期刊在线咨询服务,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

期刊咨询 杂志订阅 购物车(0)

电磁辐射分析模板(10篇)

时间:2023-11-07 09:51:25

电磁辐射分析

电磁辐射分析例1

摘要:随着信息技术的不断发展,多种电磁辐射源同时存在的电磁辐射环境日益复杂,各类场所的人为电磁能量显著增加。为了实现对复杂电磁辐射环境的分析,预防或减少电磁辐射的伤害,通过对单一辐射源检测方法开展研究,创新性地提出了复杂电磁辐射环境的概念及检测方法,包括相对中心检测法和相对轴线检测法,并结合单一辐射源检测结果,对现代城市环境中常见的复杂电磁辐射环境开展了检测,最后对电磁辐射情况进行总结并提出建议。

关键词 :复杂电磁辐射环境;电磁辐射;辐射源;辐射强度

中图分类号:TN03?34 文献标识码:A 文章编号:1004?373X(2015)15?0123?03

收稿日期:2015?01?12

0 引言

随着信息技术的广泛应用和现代城市化进程的加快,各种频率电磁波的交互作用使城市空域、公共环境及居民住宅在内的各类场所的人为电磁能量显著增加。城市电磁环境污染已成为继PM2.5之后,又一环境污染因子,与人们熟知的大气污染、水污染和噪音污染相比,电磁污染由于不易被人们直接感知、隐蔽性强,短期效应不显著容易被人们疏忽。但是,随着消费者健康、环保意识的不断加强,对于电磁辐射的关注度也在不断增加。

现阶段电磁辐射的研究和检测还主要集中于对单一电磁辐射源的定性研究,随着技术的不断发展,电磁环境复杂性日益提高,对多种电磁辐射源同时存在的复杂电磁辐射环境的研究势必成为电磁辐射污染研究的热点。本文中复杂电磁辐射环境是指由多辐射源引起的多频率、多场强的电磁环境。当众多电磁辐射源处于同一区域环境中时,其产生的电磁波彼此之间交错作用,其呈现出的电磁环境变得相当复杂[1]。本文在对单一辐射源电磁辐射情况进行研究的基础上,针对复杂电磁辐射环境的检测方法进行分析和研究。

1 单一辐射源

1.1 检测方法

单一辐射源的电磁辐射情况采用多点检测法,如图1所示,单一辐射源多点检测法是通过不同的方位(根据消费者实际使用、接触情况),对辐射源的电磁辐射情况进行检测,获得的检测数据主要包括辐射源的工作频率、电磁信号种类、功率,检测结果能够较全面地反映辐射源的电磁辐射情况[2]。

1.2 检测设备

针对工频、低频电磁场强度检测,需要使用各向同性响应或者有方向性电场探头或者磁场探头的宽带电磁辐射测量仪;检测移动基站等射频电磁辐射强度检测,则应使用具有各向同性响应或有方向性探头(天线)的非选频式宽带辐射测量仪[3]。

1.3 检测数据和结果分析

针对17 类典型电器产品的电磁辐射情况进行检测,对数据进行汇总并分析如下:

(1)单一辐射源辐射强度与检测距离成反比。在对典型单一辐射源电磁辐射强度进行检测时,以辐射源为坐标轴零点,在一系列与辐射源间距不同的位置点进行检测,辐射源的电磁辐射强度与检测点距辐射源的距离成反比,由检测结果可知,日常生活中大部分辐射源的电磁辐射强度在检测距离为0.5~1 m 时降低到可接受水平。以某品牌吸尘器产品为例,检测数据如图2所示。

(2)单一辐射源辐射强度与检测位置相关。在对典型辐射源电磁辐射强度进行检测时,以辐射源为相对中心,对不同检测位置的电磁辐射强度进行实地检测,这里所说的不同位置是指以辐射源为圆心,半径为恒定值的圆上不同方位的点,不同检测位置电磁辐射强度存在差异。表1列举了本次检测到的17类产品中不同位置检测点电磁辐射强度差异较大的辐射源。由此可见,大部分辐射源的电磁辐射强度最大值出现在辐射源侧面、发动机所在处和信号(音频、无线)发射区。

2 复杂电磁辐射环境

2.1 家居复杂电磁辐射环境

2.1.1 电磁辐射来源

伴随着智能家居概念的不断推广,家居数字化程度不断提高,就目前智能家居系统的安装来说,其在安装调试过程中主要有无线方式和有线方式,由于有线方式布线繁杂、连接端多、工作量大、成本高、维护困难等特点无法进行大规模的推广,而无线方式则由于不受这些原因限制得到广泛的应用。常见的用于传输信号的无线电技术包括:蓝牙(工作频率2.4 GHz),WiFi(工作频率:2.4 GHz,5.8 GHz)等,在低功率情况下无线传输受限于距离,这种情况下产生的无线电辐射非常小,假如要求有足够的距离,就要提高设备功率,相应会产生比低功率情况下强的电磁辐射。

再加上家庭中原有的各种家用电器、低频电磁场设备(如电线、开关等)、广播电视信号、通信信号等,所有这些信号重叠在一起使本来居住环境中的电磁辐射环境更加复杂。

2.1.2 检测方法

虽然家庭中不同时间段电磁环境是复杂的而且是多变的,但由于辐射源总数量相对固定,对不同信号的不同组合累积实时进行测量即可,最终选取最差值进行统计。根据家庭环境中电磁辐射源相对集中的特点,设计了如图3所示的相对中心检测法和如图4所示的相对轴线检测法。

对家居环境复杂电磁辐射情况进行多次重复检测[4],检测过程中需记录的数据包括:

(1)频率占用度

频率占用度测量的目的是了解一个频域内辐射源的多少和密集程度,由于环境中辐射源工作情况存在不同的组合,需要针对每种组合情况进行检测积累,将频谱进行分类统计和记录。

(2)电磁信号类型

对于不同辐射源发射的电磁信号的种类进行记录,其大小反映了复杂电磁辐射环境组成中电磁信号的复杂程度。

(3)功率密度

功率密度用以描述复杂电磁辐射环境的功率强度,功率密度的定义为:功率与带宽的比值,即功率带宽。

通过对以上参数的分析和统计,并结合检测值进行分析,可确定该复杂电磁辐射环境中主要的辐射源及辐射贡献。

2.2 公共环境中复杂电磁辐射环境

2.2.1 电磁辐射来源

公共环境主要包括商场、超市和街道等公共场所,除包含特殊设备外,由于公共环境相对开阔,复杂电磁辐射危害相对较弱。

2.2.2 检测方法

根据公共环境中辐射源分布相对分散的特点,设计了如图5所示的随机不规则多点检测法对复杂电磁辐射情况检测。

检测过程中需记录的数据同样包括频率占用度、电磁信号类型和功率密度。

2.3 检测建议

采用本文提出的复杂电磁辐射环境检测方法,针对日常生活中接触较多的超市、家庭、公共道路和地铁站等复杂电磁辐射环境进行检测,检测结果显示,家庭中由于电器相对聚集,当多种电器同时开启时,电磁辐射强度增加较为明显;除非近距离接触公共环境中的特殊辐射源(例如公共道路中的高压变电站等),普遍公共环境较为开阔,电磁辐射强度均在可接受范围之内。提出建议如下:

(1)应注意不要把电器摆放得过于集中,使自己暴露在超剂量辐射的危险环境中;

(2)不应同时开启大量电器,同时处于工作状态容易造成电磁辐射量显著增大;

(3)不宜在卧室集中摆放电器;

(4)对于公共场所中的辐射源使用完应尽快远离、及时通过,由于工作关系需要长期接触的,需尽量远离辐射环境,保持安全距离。

3 结语

本文基于对单一辐射源和复杂电磁辐射环境的检测方法开展研究,并采用相应的检测方法针对现代城市环境中常见的单一辐射源进行检测,得到检测结论,并对现代城市环境中电磁辐射情况进行了总结。

参考文献

[1] 查振林,许顺红,卓海华.电磁辐射对人体的危害与防护[J].北方环境,2004,29(3):25?28.

[2] 中国航天工业总公司.QJ 2803?1996电磁环境场测量方法[S].北京:中国航天工业总公司,1996.

[3] 国家环境保护局.HJ/T 10.2?1996 辐射环境保护管理导则:电磁辐射测试仪器和方法[S].北京:国家环境保护局,1996.

[4] DE T,JAMMET H,MATTHES R. Guidelines for limiting ex?posure to time?varying electric,magnetic and electromagnetic fields(up to 300 GHz)[J]. Health Phys.,1998,41(4):449?522.

[5] 崔本亮.电器电磁辐射对人的影响及保护措施的研究[J].现代电子技术,2011,34(20):140?146.

电磁辐射分析例2

前言

随着通信技术的快速发展,当前移动通信工具数量激增,手机成为人们日常工作和生活中必不可少通话工具。手机通信功能的实现是依靠电磁波来实现信息的传递,因此在人们享受移动通信便捷性的同时,也会担忧移动通信电磁辐射对身体健康的影响。但相较于手机对使用者所带来的辐射影响而言,移动通信基站的电磁辐射则是针对于周围环境,这使处于移动基站周围的小区居民对移动基站电磁辐射影响非常敏感。因此需要对移动通信基站电磁辐射环境影响进行分析,以此来有效的缓解人们对基站电磁辐射所带来的不安。

1电磁环境与电磁辐射

电磁环境即是由不同频率的电场、磁场所组成,将自然、人为、有源、无源、静态和动态的电磁现象都包括在内。在电磁环境中,由于变化的电场和磁场交替在空间内传播,这些通过空间传播的电磁能量称之为电磁辐射。在电磁辐射下会对装置、系统和设备等的性能带来不利影响,同时还会对有生命及无生命的物质带来一定的损害,从而造成电磁辐射污染现象发生。

2移动通信基站的电磁辐射

在移动通讯基站中,其主要由两部分组成,基站内很大一部分设备都属于室内部分,只有馈线、收发天线属于室外部分。室内部分中的各种设备在设计和制造过程中就采取有效的电磁屏蔽措施,这也使其不会对周围环境带来电磁辐射污染。但处于室外部分的馈线及天线在运行过程中,则会向周围环境中发射电磁波,从而造成周围环境空间内电磁辐射场增高。因此在确保基站周围环境电场强度要与国家标准要求相符。因此在基站选择备用电源时,尽可能选拔免维护的密封蓄电池组,避免发生漏液现象,使机房使用过程中不存在废水、废气对环境的污染问题。在当前移动通信基站运行过程中,其电磁辐射主要由三个方面产生:即发射机本身电磁泄漏、发射天线信号发射及高频电缆和接头处等。这其中无论是发射机还是发射天线抽导致的电磁辐射,由于基站建设高度较大,这也使其对地面所带来的辐射强度较小。对于高频电缆接头处通常都有着特殊的防护措施,因此基站电磁辐射对于地面的影响度不大。但对于部分建设在高楼楼顶的发射基站,其对居住在离楼顶较近处的居民所带来的危害不容忽视。

3电磁辐射和健康之间的关系分析

电磁辐射作为能量流,其所产生的电磁辐射污染现象会对人体健康带来较大的危害。在电磁波环境下,不同的电磁波波段会对人们产性不同的生物效应,从而使人们健康受到不同程度的损害。另外,由于人体自身也具有十分微弱的电磁场,一旦人体内部这个稳定、有序的磁场受到干扰后,则会损害人体的循环功能。因此长时间处于电磁辐射环境下人体各方面机能都会受到不同程度的损害,引发一些不良后果。可以说电磁辐射和人体健康之间具有十分紧密的关系,其为人们健康的带来的危害不容小觑。

4移动通信基站电磁辐射对环境产生的影响分析

在对移动通信基站电磁辐射对环境带来的影响研究过程中,发现具体的影响因素十分复杂,但在通过实践测量过程中发现:电磁暴露小区的电磁辐射强度明显高于对照小区,但平均值都在GB9175-88的一级安全范围内(10μw/cm2);安装铝合金防盗网具有良好的电磁场屏蔽作用;同时建有两个通信基站的小区,两者所产生的电磁辐射在某一区域范围可产生电磁场叠加现象,使辐射强度增加;个别与基站天线距离较近(小于20m)、窗户与基站天线处于同一水平位置和与基站天线主瓣方向一致的居室内,电磁辐射功率密度远远超出一级安全范围,可达到20.44μw/cm2,但也在GB9175-88的二级中间区容许范围内(40μw/cm2)。此外研究还发现,天线主瓣方向区域电磁辐射不一定较高,副瓣方向区域电磁辐射也不一定较低。这其实并没有与理论相违背,因为环境地形、地貌、建筑物钢筋水泥结构、空中架设的电线等等,都将对电磁波产生反射、绕射、折射、散射和吸收,从而使得电磁辐射强度的分布复杂化。

5移动通信基站电磁辐射对环境影响的环保措施

在日常移动通信基站运行过程中,其所发射的电磁波功率密度需要保持在国家规定标准限值范围内,同时采取必要的措施来有效的防范电磁辐射污染。对于在楼顶上建设基站的情况,在电磁辐射过程中,随着时空的延伸电磁辐射会出现衰减的情况,这也表明建设在楼顶的基站对楼顶的空间影响较大,对于周边建筑内的辐射相对较小。即设置在楼顶位置的基站,其电磁波辐射的最大值则会出现在楼顶,电磁波在传递过程中受建筑物阻挡和吸收,因此电磁波辐射也会随着楼层的降低不断衰减。但在具体基站建设过程中,需要注意天线主波瓣方向要避免居民楼,对于实在无法避开的情况,需要确保与居民楼之间水平距离保持在25米以上。同时还要适当增加天线的高度,并适当的减少天线下倾角,这样可以有效的降低基站电磁辐射的产生。在保证基站发射天线满足覆盖要求的同时,还要尽可能的做到降低天线发射功率。当基站建成运行后,还要加强对基站的监测工作,并对监测到的结果及时向公众进行公布,有效的消除公众的不安情绪,为基站的建设和运营商合法权益的保护奠定良好的基础。

6结束语

近年来移动通讯已全面普及,成为人们工作和生活中必不可少的重要工具。在使用移动通讯过程中,人们在享受其所带来便捷性的同时,也越来越意识到移动通信设备所带来的电磁辐射影响问题。但由于民众对于移动通讯电磁辐射影响方面的知识了解不多,这也使人们容易由此引发恐慌和不安。针对于这种情况下,媒体需要加大宣传教育的力度,通信企业要采取有效的防护措施,专业技术人员要加快新技术的研发,提高天线发射系统的标准,有效的减少电磁辐射对环境带来的不利影响,使公众能够科学合理的面对移动通信基站的电磁辐射。

参考文献

[1]吴石增.电磁波的生物效应与人体健康[J].中南民族大学学报(自然科学版),2010,29(1).

电磁辐射分析例3

前言

随着通信技术的快速发展,当前移动通信工具数量激增,手机成为人们日常工作和生活中必不可少通话工具。手机通信功能的实现是依靠电磁波来实现信息的传递,因此在人们享受移动通信便捷性的同时,也会担忧移动通信电磁辐射对身体健康的影响。但相较于手机对使用者所带来的辐射影响而言,移动通信基站的电磁辐射则是针对于周围环境,这使处于移动基站周围的小区居民对移动基站电磁辐射影响非常敏感。因此需要对移动通信基站电磁辐射环境影响进行分析,以此来有效的缓解人们对基站电磁辐射所带来的不安。

1 电磁环境与电磁辐射

电磁环境即是由不同频率的电场、磁场所组成,将自然、人为、有源、无源、静态和动态的电磁现象都包括在内。在电磁环境中,由于变化的电场和磁场交替在空间内传播,这些通过空间传播的电磁能量称之为电磁辐射。在电磁辐射下会对装置、系统和设备等的性能带来不利影响,同时还会对有生命及无生命的物质带来一定的损害,从而造成电磁辐射污染现象发生。

2 移动通信基站的电磁辐射

在移动通讯基站中,其主要由两部分组成,基站内很大一部分设备都属于室内部分,只有馈线、收发天线属于室外部分。室内部分中的各种设备在设计和制造过程中就采取有效的电磁屏蔽措施,这也使其不会对周围环境带来电磁辐射污染。但处于室外部分的馈线及天线在运行过程中,则会向周围环境中发射电磁波,从而造成周围环境空间内电磁辐射场增高。因此在确保基站周围环境电场强度要与国家标准要求相符。因此在基站选择备用电源时,尽可能选拔免维护的密封蓄电池组,避免发生漏液现象,使机房使用过程中不存在废水、废气对环境的污染问题。

在当前移动通信基站运行过程中,其电磁辐射主要由三个方面产生:即发射机本身电磁泄漏、发射天线信号发射及高频电缆和接头处等。这其中无论是发射机还是发射天线抽导致的电磁辐射,由于基站建设高度较大,这也使其对地面所带来的辐射强度较小。对于高频电缆接头处通常都有着特殊的防护措施,因此基站电磁辐射对于地面的影响度不大。但对于部分建设在高楼楼顶的发射基站,其对居住在离楼顶较近处的居民所带来的危害不容忽视。

3 电磁辐射和健康之间的关系分析

电磁辐射作为能量流,其所产生的电磁辐射污染现象会对人体健康带来较大的危害。在电磁波环境下,不同的电磁波波段会对人们产性不同的生物效应,从而使人们健康受到不同程度的损害。另外,由于人体自身也具有十分微弱的电磁场,一旦人体内部这个稳定、有序的磁场受到干扰后,则会损害人体的循环功能。因此长时间处于电磁辐射环境下人体各方面机能都会受到不同程度的损害,引发一些不良后果。可以说电磁辐射和人体健康之间具有十分紧密的关系,其为人们健康的带来的危害不容小觑。

4 移动通信基站电磁辐射对环境产生的影响分析

在对移动通信基站电磁辐射对环境带来的影响研究过程中,发现具体的影响因素十分复杂,但在通过实践测量过程中发现:电磁暴露小区的电磁辐射强度明显高于对照小区,但平均值都在GB9175-88的一级安全范围内(10μw/cm2);安装铝合金防盗网具有良好的电磁场屏蔽作用;同时建有两个通信基站的小区,两者所产生的电磁辐射在某一区域范围可产生电磁场叠加现象,使辐射强度增加;个别与基站天线距离较近(小于20m)、窗户与基站天线处于同一水平位置和与基站天线主瓣方向一致的居室内,电磁辐射功率密度远远超出一级安全范围,可达到20.44μw/cm2,但也在GB9175-88的二级中间区容许范围内(40μw/cm2)。

此外研究还发现,天线主瓣方向区域电磁辐射不一定较高,副瓣方向区域电磁辐射也不一定较低。这其实并没有与理论相违背,因为环境地形、地貌、建筑物钢筋水泥结构、空中架设的电线等等,都将对电磁波产生反射、绕射、折射、散射和吸收,从而使得电磁辐射强度的分布复杂化。

5 移动通信基站电磁辐射对环境影响的环保措施

在日常移动通信基站运行过程中,其所发射的电磁波功率密度需要保持在国家规定标准限值范围内,同时采取必要的措施来有效的防范电磁辐射污染。

对于在楼顶上建设基站的情况,在电磁辐射过程中,随着时空的延伸电磁辐射会出现衰减的情况,这也表明建设在楼顶的基站对楼顶的空间影响较大,对于周边建筑内的辐射相对较小。即设置在楼顶位置的基站,其电磁波辐射的最大值则会出现在楼顶,电磁波在传递过程中受建筑物阻挡和吸收,因此电磁波辐射也随着楼层的降低不断衰减。但在具体基站建设过程中,需要注意天线主波瓣方向要避免居民楼,对于实在无法避开的情况,需要确保与居民楼之间水平距离保持在25米以上。同时还要适当增加天线的高度,并适当的减少天线下倾角,这样可以有效的降低基站电磁辐射的产生。在保证基站发射天线满足覆盖要求的同时,还要尽可能的做到降低天线发射功率。当基站建成运行后,还要加强对基站的监测工作,并对监测到的结果及时向公众进行公布,有效的消除公众的不安情绪,为基站的建设和运营商合法权益的保护奠定良好的基础。

6 结束语

近年来移动通讯已全面普及,成为人们工作和生活中必不可少的重要工具。在使用移动通讯过程中,人们在享受其所带来便捷性的同时,也越来越意识到移动通信设备所带来的电磁辐射影响问题。但由于民众对于移动通讯电磁辐射影响方面的知识了解不多,这也使人们容易由此引发恐慌和不安。针对于这种情况下,媒体需要加大宣传教育的力度,通信企业要采取有效的防护措施,专业技术人员要加快新技术的研发,提高天线发射系统的标准,有效的减少电磁辐射对环境带来的不利影响,使公众能够科学合理的面对移动通信基站的电磁辐射。

参考文献

电磁辐射分析例4

中图分类号:TM32文献标识码:A文章编号:16749944(2013)05025002

1引言

随着城乡的快速发展,国民用电量不断增大,为了满足对电量的需求,供电单位不断将高压电输变电技术应用到低压输变电工程之中。因此,高压输电线、变电站等设施不断增多[1],由高压电输变电设备产生的电磁辐射越来越多,对人体和用电设备产生了一定的影响,如何防护这种影响成为人们关注的焦点。为了更好的对高压电输变电电磁辐射污染的有效防护,分析其产生的原因和危害是十分必要的,能够为防护找到突破口,以寻找到更好的防护措施来保护人们的身心健康。

2高压电输变电电磁辐射污染产生的原因

2.1高压变电所

随着高压电输变电设施在城市中的增多,越来越多的高压变电站成为电磁辐射污染的源头之一。为了满足用电需求,高压变电站内必须配务高压设备,而高压设备在进行输变电时,纵横交错的高压导线在带电状态下,就会形成一个电磁场,发出电磁波,形成电磁污染。因此,变电所运行设备周围存在一定的电磁场[2],是高压电输变电电磁辐射污染产生的原因之一。

2.2高压输电线路

除了高压电变电所外,高压输电线路是产生电磁辐射的又一元凶。高压输电线路荷载高压电流,电流流径导线后就会在高压线与地面之间产生静电感应,形成一个电磁场,电磁场发射出来的电磁污染直接作用在地面与导线之间的包括人在内的任何物体,这种辐射污染随着导线距地距离的远近而变化,导线距地越近,电磁辐射越强,导线距地越远,电磁辐射越小[3]。

2.3输变电设备产生的电磁辐射量微小

虽然高压电输变电产生电磁污染,但这种污染并非输变电设备产生的,而是带电导线形成的静电磁场产生的,由于输变电设备输送的是50Hz频率的电流,产生的电磁能量太小,不会对人或用电设备造成危害,因此,输变电设备产生的电磁辐射常常被忽略不计,因此,在高压电输变电电磁辐射污染的产生的原因中可以去除输变电设备的因素。

3高压电输变电电磁辐射污染的危害

高压电输变电电磁辐射污染对人和用电设备产生一定的危害,给人们的日常生活造成了一定的影响。

3.1对人体的危害

我国20世纪70年代模拟220kV超高压输电线进行的动物实验也表明,当辐射场强超过一定限值后,较长时间的作用可导致中枢神经系统、心血管系统等机能障碍[4]。由此可见,高压电输变电产生的电磁辐射对人的身体有一定的损伤,使人的机能加速老化,容易产生心脑血管疾病。另外,在电磁辐射污染下,人体的某部位细胞基因可能发生突变,这种突变可能导致精神问题、肿瘤问题的不断发生,使人们的健康生活受损。

3.2对用电设备造成影响

电磁辐射对用电设备的影响非常大,包括医疗设备、办公设备、日常生活设备、工业设备等等。在电磁辐射的作用下,导致用电设备的烧毁、接触不良、出现波状振动、色斑、计算机重启、医疗设备启动无效。

3.3对通信线路及无线电的干扰

高压电输变电电磁辐射能够对通信线路和无线电波产生干扰,降低通信线路和无线电数据传输的质量,破坏数据传输的连续性,给用户带来不便。

4高压电输变电电磁辐射污染的分析

根据测量条件选择了220kV某变电所作为测量对象,各变电所都在变电所高压构架的处围墙外垂直方向,相应的测点间距为5m[5]。

4.1电磁场强度测量

对220kV某变电所电磁场强度的测量后得知:220kV变电所电场强度的最大值为199V/m,远远小于准则中所推荐的对居民区评价标准(4kV/m);最大磁场强度的最大值为0.28μT,远远小于准则中推荐的评价标准(0.1mT),符合相应的要求。由于220kV输电线的电压等级、容量、导线类型与某市同塔双回曙泽4331线、海曙2349线相似,具有很好的可比性,监测对象选择该同塔双回220kV输电线012号塔附近的一段线路,监测结果得知,同塔双回曙泽4331线、海曙2349线在测量范围内的工频电场强度测量值最大为2372V/m,磁感应强度测量值最大值为22.328μT,均符合国家法规所规定的数值范围。

4.3无线电干扰测值

对220kV变电所无线干扰情况进行了测试,得知频率为0.5MHz时测值最大值为44.3dB(μ/m),小于评价标准(53dB(μ/m)),符合相关的法规要求。

5高压电输变电电磁辐射污染的防护措施

高压电输变电电磁辐射污染对人体和用电设备产生了一定的损害,因此,在不影响供电质量的前提下,必须采取有效的防护措施。

5.1距离调整

由于电磁辐射污染的危害随着距离的拉远而迅速减少,根据这一特点,在架设高压电输变电线路时,应该适当调高15~20m的距地距离;另外在建设高压电变电所时,要适当调整各导线间的距离,以减弱电磁感应的强度,变电站建设时距周围保持有效的隔离距离。

5.2建立合理的接入系统

接入系统涉及到导线的选择、接入方法、导线保护、绝缘措施等,只有科学合理的接入系统才能有效的屏蔽电磁辐射,减少电磁辐射污染对人体的损害。

5.3尽量采用三相电技术

三相电具有三相电压及三相电流矢量和为零的特性,能够有效的降低高压电输变电电磁辐射强度。因此,在变电所设计中采用合理的布置,采用辐射少的设备,减少电磁辐射的产生。尽量多采用三相设备,减少分相设备的使用,若使用分相设备,应尽量压缩相间距离,使用三相共箱GIS设备效果会更好[6]。

5.4加强日常维护

加强对高压输变电工程设备的日常维护、检修,当更新或维修设备后,应进行电磁场强的监测,以保证电磁波辐射水平符合国家标准限制要求[7]。

5.5建立政策监督体制

考虑到电磁辐射的影响,为了提高全民的健康水平,减少电磁污染,建议相关部门从政策入手,通过政策引导,来监督电力部门在高压电输变电架设中采用科学的技术,降低电磁辐射污染。

6结语

电磁辐射污染对人体和其它设备产生了不良影响,因此,分析高压电输变电电磁辐射产生的根源,了解电磁辐射的危害,分析其影响的强弱是十分必要的,为有效防护电磁污染起着非常重要的作用。

参考文献:

[1] 丁玉斌,张国平.高压电输变电电磁辐射污染分析及防护研究[J].高等函授学报:自然科学版,2007,21(4).

[2] 马宁.高压输变电设备电磁辐射分析[J].黑龙江科技信息,2008(29).

[3] 翟俊玉,张运国.输变电工程电磁辐射污染影响及防治对策[J].农村电气化,2004(10).

[4] 王微旻.高压输电线路电磁辐射污染的评价及建议[J].民营科技,2007(7).

电磁辐射分析例5

1 城市电磁辐射污染现状概述

在现代电磁技术不断普及的过程中,不同频率电磁波的叠加作用导致城市电磁辐射能量显著提升,同时城市电磁环境变得愈来愈复杂,并呈现了持续恶化的特征,对城市居民正常生活及社会生产活动产生了一定的影响。如今,城市电磁辐射污染已经成为了一种新型的城市现代病,并愈来愈受到社会各界关注。部分城市在发展规划当中,对大型电磁辐射设备未能进行合理规划布局。例如,很多广播电视塔就建立在人口密集的城市中心区,甚至很多居民区环绕广播电视塔所建,导致局部区域电磁辐射场强偏高[1]。又如,无线通信技术的发展为城市通信提供了极大的便利,但在发展初期由于规划缺乏科学性,使得无线通信频谱资源严重浪费,并加深了城市电磁辐射污染程度。甚至部分地区无线通信基站密度过大,导致这些基站之间的相互干扰十分严重,影响了周围区域的正常通信,并对周边居民的健康产生了一定威胁。相关统计表明,医疗、工业等领域的高频电磁设施正以每年超过20%的增长率持续增加。这些设施当中存在较强的电磁震荡源,且震荡源频谱质量并不理想,会产生宽频率电磁辐射,无论是对电子设备、操作人员,还是对城市环境,均会带来一定危害。总体上来看,城市电磁设备的持续增长对城市环境所产生的压力愈来愈大,电磁辐射影响变得愈来愈严重,应给予充分重视。

2 城市电磁辐射污染源分析

城市电磁辐射污染源主要包括以下几类[2]:(1)输变电设备。目前,我国电网输送的工频交流电频率为50Hz,输送电压等级较多,包括3kV、6kV、20kV、110kV、220kV、500kV等。110kV以上为高压。高压输电导线周边及变电站附近会产生一定强度的工频磁场及工频电场。这部分电磁辐射强度一旦超出限定值,则会对环境产生影响。与此同时,变电站及高压架空输电线路受外部环境影响,会出现电晕放电及绝缘子放电,这些电磁噪声会对正常通信及无线通信产生一定干扰。(2)广播电视发射系统。广播电视发射系统是目前城市电磁辐射污染最主要的污染源。广播电视发射系统附近,存在较强的射频电磁场强度。特别是天线主发射方向。(3)城市交通设施。城市交通的快速发展为城市居民出行提供了极大的便捷,但这些交通设施所产生电磁辐射量也愈来愈大,其影响不容小觑。以机动车为例,机动车运行过程中,点火系统、电机等设备的大电流瞬时通断会产生电磁噪声,导致电磁干扰出现。(4)家用电器。在现代城市生活当中,家用电器也是主要的电磁辐射污染源之一。高频辐射源包括手机、微波炉等;低频辐射源则包括电脑、电视机等。正常情况下,家用电器产品都有明确的电磁辐射标准,合格的家用电器所产生的电磁辐射并不会超出限定值,也就不会对人体健康产生影响。但某些不达标的家用电器所产生的电磁辐射会超出限定值,人们长期与之接触,必然会威胁到身体健康。

3 城市电磁辐射污染的危害性

电磁技术的广泛应用,导致城市电磁辐射污染愈来愈严重,给城市环境带来了不小危害,主要体现为以下两个方面[3]:(1)城市电磁兼容水平有所下降。城市电磁环境的不断恶化,会对城市整体电磁兼容水平产生一定影响。例如,电磁干扰可能会造成数字系统信息数据丢失,影响收音机、电视机等设备的正常运行。若电磁干扰现象较为严重,则会造成仪器误动作,使得工业控制失效,甚至引发灾难性后果。(2)城市居民健康受到危害。电磁辐射通过非热效应、热效应及累积效应等会对人体健康产生一定危害。人体本身就是电磁波的良导体,若电磁辐射能量过大,且辐射时间较长,人体可能无法通过自身调节将所吸收的电磁辐射散发出去,便会引起体温升高。同时,长期处于电磁辐射环境下会对神经系统造成损害,会对正常的免疫、循环功能产生影响,甚至可能诱发癌症。

4 加强城市电磁辐射污染防治的相关举措

4.1 加强城市电磁辐射源监管

要有效控制城市电磁辐射污染问题,必然要加强相关监管工作。一方面,要加强电磁辐射相关法规、标准建设。在城市电磁设备数量及规模不断扩大的情况下,现行的《电磁辐射环境保护管理办法》表现出了一定滞后性,已经无法满足当前电磁辐射管理要求[4]。因此,需要对相关法律法规及管理制度进一步完善。以事先控制为原则,从公众健康、城市环境保护出发,构建出完整的城市电磁辐射环境容量控制制度、电磁辐射风险预防制度、辐射环境监管控制制度等。为了保证监管工作顺利实施,还需要构建出统一的电磁辐射防护标准及电磁辐射安全管理导则,促使电磁设备规范化使用,以此来控制城市电磁辐射污染。另一方面,要强制性实施电磁环境污染源申报制度,并要求相关部门切实做好电磁辐射监测工作,对电磁辐射污染数据库不断完善。这样就能够充分把握城市电磁辐射动态水平,一旦出现污染问题,通过数据分析可进行快速处理,避免电磁污染范围扩大。

4.2 加大电磁辐射知识宣传

电磁辐射由于其潜在性特征,会被社会公众所忽略。同时,很多城市居民对电磁辐射知识并不了解,一旦出现电磁辐射污染,可能会造成不必要的恐慌,进而造成电磁辐射纠纷事件[5]。因此,相关部门应该与新闻媒体及网络媒体共同合作,加强电磁辐射宣传教育工作,让公众能够正确地认识电磁辐射,并树立电磁辐射防护意识,掌握一些基础的电磁辐射防护方法,对自身进行有效的保护。另外,在城市电磁辐射污染监管工作当中,要充分贯彻公众参与制度,借助社会力量进行监督,共同创建良好的城市电磁辐射环境。

4.3 扩大电磁辐射控制技术应用范围

首先,在电力工程项目建设过程中,要完善规划设计工作,通过地下埋线、高低压导线分层架设、双回路导线逆相布置等方式降低高压线路及设备对地面辐射的强度。其次,对于一些电磁辐射强度较大的辐射源,可采取主动屏蔽或被动屏蔽的方式,对辐射源进行控制,避免其造成电磁辐射环境污染。另外,在住宅房屋建设过程中,可利用防电磁波玻璃、电磁波吸收涂料等来阻碍室外电磁波进入室内,保证居住环境的适宜性。

5 结束语

在城市电磁辐射污染日趋严重的情况下,相关监管部门应该给予高度重视。通过加强城市电磁辐射源监管,对电磁辐射污染进行控制。同时,要注重电磁辐射宣传教育,让社会公众共同参与到城市电磁辐射环境建设当中,缓解城市发展与电磁环境的矛盾,进一步提升城市电磁辐射污染综合防治水平。

参考文献

[1]岑丽.城市电磁辐射污染现状问题与防治对策[J].经营管理者,2014(15):394.

[2]陈志平.城市电磁辐射污染现状分析及其防治对策[J].中华建设,2013(01):108-109.

电磁辐射分析例6

电磁辐射在人们生活中不可避免,它是由空间共同移送的电能和磁能量组成的,由电荷的移动产生的能量,而移动通信正是依赖电磁辐射来实现传播的。新疆地区地域辽阔,随着新疆地区经济的快速发展,对移动通信的质量要求也越来越高,这势必会导致移动基站的大量建设。为了确定新疆地区移动基站的辐射水平,本文在综合以往研究成果的基础上,对新疆地区典型基站电磁辐射监测数据进行分析、总结和归纳,最终得出其辐射环境影响水平结论。

一、WCDMA移动通信基站

1.1 WCDMA系统简介

WCDMA移动通信系统是第三代无线通讯技术之一,它采用直接序列扩频码分多址(DS-CDMA)、频分双工(FDD)方式,能够支持移动/手提设备之间的语音、图象、数据以及视频通信,速率可达2Mb/s(对于局域网而言)或者384Kb/s(对于宽带网而言)。

1.2 WCDMA移动通信基站组成

WCDMA移动通信基站由天馈系统、GPS天线、传输设备、电源和接地等组成,主要分为室内和室外两个部分。室内部分包括机架及其内部硬件模块,主要包括射频收发信机单元、基带处理单元、RNC接入控制单元及GPS时钟控制单元;室外部分为基站天馈系统(AS),包括智能天线、功率放大器单元(TPA)和各种电缆。

1.3 移动基站工作原理

基站是在一定的无线覆盖区中由移动交换中心(MSC)控制,与手机(移动台,MS)之间进行通信所构成的系统,主要由基站控制器(BSC)和基站收发信台(BTS)组成,它是移动通信网的主要组成部分。基站的作用原理是:当小区内任意移动台(手机)发送信息时,基站即开始接受,加工和整理信息,通过无线连接将信息传送到交换中心,同时将交换中心发到本小区的信息分别传送给各个移动台,这个“接”和“发”的过程,就实现了不同地区、不同网际间的无线与无线或无线与有线的信息传递。可见,基站是传送、加工和处理信息的“中转站”。

移动通信基站产生的电磁辐射强度主要由发射功率、天线增益、与天线的距离和与天线的相对高度等因素决定在本评价项目中,移动通信基站均采用定向天线,通过定向天线传递的电磁信号具有一定的方向性,即在一定角度内存在较强的辐射水平,其轴向上的电磁辐射强度最大。

二、电磁辐射评价标准

根据《电磁辐射防护规定》(GB8702-88)的要求,公众总的受照射剂量限值如下:公众在一天(24h)内,环境电磁辐射场的场量参数在任意连续6min内的全身平均值应满足表1的要求。

根据《辐射环境保护管理导则一电磁辐射环境影响评价方法与标准》(HJ/T10.3-1996)规定:为使公众受到总照射剂量小于GB8702-88的规定值,对单个项目的影响必须限制在GB8702-88规定的功率密度限值的1/5,移动基站的发射频率在900MHz~2900MHz频段,故单个基站的电磁辐射管理值是:40/5=8uW/cO。

三、WCDMA移动通信基站电磁辐射环境的监测

3.1 监测方法

本次监测在以发射天线为中心半径50m的范围内,对人员可以到达的距离天线最近处可能受到影响的环境保护目标和以基站天线的主瓣方向为延长线不同距离的变化值进行监测。测量时测量仪器探头(天线)尖端距地面(或立足点)1.7m,与操作人员之间距离不少于0.5m。在室内测量,一般选取房间中央位置,点位与家用电器等设备之间距离不少于1m。若在窗口(阳台)位置监测,探头(天线)尖端在窗框(阳台)界面以内。在通信基站正常工作时间内进行测量。每个测点连续测5次,每次测量时间不小于15s,并读取稳定状态下的最大值,若监测读数起伏较大时,适当延长监测时间。

3.2 监测基站的选取

按照基站的不同特征及所处环境的不同状况,分别在城市人口和基站密集区、高电磁辐射背景值区、市区、县乡,按照移动基站不同发射频率、单站、共站情况、不同架设方式(楼顶支架、铁塔、美化塔等)、不同等效辐射功率(标称功率、天线增益)、不同最大落地点的基站(天线形式、高度、倾角),分别选择有代表性的基站作为现场调查、监测基站。此次共选取117个具有代表性基站进行监测。

3.3 监测参数的选取

根据《电磁辐射防护规定》(GB8702-88)要求,结合移动通信基站的发射频率,确定测量因子为电场强度(V/m),再转换为评价因子功率密度(uW/cO)。

3.4 监测仪器

此次监测采用的仪器主要包括:NBM-550电磁分析仪(为非选频式辐射测量仪)、EMR-300电磁分析仪(为非选频式辐射测量仪)、SRM3000频谱分析仪(选频)。

3.5 监测结果分析

此次监测的117个基站均属新疆联通公司,设备为华为、中兴公司产品,主要天线架设方式为铁塔、楼顶支架方式。监测结果汇总表见表2。

由表2监测结果可知,建成运行基站周围环境的功率密度最大值为6.611uW/cO,出现在阿克苏第十小学基站240°天线主瓣方向水平距离10米处,监测的117个基站其电磁辐射值均符合《电磁辐射防护规定》(GB8702-88)中公众照射导出限值40uW/cO要求,同时满足《辐射环境保护管理导则一电磁辐射环境影响评价方法和标准》(HI/T10.3-1996)中单个项目电磁辐射管理值8uW/cO要求。总体上来说,新疆WCDMA移动通信基站电磁辐射对周围环境影响不大,符合国家标准。

四、结论与建议

4.1 结论

此次新疆地区WCDMA移动通信基站电磁辐射环境影响评价工作是针对新疆地区16个地州的117个典型基站进行电磁辐射监测,监测结果表明其电磁辐射值均符合相关规范要求,移动基站引起的电磁辐射水平对环境的影响程度小,符合评价标准要求。

4.2 电磁辐射防护措施建议

(1)移动基站站址应选在地势相对较高或有高层建筑、高塔利用的地方。如果高层的高度不能满足基站天线高度要求,应有房顶设塔或地面立塔的条件,以便保证基站周围视野开阔,附近没有高于基站天线的高大建筑物阻挡;

(2)市区基站应避免天线前方近处有高大楼房而造成障碍或反射后对其周围基站产生干扰;

(3)在住宅楼上建设移动通信基站,建设前建设单位、建筑物产权单位或业主应充分征求所住居民的意见:

(4)应避免在高山上设站。在高山上架设基站干扰范围大且易产生谷底“塔下黑”现象,如果设站应采取相应措施

(5)站址选择时尽量避免附近有模拟集群系统或其他系统的基站天线,如果有,应详细了解其使用频率、发射功率、天线高度等,以便频率配置避开干扰频点,防止相互干扰,不肆意污染基站附近的电磁环境;

电磁辐射分析例7

随着社会经济的快速发展,人们的生活水平逐渐提高,对各类通讯设施、供电设施的要求越来越高。为满足公众的需求,许多大型电磁类工程项目开始出现,对周围地区造成了较大的电磁辐射污染,严重影响了周围地区的环境以及人们的身体健康。因此,必须要做好电磁辐射的环境管理工作,采取适当的管理策略,解决电磁辐射污染问题,为人们的身体健康提供基本保障。

1 当前我国电磁辐射环境管理工作存在的问题

1.1 相关法律法规以及控制标准不完善

在电磁辐射环境管理方面,我国目前还没有一部完善的法律法规。虽然国家环保总局在1993年颁布了《电磁辐射环境保护管理办法》,对电磁辐射环境管理工作起到了一定作用,但是由于没有及时进行修订,其中的许多条例都只适用于当时的情况,无法满足现代电磁辐射环境管理的需求,缺陷日益明显。首先,其中许多实施办法效率比较低,难以达到应有的环境管理效果;其次,相关内容是以过去的电磁设备管理为主,对于新型电磁设备的辐射管理尚未明确出来,所以无法满足现代电磁辐射环境管理工作的需要;最后,某些条款与国家的环保法律、法规相抵触。比如在编制环境检测报告时,《电磁辐射环境保护管理办法》中的相关条例与《环境影响评价法》的相关法规有一定的冲突。我国目前的电磁辐射防护标准有《电磁辐射防护规定》(GB 8702-88)和《环境电磁波卫生标准》(GB 9175-88),行业标准有《电磁辐射环境影响评价方法与标准》(HJ/T 10.3-1996)以及《500kV超高压送变电工程电磁辐射环境影响评价技术规范》(HJ/T 24-1998)。从这些标准里可以发现,我国的电磁辐射环境管理存在以下几点问题:首先,电磁辐射的“环保标准”与“卫生标准”不符。《电磁辐射防护规定》与《环境电磁波卫生标准》都属于国家标准,但是两者对于电磁辐射控制范围的规定却是不一样的,导致我国各大企业、电磁辐射环境管理机构对于电磁辐射强度的控制范围不明确;其次,相关标准的作用范围太小。目前,我国电磁辐射控制标准只适用于100kHz-300GHz频率范围,对于某些工作频率较小的高压电力设施的电磁辐射管理控制却没有明确的参考标准。导致电磁辐射环境管理部门缺乏相关的管理依据,许多工作都难以顺利开展;最后,我国制定的标准与国际标准不相匹配。我国的《电磁辐射防护规定》与《环境电磁波卫生标准》已经使用了多年,其中的多项标准条例与我国的实际情况出入较大,而国际相关标准却早已进行了多次修改,与实际管理工作紧密结合,因此,我国电磁辐射环境管理相关标准与国际标准存在较大差异,与实际情况脱节[1]。

1.2 对电磁辐射环境现状不够了解

我国电磁辐射环境管理发展的时间还比较短,且近年来电磁设备更新换代的速度很快,更换频率较高,所以电磁辐射环境管理部门对电磁辐射污染源的详细分布情况并不是十分了解。在上世纪末,我国的环保部门曾对全国范围内的电磁辐射情况进行了全面调查,对我国各地区的电磁辐射污染源都有了一定的了解,再加上近年来电磁设备安装建设时都需要进行申报,所以电磁辐射环境管理部门能够更加方便地掌握电磁辐射污染源的信息。但是,由于申报并未与项目审批结合,申报时只是要求建设单位提供相应的申报资料,没有建立相应的数据库,所以许多申报相关资料数据都没有得到有效的利用。近年来,科学技术发展十分迅速,电磁设施设备也越来越先进,安装建设的速度也比较快,所以通过调查所了解到的数据与实际情况有一定的差异。此外,我国的电磁辐射环境管理大多是针对某一项目,管理面太窄,没有结合全国实际情况对电磁辐射环境进行全面监测,从而导致我国电磁辐射环境管理部门对电磁辐射环境现状了解得不够充分。

1.3 规划不合理

规划阶段是电磁辐射环境管理的重要阶段,规划的合理程度对电磁辐射环境管理质量有较大的影响。目前,由于我国缺乏相关的科学依据,在对电磁设施设备进行规划时考虑不全面,经常发生电磁设渲间相互干扰、交叉影响的问题。按照原有规划,为了防止电磁辐射影响市民的正常生活,电磁设施设备一般是设置在郊区的。但由于近年来用地紧张,所以郊区也开始实施建设,许多居民区出现在电磁设施周围,从而使得电磁辐射对居民的不利影响扩大化[2]。

2 电磁辐射环境管理策略分析

2.1 完善相关法律法规及国家标准

完善相关法律法规,为电磁辐射环境管理设置专项法律,加快立法进程。对于电磁辐射环境管理,要优先考虑电磁辐射污染的预防工作,再加以合理的控制措施,为电磁辐射环境管理提供有效的法律支持。完善相关国家标准,使得国家标准适用于全国范围内所有类型的电磁辐射源;针对每一种电磁辐射源,分别设置相应的电磁辐射控制标准[3]。

2.2 强化电磁辐射环境监测工作

首先,需要对全国范围内的电磁辐射源分布情况进行普查,了解电磁辐射环境的基本情况,并建立相应的数据库;其次,在各电磁辐射较大的地区设置长期的监测系统,掌握当地的电磁辐射污染情况,如果发现问题,立即通知相关部门进行处理。

2.3 加入环境影响评价机制,提高规划的科学性

环境影响评价机制可以对当地环境的承载能力进行评价,综合考虑国民经济发展与社会发展的需求,对区域内的生产力布局、资源配置等进行分析,从而给出更多实用性的建议。因此,将环境影响评价机制加入到电磁辐射环境管理工作中,综合考虑电磁设施设备的总体布局以及与当地电磁环境容量之间的关系,尽量避开电磁环境敏感区,从决策源头上控制电磁污染,保护环境[4]。

3 结束语

随着我国科学技术的不断发展,电磁辐射问题成为了我国重要的环境问题之一。电磁辐射不仅会影响周围的生态环境,还会影响附近居民的身体健康,因此,电磁辐射环境管理部门必须要了解每个电磁辐射源的分布情况,设置长期监测系统对各电磁辐射源进行实施监测,并采取适当措施控制电磁辐射的强度,从而降低电磁辐射污染,保证附近居民的身体健康。

【参考文献】

[1]陆智新,梁美霞.基于生态市建设的泉州市电磁辐射污染监管现状与对策研究[J].高师理科学刊,2015,35(11):56-59.

电磁辐射分析例8

前言

近年来,随着移动通信业的迅猛发展,移动用户数量飞速增长,通信基站的建设数量逐年增加。从城市的高层办公写字楼到普通的小区住宅楼,移动通信发射天线随处可见。通信基站的天线是电磁波向周围环境发射窗口,同时也是环境电磁辐射的源头,引发潜在的电磁辐射污染问题。的基站天线常常与周边环境格格不入,影响城市景观,更有可能引发公众对通信基站电磁辐射的过度心理恐惧和担忧,最终导致居民对基站运营商投诉的激增。因而,城市景观问题与公众担忧已经成为了通信基站建设运行过程中两个敏感议题。为了解决这两大问题,美化天线应运而生,并逐步受到广泛应用。

美化天线也称为“伪装天线”,即在不影响天线正常功能的情况下,采用损耗小、反射少的非金属材料对天线本身的外表进行装饰,或是在天线外部加装美化罩,使天线与楼宇及周边环境相和谐,进而达到美化的目的[1]。美化天线的应用在一定程度上还减少了公众对基站电磁辐射的心理恐惧和抵触情绪,减少了公众与基站运营商之间的纠纷,为社会和谐做出了贡献。然而,由于缺乏对美化天线的电磁辐射水平的系统分析研究,天线的美化并不能从根本上消除公众对基站电磁辐射污染的担忧,仍有不少居民对美化后的基站进行投诉。此外,美化天线的隐蔽性及多样性也增加了辐射环境监管的难度,若监管不善,可能会加剧基站对周边环境的电磁辐射污染。本文通过对各种典型环境敏感区域内不同类型的美化天线类型周围的电磁辐射水平进行监测分析,以揭示不同类型美化天线周围电磁辐射水平,并在此基础上提出美化天线周围电磁辐射污染防治措施及管理措施。

1 常见美化天线的介绍

常见的美化天线一般采用外罩罩住天线 ,根据外罩的外形特点可以将美化天线分成以下几种[2]:

(1)方(圆)柱型

一般可做成方柱型或圆柱型立在楼顶天面的面源或者楼梯堡的天面上,高度约为2~4m,外观的颜色与楼面颜色相似。该类型的美化天线也是目前实际应用最广泛的一种。

(2)排气管型

排气管型美化天线,多应用于高层居民小区或商业区楼房天面之上,外观颜色以白色为主,结构与尺寸与真实的排气管一致,一般高度为高出天面2m。

(3)变色龙型

为了符合楼房外墙装饰颜色,外表跟外墙的颜色、花纹一致。可以根据天线的实际尺寸和数量做成需要的造型,如半圆形、方形及椭圆形等,既能满足通信信号覆盖,又不影响城市建筑的景观。

(4)空调机型

空调机型美化天线一般根据安装天线的尺寸及数量,可以选择做成4匹或6匹的室外空调机外型,主要应用于人群比较密集的居民生活小区内或者是商业区。由于空调机型天线的高度有限(一般不超过5m),为了达到尽可能大的覆盖范围,一般安装在信号覆盖区域内的最高楼层天面或者挂在外墙上。

(5)灯杆型

灯杆型美化天线适用于商业区、交通道路两旁,立于街边的高度一般为6~25m,可用于街道的信号覆盖;放在楼顶的天面上的高度一般为6~10m,可以用于普通的住宅小区或商业区环境中。

(6)水箱型

一般常见于旧城区普通居民楼上或者乡村,可做成高达6m的水箱型,馈线用PVC管包装入水箱中,从外部看像水管,与居民放置在屋顶的太阳能水箱相似。

(7)美化树型

一般用于风景区、公园、居民区的花园或周边的山上以及厂房较多的工业园区或者新开发区的路边绿化带等等。外表看上去像一棵树,隐藏在绿色植物当中,可以根据周围的环境做成合适的高度。可以和周围的风景形成一致,既不破风景又能达到有效的信号覆盖。

2 电磁辐射环境质量标准

根据我国的国家标准《电磁环境控制限值》(GB8702-2014)[3]中的表1规定,频率在30~3000MHz之间,公众曝露限值为:电场强度12V/m,功率密度0.4W/m2(40μW/cm2)。《辐射环境保护管理导则―电磁环境影响评价与方法》(HJ10.3-1996)对单个项目的影响必须控制在GB8702-1998(GB8702-2014《磁环境控制限值》自2015年1月1日起实施后替代GB8702-88)限值的若干分之一[4])。因此单个基站的管理目标值选取GB8702-2014《电磁环境控制限值》中相应频段功率密度限值的1/5,即0.08 W/m2(8μW/cm2)。

3 移动基站美化天线周围电磁辐射水平实测

3.1 监测方法

3.1.1 监测布点

本研究选取广东省内位于各种典型环境敏感区域内7种不同类型的美化基站21个(具体见表1),对基站美化天线周围的电磁辐射水平进行现场测量。依据《移动通信基站电磁辐射环境监测方法》(试行)(环发[2007]114号)[5]规定进行监测布点,基站电磁辐射水平监测点位优先布设在公众可以到达距离天线的最近处,原则上设在天线主瓣方向内。防护区内如有敏感目标,则通过巡测找出辐射水平较高的测点,如无敏感目标,则在天线前方50m内选取代表向监测点。对于发射天线架设在楼顶的基站,在楼顶公众可活动范围内布设监测点位。点位选择应设法避免或尽量减少周围偶发的其他辐射源干扰。

3.1.2 监测时间、频次及环境条件

移动通信的电磁辐射与基站发射功率、天线增益、频率以及话务量密切相关。话务量指在特定时间段内呼叫次数与每次呼叫平均占用时间的乘积,通常随着话务量的升高,基站实际发射功率会增大,因而产生的电磁辐射也会有所增强[6]。故监测时间为移动通信基站正常工作时话务量的高峰时间段,即一天内的8:00~20: 00。监测在无雪、无雨、无雾、无冰雹的天气条件下进行,同时记录下现场环境温度和相对湿度。

每个监测点位应进行连续5次电场强度测定,每次测量时间不少于15s,并读取稳定状态下的最大值。

3.1.3 监测仪器

现场监测采用仪器为德国Narda公司生产的EMR-300型综合场强仪,该仪器配备18C型探头。仪器响应频率为100kHz~3GHz,量程为0.20~400V/m,检测限为0.20V/m。

3.1.4 测量频段与数据处理

测量选取的美化基站为中国电信CDMA2000,发射频段为870-880MHz。CDMA基站天线的辐射近场与远场的界限大约是8 m,测量选取的美化基站周围公众可达到范围属于电磁辐射的远场,在远场中功率密度与电场强度的关系式为:Pd=E2/377,因此在远场中,通过电场强度的测量即可求得功率密度。

3.2 结果与分析

3.2.1不同类型美化天线周围电磁辐射水平

基站的电磁辐射水平不仅会受到周围地理、环境条件的影响,还可能与天线的形式结构有关。为此,本研究对21个位于典型环境功能区内(包括居住、医疗卫生、文化教育、科研、行政办公区等)不同类型的美化基站周围电磁辐射电场强度进行测量,并重点关注以发射天线为中心、半径50m范围内可能受到影响的居民和人群,结果见表1。监测结果表明,位于不同环境敏感区域内7种常见美化天线基站正常运行时,周边50m范围内可到达区域环境功率密度在0.01~7.17μW/cm2之间,低于《电磁环境控制限值》中规定的30~3000 MHz频率范围内公众曝露限值0.4W/m2(40μW/cm2)。同时也满足单个移动通信基站运行对周围电磁辐射环境影的管理限值0.08W/m2(8μW/cm2)。测量所选择的7种类型美化天线有6中常用于公众关注的居民区,测量结果表明其周围50m范围内公众可到达范围满足文献[3]中规定的公众曝露限值。

3.2.2 典型美化基站周围电磁辐射水平分析

方柱型美化天线因其外部美化罩可以装饰成墙体的颜色而与周围景观形成一致,在美化基站中得到广泛的应用,常用于各种环境敏感功能区域如:居住、文化教育、医疗卫生区、行政办公区、科研区等。为了进一步探究美化基站周围电磁场的分布特性,本研究选取位于河源市东源县滨江花园10层居民楼天面的方柱型美化基站作为典型基站。对该基站周围50m范围内公众可到达区域进行了详细测测量,采用巡测的方式,找到公众活动区域内电磁辐射最大点位,14个监测位点的分布如图1所示。该基站周围电磁辐射环境监测结果见表2。

从图1中可以看出监测点位覆盖了公众可到达的离天线最近、高差最小的区域。表2中美化天线周围电磁环境辐射监测结果看以看出该基站周围50m范围内电磁环境辐射功率密度范围为0.01~5.25μW/cm2,其中功率密度最大点位出现在天线架设天面与天线水平距离11m垂直距离6m处(点位2#)。结合图1与表2可知,天线主瓣方向(监测点位为1#、8#、9#、10#)区域内的功率密度高于天线副瓣(2#、7#)区域,且离天线水平距离越远、高差越大的区域功率密度越小。以上结果表明该基站美化天线周围50m范围内功电磁辐射率密度均低于文献[3]中规定的公众曝露限值。

4 美化天线的利与弊

4.1 美化天线的有利方面

美化天线的发展和推广在一定程度上是因为公众的环保意识的加强及对城市景观要求的提高,对环保以及经济发展有很大的积极意义。主要表面为三个方面:①美化天线具有的仿生、掩蔽的特征使得基站与其所在的周围环境能很好的融合在一起,避免了普通天线杂乱架设对城市及乡村景观的负面影响;②天线为基站的外置部分,美化天线的采用会减少基站天线对公众的视觉冲击,能够在保障通信的覆盖与质量的同时,避免了居民对天线辐射的过分恐惧和抵触,减少了居民心理负担,有利于基站的建设运行[7];③对于运营商来说,美化天线采用分体拆装结构,体积小,运输、安装更加简便,水平转角可调且调整方便,节省运行费用。

4.2 美化天线的不利方面

虽然美化天线具有多方面的优点,但是从环境保护和保障公众知情角度来说也存在不可忽视的弊端,集中表现在四个方面:①某些运营商使用美化天线只是为了降低公众对移动通信基站建设运行的关注度,进而损害了公众的环境权益和知情权;②美化天线种类繁多、隐蔽性较强,伪装成生活中常见的各种实物,增加了环境保护部门辐射环境监管难度;③由于美化天线外部加有美化罩,在环境保护部门日常监管、抽查测量电磁辐射水平时很难准确判断天线主瓣方向、安装位置及天线的数量等关系辐射环境影响的因素,也难以确定基站电磁环境辐射重点监测范围;④有可能激发公众更强烈的抵触情绪,比如,美化天线在建设及运行的过程中未充分做好与公众的沟通工作,公众获知美化天线的存在后,情绪更加激动,处理不当反而会激化公众与基站运营商之间的矛盾。

5 美化天线使用原则与电磁环境污染防治对策

5.1 美化天线架设原则

5.1.1 推荐性使用原则

在风景名胜区、旅游景区、公园、小区周边的花园等对环境质量要求较高的地方,推荐建设美化天线,以保持上述区域的景观协调,减小普通天线对公众视觉的冲击,使天线能更好的融入周边的环境。

5.1.2 限制性使用原则

在楼房密集或楼层较低的居民区及作为公众经常活动区域的天面等限制性使用美化天线,因为美化天线本身具有的架设高度低、隐蔽性等特点,在上述区域架设时公众经常活动区域容易出现超标情况。

5.2 美化天线的电磁污染防治对策

1、优化基站选址,首先应先调查当地的电磁辐射环境背景情况,避免在电磁辐射环境背景值较高的地方建立基站;其次尽量选择共用设施的楼房上而避开私人居民楼,应该尽量选择公众不能经常到达的天面或者非公众居住建筑物,尽可能避免影响周围公众的活动;第三,还应该避免在同一个天面架设过多的天线,防止由于场强的叠加,使该天面的电磁辐射水平高于超过管理目标值;第四,对于架设在楼顶的基站,应加强通往该楼顶的通道管理并在通往天线处悬挂警示牌[8]。

2、合理选取美化天线的主瓣方向,安装时尽量使天线的主瓣方向避开公众活动区域;市区基站应避免天线主瓣方向非安全距离前方处有高大楼房,以免其受到较大的电磁辐射影响而产生不必要的民事纠纷。

3、在美化天线周围张贴电磁辐射警示标识并划定一定方位的限制公众活动区域,以防止公众因不知道美化天线的存在而靠近,受到不必要的辐射。

4、加强监督与管理工作,通信基站的运营商不得随意提高基站的发射功率,应尽可能地降低基站的发射功率,以确保天面的电磁辐射水平低于目标管理值;基站正常运行时,环境保护监管部门应不定期电磁辐射环境抽测检查,保证天面上的电磁辐射水平满足国家标准。

5、运营商应委托有电磁辐射检测资质的单位或企业每年抽取一定比例的美化基站进行电磁辐射检测并建立电磁环境检测数据档案,以及时发现电磁辐射环境问题。

6、明确针对于美化天线基站环境影响评及验收阶段的公众参与要求。美化天线的“隐蔽性”引发公众环境知情权等相关问题。从短期看,其隐蔽性有助于基站的建设,但如果处理不当势必会导致严重的群众环境事件,因此,及早主动处理沟通才能发挥美化天线的景观优势而避免其负面影响的积累。而环境影响评价及验收阶段的公众参与的主动沟通、协调可从根本上解决环境问题的积累。

6 结语

美化天线建设已被广泛采纳,在通信基站建设中所占的比例也逐年升高,运行效果良好,既起到了美化环境的作用又达到了移动信号覆盖的目的。本研究对21个位于各种环境敏感区域内不同类型的美化天线类型周围电磁辐射进行现场检测,结果表明:美化天线周围50m范围内的公众可到达区域环境电磁辐射功率密度在0.01~7.17μW/cm2之间,典型的方柱型美化基站周围50m范围内的公众可到达区域环境电磁辐射功率密度在0.01~5.25μW/cm2之间,均低于《电磁环境控制限值》(GB8702-2014)中规定的30~3000MHz频率范围内公众曝露限值40μW/cm2,天线主瓣方向区域内的功率密度高于天线副瓣区域,且离天线水平距离越远、高差越大的区域功率密度越小。但是美化天线仍存在许多不足之处,需要把握美化天线的使用原则,从基站选址到正常运行都要做好各面的环保工作,并保证环评阶段、验收阶段的公众参与制度,与公众多方面沟通协调,只有这样美化天线才能体现真正的“美”。

【参考文献】

[1] 杜岳华. 美化天线在通信基站中的应用[J]. 中国新通信, 2015, 1: 6.

[2] 李峥嵘. 浅谈移动通信基站天线的美化与隐藏[J]. 大众科技, 2010, 4: 59~60.

[3] 环境保护部. GB8702-2014 电磁环境控制限值[S]. 北京:中国环境出版社, 2015.

[4]国家环保总局. HJ/10.3-1996辐射环境保护管理导则 电磁辐射环境影响评价方法与标准 [S]. 1996.

[5]《移动通信基站电磁辐射环境监测方法》(试行)(环发[2007]114号).

电磁辐射分析例9

一、引言

近年来,随着城市建设步伐的加快,个别新建的大型居民小区等区域移动通信覆盖差成为用户投诉的热点,可一旦运营商到这些区域增设通信基站,却又遭到用户的集体反对。造成这种两难困境的重要原因是公众对基站电磁辐射的担忧。事实上,当今世界无线电应用无处不在,从智能手机到卫星电视,从导航仪到遥控钥匙,包括飞机的通信导航、高铁的调度控制、气象的播测预报等等,无线电新技术、新业务已经渗透到社会生活的方方面面。

二、电磁辐射的影响

2.1 电磁辐射的形成

所谓电磁辐射,是指电场和磁场相互作用和变化产生的电磁波,向空中发射或泄漏的一种现象。在我们生活的环境中,振动无处不在,而振动就能形成波,当波的振动频率较低时,如50Hz的交流电,其磁电间变化缓慢,能量大部分通过介质返回原电路,极少一部分辐射出去,而且必须借助有形的导体方能传递;而对于振动频率较高的无线电波,磁电互变速度快,能量无法全部返回原振荡电路,电能、磁能随着电场与磁场周期变化而以电磁波的形式向空间传播,且不需要有形介质便可以在自由空间任意传递,这种辐射形式,在无线电通信领域称之为电磁辐射。

2.2 电磁辐射的影响及特点

电磁辐射对人体的影响主要表现在热效应和神经效应两大方面。所谓热效应类似微波炉加热食物,当高频电磁波穿过人体时,体内水分子随着无线电波而振动,产生摩擦使体内温度升高,影响器官正常工作和身体机能。摩擦同时也会使水分子散发进而导致器官缺水,如果受无线电波辐射时间过长,则将破坏人体的热平衡引发某些病变。神经效应方面:人体为适应大自然的规律,器官和组织内部存有微弱的电磁场,因此,当本身带有微弱磁场的无线电波穿过人体时,如同磁铁间作用力一样,直接影响并改变体内原本稳定的电磁场。

对于含水量较高的人体组织,如皮肤组织、肌肉、肝、肾、心脏、血管、眼睛等,热效应较为明显;对于含水量较少的人体组织,如骨骼、骨髓等,对电磁辐射吸收少反射多,从而使其邻近的组织吸收更多的电磁辐射。

2.3 电磁辐射标准

我国电磁辐射照射标准限值相对于国际标准更为严格。目前,我国在电磁辐射方面影响最为普遍的标准有GB8702-88《电磁辐射防护规定》和GB9715-88《环境电磁波卫生标准》,分别对不同频段电磁波给出了不同的照射限值。以移动通信系统使用频段为例,在30MHz-3GHz这一公众最敏感范围内的功率密度标准限值为40μW/cm2,电场强度限值为12V/m,我国环保方面的标准高于国际标准。

三、移动通信电磁辐射影响分析

随着通信事业的迅猛发展,为保证网络的覆盖和通信质量,通信运营商加快兴建移动通信基站,在拉动经济社会发展、完善信号覆盖、提升优质高效服务的同时,也在某种程度上加大了电磁环境的复杂性。那么,移动通信基站所产生的电磁辐射对人们的生活环境到底有什么影响呢?

3.1 移动通信基站辐射类别

在移动通信领域,基站和手机之间动态调整信道频率、辐射功率与接收灵敏度等,以实现通话质量和干扰控制。很显然,手机与基站的距离决定了基站和手机的发射功率。对于同一个基站覆盖范围内的手机而言,距离基站越远,对应基站和手机的发射峰值功率越大;移动通信基站密度越高,相应每个基站电磁辐射强度越弱。同时,蜂窝小区制基站之间为了避免同频干扰,各基站发射功率也不会太高。对于基站密度相对较大的主城区范围内,普通2G基站发射机功率不会高于20W,3G及4G基站仅为2-3W,天线增益在11~15dBi。

为了保障通信安全和传输质量,所有基站设备和传输线路都已做了一定的屏蔽,其辐射可忽略不计。由此可见,基站可能形成的主要影响来自天线端电磁辐射。而通信基站大都采用扇区天线,一般为三扇区,每个扇区天线夹角120度,三个主瓣方向电磁波信号较强,其余为旁瓣方向,电磁波信号相对较弱。

3.2 移动通信基站电磁辐射抽样实测

为了验证实测数据是否符合国家标准,抽样选择了周口移动GSM和TD-SCDMA系统分别位于市区和郊区各2个基站进行测试,测试结果如表1。

由于实际测试过程中基站密度不同,测试方向不在主瓣方向、话务量差3异造成的基站未满载发射、建筑物反射及遮挡等客观因素,测试值相对于理论值要小。总体来说,从不同距离、高度实际测试的结果来看,所有测试值均优于国家规定的12V/m标准。

以上移动通信基站电磁辐射指标符合国家环保要求,对人体健康无任何影响。

基站名称 测试距离(m) 距地面高度(m) 测试值(V/m)

GSM_A基站(郊区) 0(机房内部) 0 0.40

5 0 0.61

100 0 3.12

190 15 2.11

1500 9 0.27

GSM_B基站(市区) 0(机房内部) 18 0.66

10 0 1.77

50 12 3.30

200 20 2.37

TD-SCDMA_C基站(郊区) 0(机房内部) 0 0.21

10 0 1.56

150 0 1.63

1200 0 0.26

TD-SCDMA_D基站(市区) 0(机房内部) 0 0.41

20 0 1.85

1507 13 2.43

1500 0 0.45

表1

3.3 移动通信终端更应引起注意

相对于移动通信基站,用户日常使用的手机更应引起注意。因为手机在使用过程中与人体距离很近。同基站一样,手机也使用功率控制技术,在距离基站较远或接收基站信号较为微弱时,其自身发射功率相对会比较大,部分2G手机峰值功率可达2W,正常情况下,手机接通瞬间功率最大,而接通后相对稳定,一般维持在700-800mW左右(-0.96dBm)。

由于手机距头部很近,其辐射会直接影响大脑中的神经元细胞,从而使得神经胶质细胞增殖。因此,在使用手机时应注意接通瞬间不要把手机靠近头部,待接通1-2秒后再进行通话,并尽量使用耳机。此外,购置手机应选择正规厂家,避免使用信号很强、超功率发射的山寨产品。

四、移动通信基站规划探讨

4.1 基站建设必须做好正确的舆论导向

不可否认,近年来国内外媒体对电磁辐射的负面报道,在一定程度上助推了公众对移动通信基站电磁辐射的担忧。因此,政府部门和通信运营商有责任加大舆论宣传工作力度,多与公众沟通,消除公众心理负担,全方位提升整个社会和广大老百姓对无线电方面的认知度。同时,要积极组织公众实际观摩和参与基站建设环境评估,使环境影响评价民主化、公众化,以减少移动通信基站建设过程的阻力。

4.2 基站建设必须做好规划与环评

应当看到,长期以来移动通信基站的规划建设并未纳入地方各级政府城市建设总体规划,通信运营商基本处于无序竞争状态。由于基站选址大多在人口密集的市区、新兴城区和新建小区,不仅建设用地紧张,而且大量新建基站由于忽视共建共享因素造成资源浪费,加之老百姓出于认知上的误解与自身利益的考虑,对在其附近建设基站抵触反对,所有这些都给基站规划建设增加了难度,影响施工进度甚至迫使基站迁址。仅今年以来,周口移动公司已有16个拟建基站在建设过程中受到群众阻挠。

电磁辐射分析例10

前言

2007年6月18日起福州台电磁波观测到显著的异常信息,异常场强大、异常持续时间较长,在异常发生后,曾引起省局分析预报有关专家的重视,福州台观测人员去周边落实,无干扰源存在,异常出现的时间呈无规律性,强度呈弱-强-弱交替出现,在地震前一天异常幅度达到最大值,平静10小时后发生了福建永春4.6级地震,因此分析此次地震前电磁辐射异常对于预报福建省闽南沿海地区地震提供可靠的依据。

一、福州地震台电磁波观测概况

福州地震台建于1970年,位于福州市大梦山(图1),海拔高程为16.7米,东经119.29о北纬26.09о,处于长乐-诏安断裂带北段,福州大梦山―登云水库西段,出露地层除第四系松散堆积层外,主要为白垩纪和上侏罗纪的火山岩,台站基岩为二长花岗岩。

福州地震台已经开展多年的电磁波观测,采用DPJ-Ⅲ型电磁辐射观测仪观测,数据采用JS-2数据采集仪输出。DPJ天线轴向为N15оE--N20оE,面板衰减档选择β=0.1--0.3,观测频率为38.33KHZ,标定仪器用BD-1电磁波标定仪。

自观测以来,DPJ-Ⅲ型电磁辐射观测仪均按规定完成标定工作,仪器性能稳定,记录曲线清晰,背景干扰小,配备有直流电源,记录连续可靠,日常观测建立了一套规范的操作规程。经过多年的观测,积累了丰富的观测资料,映震效果较好,对于福建省内闽南沿海4级以上地震及台湾地区6级以上地震有较好的对应关系[1]。

二、福州台电磁辐射异常特征分析

图2为福州地震台2007年1月1日至2007年12月31日电磁辐射观测图。从图2可以看出,福州台的异常过程呈阵发性一组一组的出现,发生过程是弱--强―弱的多次反复。

(一)异常时间。

任何地震前记录到的异常信息都有一定的持续时间,只是异常的持续时间受到震维大小、震中距长短、台站所处地地质构造模式、地下介质均匀情况等因素的影响,一般认为,异常时间和震级有着很大的关系,震级愈大异常时间愈长、未来地震的震级愈小;异常时间愈短,未来地震的震级愈小[2]。本次地震前持续的时间较长,从异常开始到发震,异常持续时间达到70天左右。

(二)异常的方向性:异常信息大小与传感器的埋置或天线架设方向有关。当DPJ的天线转到某一方位而信号都最强时,其来波方位是在垂直与天线轴的方位[2]。福州台电磁波的天线架设方位为N20°E,福建永春4.6级地震的震中方位与本观测点天线轴向夹角约85°,因此认为可接收到较强的异常信息。

(三)电磁辐射异常距离与震级大小的关系。

地震大,异常距离大;震级小,异常距离也小;震级与异常最大距离的关系:

根据李美等研究,M=4.44+0.24D

上式适用于4.5 级以上的中强地震和强震,根据以上经验公式,可以计算出,福州台距离发震地点km,计算出的震级约为4.8级,这与实际的震级相符。

(四)阵发性波组特征。

震前电磁波信息呈阵发性一组一组的出现,发生过程是弱--强―弱的多次反复,直到发生地震,其异常时间、异常幅度起伏变化总趋势越来越强。起伏持续时间越长,变化幅度越大,起伏次数越多,未来地震强度也越大[3]。本次异常从2007年6月18日出现,异常幅度为697.1mv/m,6月份累计异常时间为5.9个小时,7月份累计异常时间为4.6小时,8月则表现为异常的加剧,异常持续的时间和强度都有所增强,8月28日异常时间达到1.63小时,幅度达到1104.4 mv/m,8月29日发生永春4.6级地震。震后异常逐渐减弱,并趋于平静。

三、主要干扰因素的分析

(一)观测仪器:工作正常,记录连续,各项工作指标未改变。

(二)场地干扰:观测台附近未发现干扰源。

(三)异常波形特征:地震电磁波前兆异常的出现是随机的、成组的、持续的,振幅和周期是变化的,因此,可以排除干扰产生的异常信息。

四、讨论与结论

(1)电磁波异常平静时间与发震时间的关系,对于一次地震的预测,信号出现异常之后,信号变成弱甚至平静,多数中强以上地震发生在平静结束的数小时内,根据这一变化特征,则大致可以确定出地震可能的发生时段。

(2)异常天数与震级大小总体上呈现出异常时间愈长则震级愈大的特点,对于福建省内4级以上地震异常出现的时间约70天左右。

[参考文献]

[1]陈小云,福州电磁波异常与闽台地震的相关性分析[M]。国际地震动态,2008,1:9-13