期刊在线咨询服务,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

期刊咨询 杂志订阅 购物车(0)

生物医用材料的发展模板(10篇)

时间:2023-12-21 11:31:47

生物医用材料的发展

生物医用材料的发展例1

生物医用高分子材料是一种聚合物材料,主要用于制造人体内脏、体外器官、药物剂型及医疗器械。按照来源的不同,生物医用高分子材料可以分为天然生物高分子材料和合成生物高分子材料2种。前者是自然界形成的高分子材料,如纤维素、甲壳素、透明质酸、胶原蛋白、明胶及海藻酸钠等;后者主要通过化学合成的方法加以制备,常见的有合聚氨酯、硅橡胶、聚酯纤维、聚乙烯基吡咯烷酮、聚醚醚酮、聚甲基丙烯酸甲酯、聚乙烯醇、聚乳酸、聚乙烯等。按照材料的性质,生物医用高分子材料可以分为非降解材料和降解材料。前者主要包括聚乙烯、聚丙烯等聚烯烃,芳香聚酯、聚硅氧烷等;后者包括聚乙烯亚胺—聚氨基酸共聚物、聚乙烯亚胺—聚乙二醇—聚(β-胺酯)共聚物、聚乙烯亚胺—聚碳酸酯共聚物等。

生物医用高分子材料作为植入人体内的材料,必须满足人体内复杂的环境,因此对材料的性能有着严格的要求。首先,材料不能有毒性,不能造成畸形;其次,生物相容性比较好,不能与人体产生排异反应;第三,化学稳定性强,不容易分解;第四,具备一定的物理机械性能;第五,比较容易加工;最后,性价比适宜。其中最关键的性能是生物相容性。

根据国际标准化组织(InternationalStandardsOrganization,ISO)的解释,生物相容性是指非活性材料进入后,生命体组织对其产生反应的情况。当生物材料被植入人体后,生物材料和特定的生物组织环境相互产生影响和作用,这种作用会一直持续,直到达到平衡或者植入物被去除。生物相容性包括组织相容性、细胞相容性和血液相容性。

二、生物医用高分子材料的发展历史

人类对生物医用高分子材料的应用经过了漫长的阶段。根据记载,公元前3500年,古埃及人就用棉花纤维和马鬃缝合伤口,此后到19世纪中期,人类还主要停留在使用天然高分子材料的阶段;随后到20世纪20年代,人类开始学会对天然高分子材料进行改性,使之符合生物医学的要求;再后来人类开始尝试人工合成高分子材料;20世纪60年代以来,生物医用高分子材料得到了飞速发展和广泛的普及。1949年,美国就率先发表了研究论文,在文中第1次阐述了将有机玻璃作为人的头盖骨、关节和股骨,将聚酰胺纤维作为手术缝合线的临床应用情况,对医用高分子的应用前景进行了展望。这被认为是生物医用高分子材料的开端。

在20世纪50年代,人类发现有机硅聚合物功能多样,具有良好的生物相容性(无致敏性和无刺激性),之后有机硅聚合物被大量用于器官替代和整容领域。随着科技的发展,20世纪60年代,美国杜邦公司生产出了热塑性聚氨酯,这种材料的耐屈挠疲劳性优于硅橡胶,因此在植入生物体的医用装置及人工器官中得到了广泛应用。随后人工尿道、人工食道、人工心脏瓣膜、人工心肺等器官先后问世。生物医用高分子材料也从此走上快速发展的道路。

三、生物医用高分子材料的发展现状、前景和趋势

据相关研究调查显示,我国生物医用高分子材料研制和生产发展迅速。随着我国开始慢慢进入老龄化社会和经济发展水平的逐步提高,植入性医疗器械的需求日益增长,对生物医用高分子材料的需求也将日益旺盛。2015年1月28日,中国医药物资协会的《2014中国单体药店发展状况蓝皮书》显示,2014全年全国医疗器械销售规模约2556亿元,比2013年度的2120亿元增长了436亿元,增长率为20.06%。但是相比于医药市场总规模(预计为13326亿元)来说,医药和医疗消费比为1∶0.19还略低,因此业内普遍认为,医疗器械仍然还有较广阔的成长空间,生物医用高分子材料也将迎来良好的发展前景。

根据evaluateMedTech公司基于全球300家顶尖医疗器械生产商的公开数据而得出的报告《2015-2020全球医疗器械市场》预测,2020年全球医疗器械市场将达到4775亿美元,2016-2020年间的复合年均增长率为4.1%。世界医疗器械格局的前6大领域包括:诊断、心血管、影像大型设备、骨科、眼科、内窥镜,其中生物医用高分子材料在其中都得到了广泛的应用。

以往的医学研究对组织和器官的修复,更多是选择一种替代品,实现原有组织和器官的部分功能。随着再生医学和干细胞技术的迅速发展,利用生物技术再生和重建器官、个性化治疗和精准医学已经成为趋势。因此传统的生物医药高分子材料已经不能满足现有的需求,需要模拟生物的结构,恢复和改进生物体组织与器官的功能,最终实现器官和组织的再生,这也是生物医用高分子材料未来的发展方向。

生物医用高分子材料在医疗器械领域中得到了非常广泛的应用,主要体现在人工器官、医用塑料和医用高分子材料3个领域。

1.人工器官

人工器官指的是能植入人体或能与生物组织或生物流体相接触的材料;或者说是具有天然器官组织或部件功能的材料,如人工心瓣膜、人工血管、人工肾、人工关节、人工骨、人工肌腱等,通常被认为是植入性医疗器械。人工器官主要分为机械性人工器官、半机械性半生物性人工器官、生物性人工器官3种。第1种是指用高分子材料仿造器官,通常不具有生物活性;第2种是指将电子技术和生物技术结合;第3种是指用干细胞等纯生物的方法,人为“制造”出器官。目前生物医用高分子材料主要应用在第1种人工器官中。

目前,植入性医疗器械中骨科占据约为38%的市场份额;随后是心血管领域的36%;伤口护理和整形外科分别为8%左右。人工重建骨骼在骨科产品市场中占据了超过31%的市场份额,主要产品是人工膝盖,人工髋关节以及骨骼生物活性材料等,主要应用的生物医用高分子材料有聚甲基丙烯酸甲酯、高密度聚乙烯、聚砜、聚左旋乳酸、乙醇酸共聚物、液晶自增强聚乳酸、自增强聚乙醇酸等。心血管产品市场中支架占据了一半以上的市场份额,此外还有周边血管导管移植、血管通路装置和心跳节律器等。

目前各国都认识到了人工器官的重要价值,加大了研发力度,取得了一些进展。2015年,美国康奈尔大学的研究人员开发出了一种轻量级的柔性材料,并准备将其用于创建一个人工心脏。在我国,3D打印人工髋关节产品获得国家食品药品监督管理总局(CFDA)注册批准,这也是我国首个3D打印人体植入物。

人工器官未来发展趋势是诱导被损坏的组织或器官再生的材料和植入器械。人工骨制备的发展趋势是将生物活性物质和基质物质组合到一起,促进生物活性物质的黏附、增殖和分化。血管生物支架的发展趋势是聚合物共混技术,如海藻酸钠/壳聚糖、胶原/壳聚糖、胶原/琼脂糖、壳聚糖/明胶、壳聚糖/聚己内酯、聚乳酸/聚乙二醇等体系。

2.医用塑料

医用塑料,主要用于输血输液用器具、注射器、心导管、中心静脉插管、腹膜透析管、膀胱造瘘管、医用粘合剂以及各种医用导管、医用膜、创伤包扎材料和各种手术、护理用品等。注塑产品是医用塑料制品当中产量最大的品种。与普通塑料相比,医用塑料要求比较高,严格限制了单体、低聚物、金属离子的残留,对于原材料的纯度要求很高,对加工设备的要求也非常严格,在加工和改性过程中避免使用有毒助剂,通常具有表面亲水、抗凝血等特殊功能。常用医用塑料包括聚氯乙烯(PVC)、聚乙烯(PE)、聚丙烯(PP)、聚四氟乙烯(PTFE)、热塑性聚氨酯(TPU)、聚碳酸酯(PC)、聚酯(PET)等。

目前医用塑料市场约占全球医疗器械市场的10%,并保持着每年7%~12%的年均增长率。统计数据显示,美国每人每年在医用塑料领域消费额为300美元,而我国只有30元,由此可见医用塑料在我国的发展潜力非常大。

我国医用塑料制品产业经过多年的发展,取得了长足的进步。中国医药保健品进出口商会统计数据显示,2015年上半年,纱布、绷带、医用导管、药棉、化纤制一次性或医用无纺布物服装、注射器等一次性耗材和中低端诊断治疗器械等成为我国医疗器械的出口大户。但是也必须清醒地认识到,我国的医用塑料发展水平还比较落后。医用塑料的原料门类不全、生产质量标准不规范、新技术和新产品的创新能力薄弱,导致一些高端原料导致国内所需的高端产品原料还主要靠进口。

目前各国都认识到了医用塑料的重要价值,加大了研发力度,取得了一些进展。2015年,英国伦敦克莱蒙特诊所率先开展了塑胶晶状体移植手术,不仅可以治疗远视眼或近视眼,还可以恢复患有白内障和散光者的视力;住友德马格公司推出一种聚甲醛(POM)齿轮微注塑设备,在新型白内障手术器械中具有重要作用;美国美利肯公司开发了一项技术,可使非处方药和保健品塑料瓶的抗湿性和抗氧化性提高30%;MHT模具与热流道技术公司开发出了PET血液试管,质量不足4g,优于玻璃试管;Rollprint公司与TOPAS先进高分子材料公司合作,采用环烯烃共聚物作为聚丙烯腈树脂的替代品,以满足苛刻的医疗标准;美国化合物生产商特诺尔爱佩斯推出了一款硬质PVC,以取代透明医疗零部件中用到的PC材料,如连接器、止回阀、Y接头、套管、鲁尔接口配件、过滤器、滴注器和盖子,以及样本容器。

未来医用塑料的发展趋势是开发可耐多种消毒方式的医用塑料,改善现有医用塑料的血液相容性和组织相容性,开发新型的治疗、诊断、预防、保健用塑料制品等。

3.药用高分子材料,

药用高分子材料在现代药物制剂研发及生产中扮演了重要的角色,在改善药品质量和研发新型药物传输系统中发挥了重要作用。药用高分子材料的应用主要包括2个方面:用于药品剂型的改善以及缓释和靶向作用,此外还可以合成新的药物。

药物缓释技术是指将衣物表面包裹一层医用高分子材料,使得药物进入人体后短时间内不会被吸收,而是在流动到治疗区域后再溶解到血液中,这时药物就可以最大限度的发挥作用。药物缓释技术主要有贮库型(膜控制型)、骨架型(基质型)、新型缓控释制剂(口服渗透泵控释系统、脉冲释放型释药系统、pH敏感型定位释药系统、结肠定位给药系统等)。

贮库型制剂是指在药物外包裹一层高分子膜,分为微孔膜控释系统、致密膜控释系统、肠溶性膜控释系统等,常用的高分子材料有丙烯酸树脂、聚乙二醇、羟丙基纤维素、聚维酮、醋酸纤维素等。骨架型制剂是指向药物分散到高分子材料形成的骨架中,分为不溶性骨架缓控释系统、亲水凝胶骨架缓控释系统、溶蚀性骨架缓控释系统,常用的高分子材料有无毒聚氯乙烯、聚乙烯、聚氧硅烷、甲基纤维素、羟丙甲纤维素、海藻酸钠、甲壳素、蜂蜡、硬脂酸丁酯等。

我国的高分子基础研究处于世界一流,但是药用高分子的应用发展相对滞后,品种不够多、规格不完整、质量不稳定,导致制剂研发能力与国际产生差距。国内市场规模前10大种类分别为明胶胶囊、蔗糖、淀粉、薄膜包衣粉、1,2-丙二醇、PVP、羟丙基甲基纤维素(HPMC)、微晶纤维素、HPC、乳糖。高端药用高分子材料几乎全部依赖进口。专业药用高分子企业则存在规模小、品种少、技术水平低、研发投入少的问题。

目前,药物剂型逐步走向定时、定位、定量的精准给药系统,考虑到医用高分子材料所具备的优异性能,将会在这一发展过程中发挥关键性的作用。未来发展趋势是开发生物活性物质(疫苗、蛋白、基因等)靶向控释载体。

四、结语

虽然生物医用高分子材料的应用已经取得了一些进展,但是,随着临床应用的不断推广,也暴露出不少问题,主要表现出功能有局限、免疫性不好、有效时间不长等问题。如植入血管支架后,血管易出现再度狭窄的情况;人工关节有效期相对较短,之所以出现这些问题,主要原因是人体与生俱来的排异性。

生物医用高分子材料隶属于医疗器械产业,其发展备受政策支持。国务院于2015年5月印发的《中国制造2025》明确指出,大力发展生物医药及高性能医疗器械,重点发展全降解血管支架等高值医用耗材,以及可穿戴、远程诊疗等移动医疗产品。可以预见,在未来20~30年,生物医用高分子材料就会迎来新一轮的快速发展。

参考文献

[1]奚廷斐.生物医用材料现状和发展趋势[J].中国医疗器械信息,2006(5):1-4.

[2]张真,卢晓风.生物材料有效性和安全性评价的现状与趋势[J].生物医学工程学,2002,19(1):117-121.

[3]董亮,何星.生物医用复合材料研究现状及发展趋势[J].世界复合医学,2015(4):340-342.

[4]奚廷斐.我国生物医用材料现状和发展趋势[J].中国医疗器械信息,2013(8):1-5.

[5]中国组织工程研究与临床康复.中国生物医用材料研究领域的问题及对策[J].中国组织工程研究与临床康复,2011(34):186.

[6]胡帼颖,张志雄,温叶飞,等.组织工程技术的发展现状及趋势(三)——组织工程用生物材料的研究[J].透析与人工器官,2009(3):9-27.

[7]张镇,王本力.我国生物医用材料产业发展研究[J].新材料产业,2015(3):2-5.

[8]章俊,胡兴斌,李雄.生物医用高分子材料在医疗中的应用[J].中国医院建筑与装备,2008(1):30-35.

[9]梅建国,庄金秋,汤少伟,等.生物医用高分子材料的生物相容性及其表面改性技术[J].材料导报,2014,28(19):139-142.

[10]黄琼俭,徐益.生物医用高分子材料在药物控释系统中的应用[J].生物技术世界,2013(2):82-82.

[11]吴桐.浅谈几种生物医用高分子材料的应用[J].科技资讯,2011(29):52-52.

[12]王建营,朱治国,孙家跃,等.聚醚醚酮人造骨关节材料研究[J].化学世界,2004,45(1):53-54.

[13]高茜斐.生物塑料发展现状及前景[J].广东化工,2015,42(15):87-88.

[14]龙先鹏.浅析我国生物塑料前景[J].科技创新导报,2011(14):96-96.

生物医用材料的发展例2

1. 前言

口腔生物医学材料具有比较广泛的应用范围,不只是在因先天或后天原因导致牙体组织和颌面器官缺损的修复方面进行应用,还可能在鉴别诊断口腔疾病方面具有辅助作用。生物医学材料可实现对缺损组织与器官的修复和置换,恢复组织或器官的正常功能。随着迅猛发展的科技水平,口腔生物医学材料的制作方法也具有明显的改进,日益推出复合型与功能型形式各样的生物医学材料,并日益优化其性能。

2. 资料与方法

通过对生物医学和生命科学有关文献的数据库的检索,并进行较深入地分析。结合临床口腔生物医学材料应用的特点,比较分析有关数据。口腔生物医学材料基础性研究、临床应用的生物医学材料等相关文献都是重要依据,并将与目的无关的研究结果予以排除。

3. 结果

按照材质类别可将口腔生物医学材料分为金属、高分子及非金属生物复合材料三类。金属类材料在临床口腔生物材料中是最早应用的一类材料,这类材料优点是具有较高强度、较强韧性、获取容易等,在临床中应用广泛。还可结合其成分将金属类材料分为纯金属、合金及特种金属三种,在临床中纯金属类材料应用不多,应用较多的主要是合金和特种金属。合金类金属材料由不少于两种金属元素组成,尽管其延展与抗压等物理性能低于纯金属材料,但在应用中生物安全性较高,所以在临床中具有比较广泛的应用。钴基合金材料目前广泛应用的合金类材料,主要有钴铬钨镍和钴铬钼合金两类,具有抗腐蚀性较强的性能,高于单一金属材料40倍。但在加工制作过程中比较烦琐,所以相对具有比较昂贵的价格。此外,机械性能也比纯金属类材料高,通常在替换颞下颌关节与颌面部内固定大面积骨折中应用较多。钛合金与上述金属合金材料相比较,具有较高的机械性能和相容性,在人体植入后不会产生排斥反应和毒副作用,生物相容性较好。通常在种植牙基桩制作、固定骨折及骨缺损替代植入性材料中比较常用。但在使用中金属材料也具有不足之处,诸如在使用中因人体具有比较复杂的内部环境,因人体内长期存在金属材料部会造成离子向体内微渗入,进而产生较大的副作用和毒性。

在现代口腔生物医学材料中非金属生物复合材料也是其中的重要组成部分,主要有以下三种。一是生物活性陶瓷,该材料是表面具有生物活性和吸附性的一N陶瓷,通常具有羟基,为多孔形,具有较高的孔隙率。在体内生物活性陶瓷能够降解吸收,通常在生物体内用于骨诱导材料对新生骨生长具有一定的诱导作用。在实际应用中骨传导性与诱导性良好,所以通常该材料可用于修复骨缺损的一种支架材料,在支架的周围利用填充材料的良好生物学活性充填覆盖,以实现对缺损的修复作用,并使材料增加生物相容性。二是惰性生物陶瓷材料,其主要成分是氧化铝和氧化锆,硬度高,生物相容性好,所以通常在内固定骨折中应用较多,在制作口腔全瓷牙内冠中也比较常用。三是复合树脂,主要混合有机树脂基质和无机填料形成,在特定条件下是能够引发化学性反应的一种修复材料,在修复小面积牙体缺损时比较适合。在临床中目前主要应用的有光固化、化学固化及复合固化等树脂类材料,该材料具有较强的可塑性、良好的仿真性、较高的生物相容性、比较耐磨等优势。

在临床中高分子类材料是一种比较广泛应用的材料,稳定性强,聚乙烯和聚丙烯是其主要成分。与其它材料相比较,该材料在人体中不能降解产生离子,因此不具有毒性。抗冲击性和抗摩擦性也较强,所以在替换人工关节中应用比较广泛。高分子类材料中的硅橡胶材料耐高温、腐蚀及透气性较高,所以在制作颌面部复体及口腔印模精确制取材料中应用较广。另外,该材料可降解,经一段时间后可形成小分子化合物而随人体基础代谢排出患者体外。

4. 讨论

通过研究分析生物材料有关文献资料,在口腔临床生物医学材料中选取金属材料、高分子、生物复合材料三大类分别进行研究。大部分高分子材料与生物复合材料都是由不少于两种材料构成,对这类材料进行制作时,可利用相关技术对材料微观构造进行改变,使材料特性和优点得到充分发挥,对不足之处进行有效弥补,对生物材料赋予新的生物特性。材料的生物相容性和机械强度较高,具有较强的耐腐蚀性,在特定环境下能够降解吸收,在临床应用中完全满足。在高分子材料与生物复合材料中,我国开展相关的研究相对较晚,并在研究初期发展相对较为缓慢,但经过近年来的不断发展,已由最初的盲目效仿逐渐发展到自主研发,由质变迅速发展发展到量变。口腔医用生物医学材料目前在我国已逐渐由传统的单一功能、非专一化、低效逐步发展为功能完善、复合化、专业化及高效,发表的生物医学材料的相关文献也跃居世界第二。

随着医学技术及材料技术的快速发展,口腔生物医学材料也得到了前所未有的发展机遇。目前在临床研究中已逐渐由常用的无机材料转变为有机材料,有机类生物材料在开展较多研究的就是多糖类物质。天然多糖类物质中壳聚糖属于其中一种,其生物相容性良好,抗菌性能优异。通常该类材料被用于对各种材料进行塑造以便于长入细胞和将应力传递至骨与骨之间。壳聚糖类物质因其生物相容性和细胞黏附性较好,而被广泛用于各种细胞因子和药物载体,实现对遗传信息进行传递以及相关疾病的临床治疗。

5. 结语

综上所述,口腔生物医学材料近年来已由传统的单一型材料逐渐过渡到新的复合型、智能型和功能型材料,生物医学材料可实现对缺损组织与器官的修复和置换,恢复组织或器官的正常功能。随着迅猛发展的科技水平,口腔生物医学材料的制作方法也具有明显的改进,日益推出复合型与功能型形式各样的生物医学材料,并日益优化其性能。相信在不远的将来,这种材料在组织工程学及口腔临床应用中将得到迅速发展。

参考文献:

[1] 殷武雄,李玲.医用骨修复碳素增强生物复合材料的研究进展[J],化工新型材料,2015.10

[2] 欧阳建安,王大平.多孔钽应用于骨科的生物材料特性研究进展[J],中国临床解剖学杂志,2014.8

[3] 黎淑婷,黄华,周永明.不同表面处理对聚乳酸可吸收桩与树脂核间粘结性能的影响[J],牙体牙髓牙周病学杂志,2015.4

生物医用材料的发展例3

2生物医学材料的分类

2.1生物医学金属材料(biomedicalmetallicmeterials)

生物医用金属材咪斗通常采用合金或钦金,具有很高的机械强度和抗疲劳特性,是临床应用最广泛的承力植人材料川,主要有钻合金(C。一Cr一Ni)、钦合金(Ti一6AI一4V)和不锈钢的人工关节和人工骨〔7口。镍钦形状记忆合金具有形状记忆特性和智能性,可用于矫形外科、心血管外科等。

2.2生物医学高分子材料(biomediealpolymer)

生物医学高分子材料有天然和合成两种,其中合成高分子材料发展较快。合成的软性材料常用作人体软组织(如血管、食道和指关节等)的代用品;合成的硬性材料则用作人工硬脑膜、人工心脏瓣膜的球形阀等;液态的合成材料(如室温硫化硅橡胶)可作为注人式组织修补材料阁。

2.3生物医学无机非金属材料或生物陶瓷(biomediealeeramies)

生物陶瓷的化学性质稳定,具有良好的生物相容性。生物陶瓷主要包括两类:①惰性生物陶瓷(如氧化铝、医用碳素材料等),这类材料具有较高的强度,耐磨性能良好,分子中化学键的作用力较强;②生物活性陶瓷(如轻基磷灰石和生物活性玻璃等),此类材料能在生理环境中逐步降解、吸收,或与生物机体形成稳定的化学键,因而具有极为广泛的发展前景。

2.4生物医学复合材料(biomediealeomposlites)

生物医学复合材料是由两种或两种以上不同材料复合而成的,主要用于修复或替换人体组织、器官或增进其功能,也可用作人工器官的制造。其中钻钦合金和聚乙烯组织假体常用作人工关节;被钦合成材料作为人工股骨头在临床上有良好的应用;高分子材料与生物高分子(如酶、抗原、抗体和激素等)结合可以作为生物传感器。

2.5生物医学衍生材料(biOI.刃iadded目叮.妞dais)

生物医学衍生材料是由经过特殊处理的天然生物组织衍生而成的。经过处理的生物衍生材料是无生物活性的材料,但其具有类似天然组织的构型和功能,在维持人体动态的修复和替换中具有重要作用,如皮肤掩膜、血液透析膜、人工心脏瓣膜等〔9]。

3生物医学材料的市场现状

生物医学材料产业是一种发展迅猛的高新技术产业。1992一1995年,其销量的全国增长率为7%一12%,超过全球经济的一般发展水平,在亚洲地区发展最快,增长率达到22%。根据经济合作与发展组织(oganizationofeeonomiceorporationanddevelopment,OECD)预算[5〕,到2010年生物医学材料产业的市场销售额将达到4000亿美元(药物市场的销售额)。随着材料产业的发展和人体器官的广泛应用,生物医学材料这门新兴的交叉型学科已经成为新技术革命的一个重要组成部分。经济发达的国家已经形成了新型的生物医学材料工业体系,其生产厂家由过去的商品材料工厂转为专业的生产工厂。生物医学材料的产品数目众多,仅高分子材料在全球医学上的应用已达到90多个品种,1800多种制品[‘o。1990~1995年,世界生物医学材料市场以每年大于20%的速度增长,中国虽然增长较快,但由于起点低,其市场份额只占全球市场的1.6%。近年来,生物医学材料产业发展迅猛,其经济地位同信息、汽车产业相当。现将世界各地区生物医学材料的市场状况。当代生物医学材料产业仍以常规材料占主导地位。2000年全球医疗器械市场的销售额己达1650亿美元,其中生物医学材料及制品约占40%一50%[ll〕。20世纪90年代,全球医疗器械销售额的平均年增长率为n%左右,1999~2004年有所增加,其中发展中国家增长最快。例如,除日本外的亚洲地区其销售额从200。年占全球市场份额的17%(280亿美元)增长至2005年的25%,其中矫形外科修复材料和制品的销售额在全球市场的年增长率可达26%(1999~2005年)。预计工程化组织和器官上市后,可开拓800亿美元的新市场;人造皮肤、组织粘合剂及术后防粘连制品的年增长率可达45%;心血管系统修复材料、血液净化材料、药物缓释材料等领域也呈高速增长的趋势〔‘2〕。目前,比较有代表性的生物医学材料包括:①用于人工器官及代用品制造的膨体聚四氟乙烯、低温各向同性碳、表面修饰与交联的血红蛋白、碳化硅脂和超高分子量聚乙烯等;②用于人工关节及骨骼替代的高分子量、高密度聚乙烯,氧化铝陶瓷,甲基丙烯酸甲酷和苯乙烯的共聚物等;③用于人工膜替换的甲基烯酸醋类共聚水凝胶、硅橡胶聚甲基丙烯酷等;④用于应用粘合剂的亚甲基丙二酸酷、明胶、蛋白胶等。

4我国生物医学材料的发展前景

我国生物医学材料的应用和开发起步较晚,但在政府的大力支持下,已取得了一批较高水平的科研成果。如生物活性骨、关节系统替换材料、人工心脏瓣膜以及眼科手术类高分子复合材料等。国家科技部资料表明〔’3〕,1996一200。年间,我‘国生物医学材料市场需求的年均增长率达到27%,比全球的增长速度高出10个百分点。其中生物医学材料制品的市场增长更加迅猛,例如2000年我国人工关节市场需求量的年均增长率高达30%,远高于美国同期的4%;“九五”期间国家的“复明计划’,[1叼规定,每年生产5万套人工晶体以满足市场的需求;我国国内每年消耗接人人体内的导管1亿多条,而且需求量还在不断增长。但是我国国内生物医学材料的生产仍然处于初级阶段,其产值还不到全球份额的千分之一,且增长缓慢,1996一2001年,我国生物医学材料产值的年均增长率只有2%左右。国内生物医学材料与国外同类产品相比,存在4个突出的问题:①仿制品多,缺乏自主知识产权;②销售价格低,但档次和质量也低;③企业生产规模普遍偏小,难以形成规模效应;④研发投入少,产品技术含量较低。与此同时,外商的大批涌人,不仅带来了大量具有竞争力的产品,同时还展开专利权、商标权等知识产权方面的竞争。2000年底国内公司在我国注册生产的生物医学材料及制品只有53种、,而国际医疗器械生产公司在我国注册生产、销售的品种多达300多种睡〕。因此,本文建议从以下几个方面提升我国生物医学材料产业的竞争力。

4.1确立重点开发产品

复合材料作为硬组织修复材料的主体,有效地解决了材料的强度、韧性及生物相容性的问题,是生物医学材料新品种开发的重点,在临床上得到了广泛的应用哪〕。目前研究较多的是合金、碳纤维、无机材料(生物陶瓷、生物活性玻璃)、高分子材料的复合以及血液净化剂的开发。这些生物医学材料应该作为我国今后重点开发的产品。

4.2构建生物医学材料产业的新技术体系

生物医学材料产业的新技术体系必须以生物医学材料企业为技术创新的主体,充分发挥科研院所、大专院校的带头作用,实行产、学、研结合,成立学科齐全、队伍精干、人才结构合理的生物医学材料科研队伍,开发有自主知识产权的生物医学高新技术产品。

4.3加强对外合作与交流

生物医用材料的发展例4

1. 镁合金生物材料的研究现状

镁及其合金可用做可降解生物材料,但是其高的腐蚀速率是一个焦点问题。H,Wang等用三种不同手段加工出来的AZ31在Hank模拟体液中浸泡1、2、5、10、15、20天,然后称重,用光学显微镜观察形貌,用TEM观察显微结构,结果表明,通过机械处理,AZ31在Hank溶液中生物降解速率明显降低。德国汉诺威尔大学F·Witte 等人对AZ31、AZ91、WE43、LAE442进行了在活猪体内植入试验,研究了不同可降解镁合金在骨环境中界面降解机制及合金降解速率,得到镁合金的降解取决于合金元素,植入的四种合金都与骨结合良好,并且得到镁离子对骨生长有诱导作用,只是合金降解过快,导致皮下产生氢气气泡;香港城市大学研究了AZ63在模拟体液中的降解情况,并研究热处理对降解情况的对比,通过比较得出,430℃在空气中保存24小时T4处理后,合金的降解速率是铸态合金的1/2[21];北京大学郑玉峰系统研究了Mg-1x(x为Zn、Mn、Al、Si、Ag、Zr、Y、ln)二元合金的组织性能、力学性能、耐腐蚀性能、细胞毒性、血液相容性,通过研究得到,添加Al,Si, Sn,Zn或Zr元素能改善合金的力学性能,添加Al, In, Mn, Zn,或 Zr元素能降低合金在模拟体液和汉克斯溶液中的腐蚀速率,Si和Y合金元素却加速了合金的腐蚀[23-24]等等。目前通过动物实验等,正在推进镁合金作为生物医用材料的应用。

2. 镁合金生物材料的发展趋势

迄今为止,被详细研究过的生物材料已有一千多种,医学临床上广泛使用的也有几十种,涉及到材料学的各个领域。目前生物医学材料研究的重点是在保证安全性的前提下寻找组织相容性更好、耐腐蚀、持久性更好的多用途生物医学材料。其发展趋势必然要求:

(1)提高生物医学材料的组织相容性,增加材料与活体组织之间相互容纳的程度,避免材料周围组织的局部反应;

(2)金属材料在生物医用材料中的应用将越来越广泛,金属生物医学材料的应用已有较长的历史,随着科学技术的发展和外科医疗水平的提高,先后开发了不锈钢、钴合金、工业纯钛及钛合金等一系列金属生物医学材料;

(3) 生物医学材料的治疗特性增强,生物医学材料的发展不仅局限于作为人体相应器官的假体和代用品,利用多种学科的交叉研制具有治疗特性的生物医学材料也是未来的重要方向;

(4) 具有多种特殊功能生物材料的研制和应用,对合金进行深加工,使其具备多种功能,满足不同情况的需求,也是未来生物医用材料的发展趋势之一。

3. 镁合金生物材料研究意义及应用展望

镁及镁合金具有比强度和比刚度较高、生物可降解吸收性等特点,作为现有金属生物植入材料的新一代替代产品表现出巨大的优势与潜力,已经引起国内外越来越多研究者的关注,但由于人体环境的复杂性,这种新材料的研究还需一个长期过程。生物医用材料的研究与开发对国民经济和社会的发展具有极其重要的意义,生物医用材料具有很高的附加值,其每公斤达1200-150000美元,而建筑材料仅为0.1-1.2美元,宇航材料也仅100-1200美元。

随着人口老龄化和各类创伤的增加,近几年来生物医用材料和制品的市场一直保持20%左右的年增长率,发展态势已可以与信息和汽车产业在世界经济中的地位相比,正在成长为本世纪世界经济的一个支柱,对国民经济的发展有着不可忽视的重要作用。例如,随着人口老龄化和中青年创伤的增加,对生物医学材料和制品的需求持续增长。在我国,人口老龄化已成为社会问题,同时中、青年创伤高速增加,生物医学材料及制品存在着巨大的潜在市场,特别是随着国民经济的发展和人民生活水平的提高,对生物医学材料和制品的需求急速增高。

因此对于我国发展医用金属材料是一个趋势。伴随着新型金属材料的研制和表面改性技术的采用,生物医用金属材料腐蚀研究又开辟了新的研究和发展空间;镁合金具有足够的强度,良好的生物相容性和体内可降解性,有望成为新型骨植入材料。但是它的力学性能不够,且耐蚀性较差;不含对人体有害元素的合金,其力学性能相对钛合金、不锈钢等医用合金强度低,不能用于承载部位;作为骨植入材料,其目的是维持骨折复位、重建后的稳定,因此从力学角度考虑要求其在骨组织完全愈合之前必须保持原有力学性能基本不变。

4. 结束语

可降解生物医用镁合金相对于传统金属医用材料来说,具有无可比拟的优越性,如作为骨内植物,可有效避免应力遮挡效应,并可避免骨折痊愈后二次手术给病人带来的痛苦和费用;作为心血管支架材料,可有效减少血管内膜增生、再狭窄、晚期血栓等问题。因此,被誉为“革命性的金属生物材料”而受到全球高度瞩目。

尽管目前已有动物体内及人体临床实验,然而绝大多数为商用镁合金,缺乏生物安全性。作为生物医用材料,在设计时必须考虑材料的生物安全性、强韧性、耐蚀性(特别是类似于均匀腐蚀降解方式)。因此,需要设计具有生物安全性、高强韧性、耐蚀性和腐蚀均匀性的新型生物医用镁合金;需要对其强韧性设计制备理论、在体内的降解代谢机制及体内降解产物的生物安全性、降解行为的可控性等方面进行系统深入的研究,进而为可降解生物医用镁合金的临床医学应用提供更加可靠的科学依据。上海交通大学轻合金精密成型国家工程研究中心团队近年来在上述领域进行了一些有益的探索,并取得了令人鼓舞的进展。相信经过科研工作者的不断努力探索,可降解生物医用镁合金一定会有光明的应用前景,成为惠及人类健康的新型金属生物材料。

参考文献

[1] 李世谱. 生物医用材料导论M.武汉理工大学出版社. 2000:20–40.

生物医用材料的发展例5

中图分类号:R318 文献标识码:A 文章编号:1671-2064(2017)01-0214-01

上世纪50年代,我国展开了对人工器官的研究,并经过50多年的发展取得了很大成就。聚乙烯、聚丙烯、硅橡胶等都是医用高分子中常用的材料,而常见的医用高分子大约有1000多个品种规格,其制品主要包括医用高分子、医疗器械制品和人工器官三大类。另外,医用高分子材料在医学生有着独特的功效,因而受到学者们的广泛关注和重视,发展前景十分广阔,并迅速成为当前发展较快的新型材料之一。

医用高分子材料用于医学领域中的主要包括:药用高分子材料、人体功能替代或修复高分子材料和高分子医疗器材及制品等。下面我们详细的介绍一下高分子材料在人体功能替代或修复中的作用,并对医用高分子材料在未来的发展趋势与发展状况进行一定的研究、探讨。

1 高分子材料在人体功能替代或修复中的运用

高分子材料运用到人体功能替代或修复中的主要目的是替代、修复人体内受损的组织或器官,从而恢复其原有的功能。其中用到高分子材料的主要包括部分功能修复材料、人工器官材料、组织工程材料等。

1.1 部分功能修复材料

在对人体缺少的一部分功能的器官或组织进行修复,如为了恢复听觉功能,制造的人工耳朵;在矫正视力的过程中,制造的人工角膜、人工晶体等;还有假肢、人工等都需要用到高分子材料。另外,部分功能修复材料一般都有利于改善患者的生活质量,并不会危害到人的生命健康。另外,不同的组织或器官所使用的高分子材料也不同,如隐形眼镜所采用的材料一般包括聚甲基丙烯酸8一羟乙酯一甲基丙烯酸戊酯、聚甲基丙烯酸B一羟乙酯等;人工角膜则包括聚甲基丙烯酸酯类、硅橡胶等;而人工晶状体则包括可用聚甲基丙烯酸酯类等。

1.2 人工器官材料

为了治疗病患,我们需要对人体的一些组织或器官进行替代性治疗,并将人工脏器引入人体系统,从而发挥原有器官的功能,促进人体系统功能的正常运行。植入人体内的永久性人工脏器主要包括人工气管、人工血管、人工食道等。另外,手术过程中还还有一些暂时性的人工脏器,如人工心脏、人工肝脏和人工肾脏等,起到替代使用的作用。通过不断的提高高分子材料制作过程中的血液相容性、抗细菌粘附性和抗凝血性等,确保制造出来的人工心脏瓣膜、人工血管等能够很好的接触血液,减少感染现象的发生。

1.3 组织工程材料

高分子材料在组织工程材料中的应用,有利于改善、维持或恢复研制生物代用品的功能,加强对正常和病理的哺乳类组织的结构-功能关系的了解。通过对生命科学规律的了解和运用,充分发挥组织工程的作用,开发新型智能修复材料,主动激发、诱导人体组织器官再生修复的功能。在设计该材料的过程中,需要有机结合人工材料和活体组织,确保组织细胞表面的特殊位点能够与配合基发生作用,进一步提升组织细胞分裂和生长的速度,从而促进周围组织细胞生长为预想功能,达到修复人体组织和器官的功能的目标。

2 对医用高分子材料未来的发展方向的展望

高分子材料在医学领域内广泛的应用,并取得了很大的成就。但目前的技术还无法满足人们的需求,还无法提高人工脏器替换病变脏器的成功率,所以我们需要对医用高分子材料的发展方向进行一下详细的研究。

首先,高分子材料会广泛应用于药物中。随着人们生活质量的不断提高,人们对药品质量也有了更高的要求,如要求药品稳定、高效、毒副作用小等。高分子材料一般具备无毒、无副作用、水溶性好、不会产生异变等特点。因此,我们需要将高分子材料应用到现代药物中,如制作缓释药物的载体、高分子材料的药物等。另外,高分子药物相比低分药物而言,几乎没有副作用,并且可以缓释药物的浓度,具体治疗人w制定的部位。所以,高分子材料在药物这一行业中具有很大的发展前景,其作用不可替代。其次,高分子材料将会广泛的应用于医疗器械中。高分子材料中的聚酯、硅橡胶等都具有一定的矫形作用,在假肢制造、整形外科等领域中都发挥着很大的作用。最后,未来的医用高分子材料应用范围将进一步扩大,其发展趋势将以聚氨酯、聚硅氧烷、聚烯烃为主,开发满足生物相容性和血液相容性的材料,发展便携带的小型化人工器官装置以及开发医疗器械、人工脏器和控制生育所用的材料等。

3 结语

医用高分子材料的广泛应用,有利于促进医疗水平的进步,不断的完善医用材料,充分发挥其在医学领域中的作用。综上所述,我们可以发现,加快对医用高分子材料的开发和研究是目前医学领域中最重要的任务之一。

参考文献:

生物医用材料的发展例6

所谓功能性高分子材料,一般是指具有某种特别的功能或者是能在某种特殊环境下使用的高分子材料,但这是相对于一般用途的通用高分子材料而言。这一定义只是一个概括,不一定很确切,较多的人认为所谓功能性高分子材料是指具有物质能量和信息的传递、转换和贮存作用的高分子材料及其复合材料。如有光电、热电、压电、声电、化学转换等功能的一些高分子化合物。可以看出,这是一类范围相当大、用途相当广、品种相当多,而又是在生活、生产活动中经常遇见的一类高分子材料。

二.功能高分子材料

功能高分子材料按照功能特性通常可分成:分离材料和化学功能材料;电磁功能高分子材料;光功能高分子材料;生物医用高分子材料。功能高分子材料是高分子学科中的一个重要分支,它的重要性在于所包含的每一类高分子都具有特殊的功能。

随着时代的发展,在医学领域中越来越迫切地需要开发出能应用于医疗的各种新型材料,经多年的研究已发现有多种高分子化合物可以符合医用要求,我们也把它归属于功能性高分子材料。

一般归纳起来医用高分子材料应符合下列要求:化学稳定性好,在人体接触部分不能发生影响而变化;组织相容性好,在人体内不发生炎症和排异反应;不会致癌变;耐生物老化,在人体内材料长期性能无变化;耐煮沸,灭菌、药液消毒等处理方法;材料来源广、易于加工成型。

经多年研究,能较好符合上述要求的高分子化合物主要有两大类,一类是有机硅化合物,第二类是有机氟化物,最主要的两种产品是硅橡胶和聚四氟乙烯,例如美国GE公司开发了一批主要是有机硅方面的用于医学领域的功能高分子化合物。

三.生物医用高分子材料

目前,除人脑外的大部分人体器官都可用高分子材料来制作。对生物医用高分子材料,除了要求具有医疗功能外,还要强调安全性,即要对人体健康无害。目前在血液相容性高分子、组织相容性高分子、生物降解吸收高分子、硬组织材料用高分子和生物复合高分子材料、医用高分子现场固化材料、医用粘合剂、固定化酶、高分子药物释放和送达体系等都有相应的研究。随着环保概念的提出,生态可降解高分子材料的开发和应用也随之日益受到重视。如聚乳酸塑料PLA,在废弃后自然条件下,通过微生物的分解作用,只需六个月至两年时间即可完全降解,降解反应的产物为水、二氧化碳、乳酸等是植物生长良好的促进剂,对环境无任何污染。

离子交换与吸附树脂是一类带有可离子化基团或其他功能性基团如亲油基团的二维网状交联聚合物。常用的离子交换与吸附树脂多为球状珠粒,其粒径为0.3-1.2mm。此外,还要具有高的机械性能、较好的化学稳定性、热稳定性、亲水或亲油性、渗透稳定性和高的交换/吸附容量。在水/油中具有足够大的凝胶孔或大孔结构,由于它具有高效快速分析和分离功能,目前已广泛用于硬水软化、废水净化、高纯水制备、海水淡化特别是在食品工业、制药行业、治理污染和催化剂中应用的更为广泛,而且发展迅速。除一般用的离子交换树脂外,近来还发展了具有特殊吸附功能的离子吸附树脂:如高吸油树脂等,这些高分子吸附剂可以从有机溶剂或有机无机混合相体系中吸附有机溶剂如各种油类。

随着医用科技的蓬勃发展和环境污染的日益严重,当今材料技术的发展趋势一是从均质材料向复合材料发展,二是由结构材料往功能材料、多功能材料并重的方向发展。这种发展趋势使得医用复合材料和环境处理材料得到了快速发展。

四.医用高分子材料的发展方向

可生物降解医用高分子材料因其具有良好的生物降解性和生物相容性而受到高度重视,无论是作为缓释药物还是作为促进组织生长的骨架材料,都将得到巨大的发展。其中高分子纳米粒子以其特有的优点是近年来国内外一个极为重要的研究热点。

任何一种材料都是通过其表面与环境介质相接触的,因此材料的开发与应用必然涉及其表面问题的研究。一般高分子材料的表面对外界响应性较弱,但有些高分子表面的结构形态会因外界条件(如pH、温度、应力、光及电场等)的改变在极短时间内发生相应的变化,从而造成表面性质的改变,此乃智能高分子表面。因此设计这类智能表面将是生物医用高分子材料发展的一个重要方面。通常,在组织工程的应用中,高分子材料支架要负载上生长因子,以促进组织在生物体内的再生,另一方面,把特殊的粘附因子,如粘连蛋白结合到支架上,可使聚合物表面能够促进对某种细胞的粘附,而排斥其它种类的细胞,即支架对细胞进行有选择的粘附。为了使生长因子和粘附因子能够结合到可降解高分子材料上,就需要对材料进行表面改性,而有时表面改性很困难,因此,可利用与天然聚合物杂化的方法来达到上述目的,同时由于这些材料有良好的机械性能,又可以弥补天然聚合物强度不高、稳定性差的缺点。可见,生物杂化材料在这方面的表现是相当突出的,必将成为医用生物高分子材料发展的一个主要趋势。

参考文献:

1、焦剑.功能高分子材料.化学工业出版社,2007.7

2、俞耀庭,张兴栋等.生物医用材料.天津:天津大学出版社,2000.

生物医用材料的发展例7

在中科院金属研究所里活跃着一批痴迷新型金属材料的科研人员,杨柯就是其中之一。作为专用材料与器件研究部主任,他始终致力于提升现有金属材料的使用性能和新型结构/功能一体化金属材料的研究开发,率领团队在先进钢铁结构材料、生物医用材料及器件、储氢合金及应用等研究方面,取得了诸多研究成果。其中,由于与人类健康息息相关,生物医用材料及器件的发展近年来备受关注。

生物医用材料主要是指用于医疗上能够植入生物体或与生物组织相结合的一类功能性材料。从资料记载来看,人类在古代已经尝试使用外界材料替换或修补缺损的人体组织。公元前,人类开始利用天然材料如象牙,来修复骨组织;到了19世纪,由于金属冶炼技术的发展,人们开始尝试使用金属材料,并逐渐发展到今天的生物医用金属材料,以解救在临床上由于创伤、肿瘤、感染所造成的骨组织缺损患者以及因冠脉狭窄而引起的心血管病患者。

目前,杨柯团队已经开发出抗菌不锈钢、高氮无镍奥氏体不锈钢、生物可降解镁合金等多种类型的新型医用金属材料。这些成果在业界引起广大反响,更有专家大胆表示,新型医用金属材料的应用,将会带来一场健康革命。接下来,我们将为您介绍这些“神通广大”且与健康密切相关的新材料。

首先登场的是新型高氮无镍奥氏体不锈钢。镍是一种重要合金元素,在被广泛应用的医用奥氏体不锈钢中,添加镍元素能够使不锈钢形成稳定的奥氏体结构,并具备耐腐蚀性、可塑性、无磁性、可焊接性和韧性等性能。然而医学研究人员发现,镍及其化合物具有致敏、致癌和诱发血栓等毒副作用。鉴于含镍不锈钢等医用金属对人体健康可能构成的危害,西方国家对日用和医用金属材料中镍的含量制定了越来越高的要求,也由此引发了国际上对医用无镍不锈钢的探索热潮。

杨柯课题组从2000年开始研究医用无镍不锈钢,并率先在国内开发出一种新型高氮无镍奥氏体不锈钢。杨柯介绍说:“新型不锈钢以氮元素代替镍元素来稳定不锈钢的奥氏体结构,不仅改善了不锈钢的生物安全性和力学、耐蚀等性能,且随着钢中氮含量的提高,高氮无镍奥氏体不锈钢的血液相容性也逐渐提高。”现在,该新材料已通过中国药品生物制品检定所的细胞毒性、溶血、致敏反应、急性毒性试验、血栓试验以及遗传毒性等重要生物性能检验,综合性能达到国际先进水平,并具有我国自主知识产权。

高氮无镍不锈钢的开发过程得到了国家863项目、国家自然科学基金重点项目、中科院知识创新重要方向项目及省市基金等项目的支持。“正是由于国家大量资金的支持,才使我们能够开展大量研究和测试工作,并取得最后的成功。”杨柯说道。

杨柯表示,目前,骨内固定系统、心血管支架等高氮无镍奥氏体不锈钢医疗器械现已进入产品开发阶段,很快将会上市。随着相关基础性研究工作的不断深入,医用高氮无镍奥氏体不锈钢在材料冶炼和加工工艺方面的日渐成熟,将会推动新型医用不锈钢的临床应用及发展,并有可能逐步取代现有含镍医用不锈钢。

接着我们来说说杨柯津津乐道的抗菌不锈钢。作为人们的“亲密敌人”,细菌的威胁之处就是无处不在,无孔不入,令人防不胜防。那么,抗菌金属是否真的能抵挡细菌的强烈攻势?它是怎么抗菌的?这种新材料产品现在上市了吗?

据了解,抗菌材料一般分为三大类:天然抗菌材料、有机物抗菌材料和无机物抗菌材料。天然抗菌材料来自动植物内具有抗菌功能的部位;有机抗菌材料就是常见的杀菌剂等,易流失、分解,毒副作用大且不具备广谱抗菌性;无机抗菌材料不但具有广谱抗菌性,还耐水、耐酸碱、耐洗涤、不老化、不产生抗药性、抗菌能力持久。

目前使用的抗菌剂主要为有机和无机两种。有机抗菌剂主要以喷洒或浸泡方式使用,在医疗领域广泛应用,但在安全性、持久性、广谱抗菌性、耐热性方面存在不足,更为重要的是这类抗菌剂对人体和环境有严重损害。而沸石抗菌剂、硅胶抗菌剂等属于无机抗菌剂,主要用作添加剂制成具有抗菌作用的布料、塑料等产品,但在耐热、耐磨、抗腐蚀等方面也存在缺陷,始终无法满足日常使用需求。

杨柯团队研发的抗菌不锈钢,除具备一般不锈钢的装饰和美化作用外,既具有抗菌、杀菌的自清洁作用,又具有结构材料特有的力学性能及物理和化学性能。杨柯说:“在制造厨房机械、医疗器械、卫生间用品和进行保洁装修时,应该使用具有抗菌作用和形状各异、外形美观的金属制品,这种新诞生的不锈钢材料,无疑成了理想产品。”

生物医用材料的发展例8

0引言

当前医院材料物资管理存在着很多急需解决的问题,如库存量太大、管理机制不完善、材料物资信息不够准确、管理模式不够现代化等,给医院整体管理水平提升带来了极大阻碍。因此,对加强医院材料物资管理的意义有比较深入地了解,才能更好地促进医院市场竞争力进一步提高。

1加强医院材料物资管理的意义

根据医院各科室的运行情况来看,医院材料物资主要指的是:第一,卫生材料;第二,低值易耗品;第三,其他材料,等等,是医院为患者提供各种服务的重要基础,也是医院资产的重要组成部分。当前,医院材料物资管理有着如下几种特点:一是种类非常多;二是数量相当大;三是实用性较强,等等,因此,加强医院材料物资管理有着重要意义,不但能避免物资材料大量浪费的情况出现,还能提高医院各种物资材料的有效利用率,最终实现医院物资材料的最优化配置,对于推动医院可持续发展、促进我国医疗事业长远发展有着极大影响。

2加强医院材料物资管理的措施

2.1采购方面的管理措施

通常情况下,医院材料物资的采购主要有如下几种类型:一是,常用采购。一般是在对各科室的消耗情况、库存等进行综合分析后,将常用材料物质的采购量确定出来,以避免盲目采购引起的资金占用。二是,定期采购。各个科室使用的材料物资不一样,需要各科室根据自己的情况填写采购单,才能满足本科室的医疗需求。三是,临时采购。一般是各科室临时出现的状况,需要根据科室制定的采购计划来执行。四是,应急采购。一般是按照应急绿色通道采购制度来确定的,以满足医院急诊部门的需求。所以,在进行医院各种材料物质的采购时,需要科学制定采购预算,并招标采购小组,才能真正促进医院材料物资管理的规范化、制度化发展[1]。例如:在进行采购计划的编制时,采购人员必须到各科室了解情况,并到库房清点当前的余存,才能通过市场调研、实际询问等方式,提高采购计划编制的科学性、可行性,从而保障材料物资采购的可靠性、实效性。

2.2库存方面的管理措施

在实际加强医院材料物资管理的过程中,库存方面的有效管理,需要采取的措施主要有如下几个方面:一是,材料物资库存规章制度的合理制定。根据医院的实际运行情况,采用库存材料物质编号的方式的进行管理,并安排专门的负责人,可以确保材料物资的管理责任落到人头上;通过对账、交接的方式进行库存物资材料的管理,并对它们进行季度和年终等多种方式的核对,对于避免材料物资丢失、账实不符等问题出现有着极大作用;通过合理采用材料物质报废制度,可以确保审批权限的有效明确,从而保障赔偿责任落实到位;通过日常管理制度的方式,对库存材料物资进行如下操作:第一,保管领用;第二,购置;第三,账务处理;第四,验收入库,等等,对于提高医院各种材料物资的有效利用率有着极大作用[2]。二是,材料物资入库之前的审批付款、执行需要分开。医院财务部门负责对如下几种凭证进行严格审核:第一,验收单;第二,采购发票;第三,采购合同;第四,入库单,等等,并在上述凭证完整、合法、真实的基础上,进行入账办理。同时,预付账款、定金等的授权审批,需要严格按照相关规定执行,财务部门必须加强应付账款、应付票据等的科学管理,才能真正实现医院材料物资的最有效管理。三是,材料物资库存管理信息化系统的合理构建。通过计算机来进行材料物资库存管理信息化系统的构建,需要创建如下几个模块:第一,入库管理;第二,退库管理;第三,库存盘点;第四,售出管理;第五,网络化体系,以实现医院材料物资的系统化、整体化管理。所以,在医院材料物资采购、入库等环节中,合理实施网络化管理模式,可以实现各种材料物资消耗情况、采购情况、分配情况等数据信息的综合分析,从而减少库存管理人员的工作量,对于提高医院材料物资管理工作效率有着重要影响[3]。

2.3使用方面的管理措施

通常情况下,医院材料物资的供应是以月为单位的,而材料物资的发放需要各科室主任、护士长等签字,才能避免材料物资滥用情况出现,如果出现比较急用材料物资的情况,必须护士长、科室主任出具合适的领料单,才能予以发放。一般情况下,材料物资的领用是包括在各科室的成本支出中的,仓库是按照领料单进行发放,而财务报表的编制需要重视如下几个内容:第一,材料物资的数量;第二,材料物资的价格;第三,材料物资的金额,等等,并且,仓库的管理人员还要注重登记账簿的准确记录,才能为材料物资的盘点提供可靠参考依据。另外,需要加强材料物资使用方面的监管,制定科学的核定标准、使用标准等,才能真正确保材料物资的统一配送、统一采购、统一核算[4]。与此同时,材料物资管理需要建立科学的会计网络,采用复式记账法进行核算,并有效落实定额消耗,才能真正实现成本的有效控制。由此可见,定期对材料物资进行审核、盘点,加强各部门的监督与管理,并注重管理方法的合理性、科学性等,才能真正促进医院更快、更好发展。

3结语

在进行医院材料物资的管理时,需要加强材料物资入库、使用等多方面的监督和管理,并严格按照材料物资管理制度执行,才能在充分利用现代化网络、管理方法和先进管理理念的基础上,全面提高医院材料物资的有效利用率,最终促进医院可持续发展。

参考文献

[1]杨冬苗.浅谈医院药品材料物资管理重点与创新[J].行政事业资产与财务,2010,17(3):38-39.

生物医用材料的发展例9

医院物资材料包括低值易耗品、卫生材料和其它材料等,是医院医疗服务的物资条件,也是医院重要的流动资产。医院物资材料数量巨大、种类繁多、实用性强,经常处于销售、消耗及重置状态,具有较强的流动性。加强对医院物资材料的采购、库存、发放、核算、报废等诸环境的管理与监督,是医院医疗卫生服务事业发展的需要。

一、医院物资材料采购管理

医院物资材料采购可分为四种类型。常用采购:通过分析库存及各职能科室月平均消耗量,每月自动汇总计算出常用物资材料的采购量,做到计划到位,预约采购,避免盲目采购。定期采购:对于科室专业使用的材料采购,由科室按照预算定期提供采购清单,实行定期采购。临时采购:对于临时用物资材料,由科室提出计划随时执行。应急采购:对于急用材料,通过应急绿色通道制度采购,确保医院急需物资材料及时到位和使用。

1.制定物资材料采购预算。医院物资材料采购应纳入预算管理,要求各科室、各部门在年末根据医院发展需要,结合本科室发展及业务需要,制定本科室的物资材料采购预算。各科室、各部门的采购预算要填报采购数量、市场参考单价、金额等,其预算报财务科汇总后,交院领导集体审批后由财务科统一办理。将医院物资材料采购纳入预算管理,既便于财务部门统一安排资金,又可以避免盲目采购。

2.成立医院物资材料招标采购小组。医院的物资材料采购要实行招投标制度。医院要成立由分管院长任组长、由纪委、财务科、物资供应科、审计科等职能科室负责人组成的物资材料招标采购小组,并在物资供应科设立办公室。办公室的职责:一是负责制定招标采购制度及管理办法,建立科学、严密、行之有效的物资采购供应内控体系,确保物资材料采购供应各项工作在制度约束下进行,对物资材料采购实行制度化和规范化管理。二是委派物资材料采购人员。医院物资材料采购人员要具有良好的职业道德和广博的专业知识,熟练掌握国家的政策和法规,严于律己,奉公守法。采购人员要深入库房,与库房管理人员共同制定采购计划;要深入临床,调查所购物资材料使用情况;要深入市场调查研究,给临床医务人员提供医用新技术、新产品信息。三是负责采购计划的编制。要制定严格的采购程序,保证所采购物资材料的及时性和可靠性。由各科室根据所需物资材料情况,提出采购申请,管理部门结合全院物资材料消耗情况制定采购计划,办公室组织招标采购。招标采购要坚持公开、公正、公平的原则,坚持货比三家,价比三家,对供货方的物品品种、质量、信誉度、售后服务要进行评诂论证,确定出几家物品齐全、质量合格、信誉度高、售后服务周全的供货方,让他们参加招投标。通过招投标,确保医院所采购的物资材料质优价廉,货源充足,方便患者,满足临床服务需要。四是监督所采购物资材料的手续、功能是否齐全,质量有无保证,这样既给医院节约了开支,又减少了浪费,还可以从源头上杜绝采购随意性和不必要的浪费,防止拿回扣等腐败行为的发生。五是做好采购物资材料的进货验收,保管发放。

二、医院物资材料库存管理

1.建立物资材料库存规章制度。医院要建立库存物资材料编号管理制度,以便区分责任,实行专人专管;建立库存物资材料对账和交接制度,按季度、年终进行核对,对调离本岗位的管理人员由上级领导和财务部门监交库存物资材料,办理交接手续;建立库存物资材料报废制度,明确报损审批权限及赔偿责任,把好申报关、审核鉴定关和记账关;建立物资材料登记入库制度,对库存物资材料统一使用入出库三联单,严把入库关;建立库存物资材料限额制度,当库存物资材料达到一定限量时,一律不得再购,对滞销物资材料及时清理使用,对积压或闲置物资材料由医院统一调剂使用;建立日常库存管理制度,对库存物资材料购置、验收入库、保管领用、账务处理等,要做到账账相符、账物相符。

2.物资材料库存的审批付款。所采购的物资材料验收入库,实行付款审批与执行相分离的原则。财务科审核会计严格核对采购发票、验收单、入库单、合同等有关凭证,检查其真实性、完整性、合法性,及时办理入账;预付账款和定金的授权批准按支出控制的有关规定办理;财务科债权债务会计负责对应付账款和应付票据的管理,已到期的应付款项编列付款审批表,经批准后由出纳办理结算与支付;对发生采购退货的,及时收回货款。

3.物资材料库存计算机管理。医院库存物资材料实行计算机操作管理,可分为若干个模块进行。(1)入库管理模块。物品入库时,由物资材料会计进行入库单的录入,录入入库单的采购员、仓库编码、物品编码、单价、数量、批号、产地、供应商及发票号。然后由仓库保管员在系统中进行入库确认。(2)退库管理模块。若科室中的物资材料退回库存,应由所在科室负责人在退库管理模块中提出退库申请,提交主管院长或总务科长审批后,由总务科仓库保管员在系统中进行退库核实操作。(3)售出管理模块。当科室负责人由于意外损坏等原因,要从库存中直接购买物资材料时,应在售出管理模块中提出售出申请,提交总务科仓库管理员审批。审批之后物品从库存中减少,同时生成物资材料售出单。(4)库存盘点模块。库存盘点时,由总务科仓库保管员打出盘点前的库存表,并对照库存表清点实物,记录数量有差异的物资材料盘赢或盘亏数,在库存盘点系统中录入计算机,由系统给出盘点结果,并自动替换库存数量,输出盘赢入库单或者盘亏出库单。(5)库存计算机管理网络化。将库存物资材料计算机管理系统与院内局域网连接,并实现全院联网,统一管理。由于从物资材料的采购渠道到供应全过程实行网络管理,物资系统可以进行各种物品消耗分析、采购分析以及打印各种财务报表,不但为管理者提供科学有效的物资材料分析,也把会计、保管员从繁琐的账务处理中解脱出来。实行计算机管理,能增强工作效率,实现物资材料的库存、审批、领用等环节的我调控和约束。

三、医院物资材料使用管理

医院对各科室、各部门的物资材料实行按月计划供应。仓库管理人员按科室主任或护士长签名的物资材料领用清单发货。属于计划外急用的物资材料由科室主任、护士长开具相应领料单按规定领取。物资材料领用列入科室成本支出,仓库会计按各科室领料单,将物资材料的价格、数量、金额等编制财务报表。仓库管理人员及仓库会计要做好财产领用登记台帐,每年对各科室、各部门使用单位进行一次财产清点核对。要通过网络系统的数据统计,根据医疗科室医疗耗材的使用数量,实行医院内部管理,核定使用标准,限制医疗科室滥用及超标准使用物资材料的行为。各科室、各部门对物资材料的使用要本着适用和节约的原则,避免造成浪费。

四、医院物资材料会计核算

医院对物资材料一律实行统一采购,统一配送,统一核算的办法,加强成本管理,提高医院物资材料及资金使用效益。(1)建立物资材料管理会计网络。医院对物资材料的采购、库

存、领用诸环节,都应该委派会计,实行登记核算,做到账实相符,准确无误,并对财务科负责。(2)采用复式记账法核算物资材料。医院可以采用复式记账法核算物资材料,建立相应的总账、材料明细账、往来明细账、银行存款日记账、现金日记账,按医院会计制度设置总账科目和明细科目。医院对物资材料进行全面盘点、清理核对后,物资材料会计建账记入有关账户,并与医院财务相关数据一致。物资材料管理会计凭入库单、出库单记账联、支票发票复印件、有关合同、单据编制会计凭证,记入有关总账、明细账,并将入库单、出库单报账联、支票存根、发票原件等有关手续报医院财务部门做账。月末物资材料管理会计自求平衡,总账、明细账核对,物资管理会计每月与医院财务核对有关账目,物资管理会计每月结账,装订有关凭证。(3)实行定额消耗,严格控制成本。财务科要根据医院自身情况和技术水平,充分考虑各种因素,制定先进可行的物资材料成本消耗定额,按照定额开支成本和费用,并将实际成本和定额成本进行比较,用以衡量经营活动的成绩和效果,据此研究降低成本的具体措施。通过定额消耗和控制成本,有利于提高工作效率,使医院卫生资源得到合理配置。

五、医院物资材料的报废管理

医院的物资材料使用后的报废和转让经维修部门和有关人员鉴定后,出具证明方可申请报废。大型设备仪器由使用科室会同财务部门写出报废理由的书面报告,由设备科组织鉴定作出评价,经财务科、院长签字后报上级部门批准,方可办理报废手续。

六、医院物资材料的监督

1.对物资材料采购环节的审计监督。主要是对采购计划、价格、合同、执行等方面的审计。物质采购内部审计常用的审计方法有详查法、抽查法、复核法、分析法、复算法、盘点法、鉴证法抽样法、观察法、询查法、源头审计法、全面审计法、简单审计法和重点审计法、终点审计法等方法。一是采购计划审计,是对医院采购计划中所列规格、单价、数量、采购方式和供货商情况等的真实性、合理性和有效性等进行的审计。二是采购报价审计,主要审计其内容的完整性、价格标准确定的合理性和申报程序的规范性等内容。三是采购合同审计,主要审核合同签定的合规、合法性、合同条款的完备性及合同内容是否得到全面、严格的履行,是否专门机构对合同进行归档和保管。四是物资采购计划实施审计,是对采购物资验收、入库、计量、价格、和货款支付等业务执行的适当性、合法性和有效性等所进行的审计。

医院对物资材料采购人员要实行有限授权,防止业务员权力过大,越权行事。对采购人员要实行部门负责人轮岗制度,防止采购人员与供应商相互勾结,从中谋利。

2.对物资材料库存的监督。定期检查库存物资材料收、

发、存各环节管理制度的执行情况,定期检查库存物资材料会计核算制度的执行情况,定期检查对不相容岗位的人员轮换的执行情况;检查库存物资材料安全存放及出入库情况。对物资材料库存的监督,可采取各科室、各部门自我监督与相关部门监督相结合的方式进行。

3.对物资材料使用的监督。主要是通过各科室、各部门对物资材料的自我监督检查,防止对物资材料滥领滥用,造成不必要的损失和浪费。材料供应科要对各科室、各部门物资材料领用发挥监管作用,确保医院物资材料使用得当,发挥效益。

参 考 文 献

[1]李会元.浅谈医院物资管理与医院现代化建设[J].医疗装备.2007(1)

生物医用材料的发展例10

一、引言

纳米材料主要是指结构单元在纳米尺寸范围(1~100nm)内的一类材料,由于表面原子具有很大的比表面积,其表面能极高,从而获得较多的表面活性中心,化学性质十分活泼,因此纳米材料通常具有特异的性能。纳米材料的发现始于20世纪80年代初期,随后人们逐步发现其在光学、磁学、电学和力学方面具有比普通材料更加优越的特性,进而得到了多个领域的关注并逐渐发展起来,广泛应用于生物医学、环境、航空航天和石油钻探等领域的研究。尤其是在生物医学方面,基于纳米技术的药物和传感器已经应用到实际的医学应用中,而且能够得到是理想的治疗和诊断结果。通过从纳米尺度进行精确地制备纳米材料,人们打开了更小的微观世界,特别是生物体细胞层面上的化学反应都发生在纳米的度,纳米材料的使用能有效地检测或调控微观的生理和病理过程。纳米材料发展对医学诊断和医学治疗具有重大意义,已经成为医学界关注的热点和前沿,具有广泛的应用前景和产业化发展空间[1]。

二、纳米材料在医学诊断中的应用

2.1纳米生物传感器

纳米生物传感器是一种由纳米材料制成的检测装置,主要根据将检测到的信息按一定规律变换为电信号或以其他的形式输出,使人们能定量定性地分析检测物质。生物传感器的研发中人们使用纳米材料,能够提高生物传感器的灵敏度以及检测范围。同时以纳米材料制备的新型传感器具有稳定性好,成本低,生物相容性好等优点,在医学的临床诊断方面得到了高度重视,特别是作为一项新兴的前沿技术,纳米生物传感器的研发能够进行早期癌症的诊断。纳米传感器可以利用高灵敏度的特点,在血液中可通过微小的电流变化反映出癌细胞的种类和浓度。这种对癌细胞进行的精确分析,有望实现特殊疾病的无创、快速诊断,今后人们只需将纳米材料注入人体内,便能在短时间内完成确诊。

2.2纳米生物成像技术

在临床诊断中,通过对生物体内的细胞或特定组织进行直观的图像分析,能够迅速高效且准确地获得生理和病理信息。随着纳米技术的飞速发展,新型的纳米材料被不断制备出来,并且广泛应用于生物医学成像领域。碳纳米管具有良好的发光性能,而且毒性极低,具有良好的生物相容性,能够制备成生物荧光探针用于癌细胞的成像[2]。氧化铁磁性材料具有良好的超顺磁性,能够应用于核磁共振成像的研究中,由于其能在生物体内特异性的分布,该部位的肿瘤与正常组织的对比度能够显著提高。目前氧化铁磁性材料可作为造影剂广泛应用于临床的肿瘤及其他疾病的诊断[1]。另外,稀土离子掺杂的纳米材料具有良好的光学性质,能够实现多种颜色的可调发光,同时能够避免生物体自身产生的荧光干扰,极大地提升光学成像效果。总之,在未来的生物成像领域,新型功能的纳米材料将发挥至关重要的作用。

三、纳米材料在医学治疗中的应用

3.1纳米载药技术

纳米载药是指首先制备纳米级的载体,荷载药物后输入人体,最终在人体内控制释放的技术。作为一种新型的给药技术,纳米载药是多学科包括药理学、化学、临床医学交叉研究发展的产物,其最大的优点是具有靶向性和缓释性。靶向性可以使给药更加精确,不仅可以在增加生物体局部药物浓度的,而且同时可以控制其他部位的药物浓度,减少对其他组织部位的副作用。缓释可在保证药效的前提下减少药量,同时减少用药频率,进而减轻药物引起的不良反应。对于某些难溶性药物,纳米药物载体可有效减小药物粒径,从而增加其溶解度和溶出度,提高药物的溶解性提高治疗效果。另外,纳米载体提供了封闭包覆环境,药物能在到达作用部位之前尽量保持自身结构的完整性,维持较高的生物活性。目前,能够作为药物载体的纳米材料有介孔二氧化硅、纳米多孔硅和碳纳米管等,尽管短时间内对生物体无毒性,但其在生物体内的降解情况不理想。为了提高药物载体的降解特性,人们开始关注更易体内分解的高分子纳米材料,如聚合乳酸、乳酸-乙醇酸共聚物、聚丙烯酸酯类等,这些材料能在人体内可水解,降解成无毒产物,是十分有发展前景的药物载体。

3.2纳米生物医用材料和纳米生物相容性器官

纳米材料和生物组织在尺寸上存在着密切的联系,如核酸指导蛋白质合成过程种形成的核糖核酸蛋白的尺寸就在15-20nm之间,影响人体健康的病毒尺寸也在纳米的范围之内。纳米材料和生物医学的紧密结合,制备纳米医用复合材料及相容性器官,广泛应用于生物医学治疗的研究中,如制备人造皮肤、血管以及组织工程支架等[3]。在人造骨中,纳米钛合金具有促进骨细胞发育的功能,使骨细胞紧密贴壁生长,同时加速材料和组织的融合。同时,纳米级的羟基磷灰石或聚酰胺复合骨充填材料可以有效填补骨缺损,具有良好的生物相容性,并且能够促进骨细胞生长。根据血液中的红细胞具有运载氧气的功能,人们开发出纳米级的人造红细胞,实现了比普通红细胞更高的氧气运载能力。如果人体心脏因意外而停止跳动,可以立刻注入人工的纳米红细胞,提供更加充足的氧气[4]。此外该技术在贫血症和呼吸功能受损的治疗中发挥着重要的作用。

四、纳米材料的生物安全性问题