采用黑籽南瓜作砧木的黄瓜嫁接苗对黄瓜枯萎病的防治效果一般都在90%以上,产量可比自根苗提高20%以上。

8参考文献

[1] 马宏武,玉素甫·阿布都拉.影响和田冬季设施农业的气候变化特征分析[j].沙漠与绿洲气象,2007,1(4):46-48.

[2] 孙智辉,尹盟毅.延安冬季太阳辐射特征及对设施农业的影响[j].陕西气象,2007(1):34-36.

温室效应现象例10

中图分类号 S625.5+ 1 文献标识码 A 文章编号 1007-5739(2016)14-0186-01

随着我国农业经济的不断发展以及农业生产结构的不断调整,设施农业生产,尤其是利用温室进行生产的模式发展迅速。温室生产不但能充分利用和开发气候资源,更主要的是能大幅度增加农产品的产量和品质,并带来明显的经济效益[1]。然而,温室内农作物受室内各项气象要素的影响密切,不同的生长阶段对室内气侯环境有着不同的需求,因此加强对温室大棚内小气候特征的研究有着十分重要的意义。

太阳辐射是温室大棚的主要能源,影响温室内小气候变化的主要气象因子有温度、日照、相对湿度、CO2浓度等多方面。其中,温室内温度的变化对其室内作物的生长发育起着关键性作用[2]。本文通过对温室内温度观测资料的统计,分析温室内温度的变化规律及其时空分布特征,研究适宜温室内作物生长发育的气象条件。目的是为调控温室生产提供合理可靠的理论依据,更好地为温室经济发展服务。

1 资料来源及方法

选取典型的温室大棚观测棚内温度变化数据。观测方式:通过自动气象观测站采集温度数据,观测位置距地面150 cm。观测方法:每隔10 min自动采集棚内温度数值,并上传存储。观测时间:从作物定植至生育期结束进行连续观测。计算室内每日平均温度、每天最高与最低温度,各月统计,并与棚外温度进行对比分析[3]。

2 结果与分析

2.1 温室内温度变化规律

2.1.1 影响温度变化的主要因子。温室内温度的变化,取决于外界气象条件的变化,不同天气条件下温室内温度有不同的变化情况[4]。影响其变化的因子主要有日照时数、云量、天气状况(阴、晴、雨、雪、大风)等多方面。经观测统计可知,晴朗无云天气,日照时间长,太阳辐射能大,盖帘前温度比较高,温室内储存的能量较高,次日早掀帘前最低温度就较阴天高;一般当N总云量≥7成以上时温室内最高温度比晴朗无云低15 ℃左右,次日早最低温度较晴朗无云温度低2~3 ℃;大风天气温室夜间降温较快;降雪日温室内温度上升缓慢,上升幅度小,太阳辐射能少,棚内储存能量少,直接影响盖帘后温室内温度,次日温室内最低温度比晴天低3 ℃左右。

2.1.2 温室内温度的日变化规律。温室内温度昼夜的变化幅度比外界气温变化剧烈,昼夜温差依天气状况而异[5]。温室内温度的日变化,随着室外天气条件的不同会发生不同的变化。晴天时室内温度变化剧烈,多云天气变化幅度小于晴天,阴、雨、雪天气室内温度变化基本趋于平稳。晴天室内平均温度高于多云天气和阴天。另外,温室需要晚上盖帘的月份(11月至翌年4月),棚内最低温度出现时间在早掀帘时。

2.1.3 温室内温度的季节变化规律。温室内的温度随着季节气温的变化而发生相应的变化。室内平均气温1月最低,6月最高。9―10月,为利于作物缓苗,一般人为控制温度较低,昼夜温差大,这种条件利于室内作物生长;11月后,室内温度随着室外温度的下降而逐渐降低,12月至次年1月是室内温度最低的时期,此期间作物生长缓慢,处于越冬状态;2月后,室内温度随外界温度变化而逐步回升,此时温度适宜作物生长,处于生长旺盛时期;5―6月室内外温差逐步减小,温室内应昼夜通风防止温室内出现高温或日光灼烧。

2.2 温室内温度的变化对主要农作物生长发育的影响

2.2.1 番茄生长发育的气象指标。番茄为喜温而不耐热的蔬菜,在15~33 ℃的范围内都能生长,但是最适宜的温度为20~25 ℃。温度低于15 ℃则不能开花或授粉受精不良,导致落花等生殖生长障碍。温度降至10 ℃时,植株会停止生长。长时间在5 ℃以下的低温环境下能引起冻害。致死的最低温度为-1~2 ℃。温度升至30 ℃时,同化作用显著降低,升高至35 ℃以上时,生殖生长会受到干扰与破坏,即使短时间45 ℃以上的高温,也会产生生理干扰,导致落花落果或是果实不发育[6]。

2.2.2 辣椒生长发育的气象指标。辣椒属双子叶植物纲,喜温润,怕旱涝,不耐低温也不耐高温。辣椒种子发芽的温度范围是15~30 ℃,低于10 ℃和超过35 ℃都不能发芽。发芽最适宜温度为25~26 ℃[7]。幼苗期适宜温度为白天25~30 ℃,夜间15~18 ℃。开花结果期适宜温度为白天20~27 ℃,夜间15~20 ℃。

2.2.3 其他温室作物生长发育的温度指标。除番茄、辣椒以外,温室生产的其他农作物、蔬菜还包括黄瓜、西瓜、甜瓜、茄子、豆角等。这些农产品在不同的生长发育阶段,对温室内的温度也有不同的要求[8],具体见表1。

3 结论与讨论

综上所述,通过对温室大棚内气象要素观测数据的统计分析,研究得出温室内温度的日变化及季节变化的一般规律,同时研究得出各主要温室作物在不同的生长发育阶段受温室内温度变化的影响情况以及适宜其生长的温度条件,为人工调控温室生产提供了可靠的依据。可以根据各温室作物生长发育的气象指标以及温室内温度变化的基本规律,最大程度地将温室内气候环境调控到适宜相应农作物生长的标准,从而实现经济效益的最大化。同时,在现有理论研究的基础上,随着各项科学技术的不断发展,应加强对温室大棚内温湿度预测方面的研究,为预防温室内发生各种农业气象灾害提供科学依据,为地方农业经济的发展做好气象决策服务。

4 参考文献

[1] 刘彩梅,张衍华,毕建杰.设施农业的发展现状及对策[J].河北农业科学,2008,12(7):120-121.

[2] 于系民,刘庆敏.霜期农业气候学[M].北京:气象出版社,1999:182-187.

[3] 中国气象局.地面气象观测规范[S].北京:气象出版社,2003.

[4] 郭洪恩,赵红.晴阴天对不同结构温室大棚温度的影响[J].安徽农业科学,2009(28):542-544.

[5] 吉中礼,崔鸿文.塑料大棚小气候变化规律分析[J].西北农业学报,1997,6(1):61-64.