期刊在线咨询服务,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

期刊咨询 杂志订阅 购物车(0)

半导体的技术模板(10篇)

时间:2023-11-06 10:01:14

半导体的技术

半导体的技术例1

Foundational Technology of Energy-Saving & Emission Reduction ――Power Semiconductor Devices and IC’s

ZHANG Bo

(State key Laboratory of Electronic Thin Films and Integrated Devices,

University of Electronic Science and Technology of China, Chengdu 610054,China)

Abstract: Power semiconductor devices and IC’s, an important branch of semiconductor technology, are a key and basic technology for energy-saving and emission reduction with the wide spread use of electronics in the consumer, industrial and military sectors. The development,challengeand market of power semiconductor devices are discussed in this paper. The future perspectives and key development areas of power semiconductor devices and IC’s in China are also described.

Keywords: Energy-saving; Emission reduction; Power semiconductor device

1引言

功率半导体芯片包括功率二极管、功率开关器件与功率集成电路。近年来,随着功率MOS技术的迅速发展,功率半导体的应用范围已从传统的工业控制扩展到4C产业(计算机、通信、消费类电子产品和汽车电子),渗透到国民经济与国防建设的各个领域。

功率半导体器件是进行电能处理的半导体产品。在可预见的将来,电能将一直是人类消耗的最大能源,从手机、电视、洗衣机、到高速列车,均离不开电能。无论是水电、核电、火电还是风电,甚至各种电池提供的化学电能,大部分均无法直接使用,75%以上的电能应用需由功率半导体进行变换以后才能供设备使用。每个电子产品均离不开功率半导体器件。使用功率半导体的目的是使用电能更高效、更节能、更环保并给使用者提供更多的方便。如通过变频来调速,使变频空调在节能70%的同时,更安静、让人更舒适。手机的功能越来越多,同时更加轻巧,很大程度上得益于超大规模集成电路的发展和功率半导体的进步。同时,人们希望一次充电后有更长的使用时间,在电池没有革命性进步以前,需要更高性能的功率半导体器件进行高效的电源管理。正是由于功率半导体能将 ‘粗电’变为‘精电’,因此它是节能减排的基础技术和核心技术。

随着绿色环保在国际上的确立与推进,功率半导体的发展应用前景更加广阔。据国际权威机构预测,2011年功率半导体在中国市场的销售量将占全球的50%,接近200亿美元。与微处理器、存储器等数字集成半导体相比,功率半导体不追求特征尺寸的快速缩小,它的产品寿命周期可为几年甚至十几年。同时,功率半导体也不要求最先进的生产工艺,其生产线成本远低于Moore定律制约下的超大规模集成电路。因此,功率半导体非常适合我国的产业现状以及我国能源紧张和构建和谐社会的国情。

目前,国内功率半导体高端产品与国际大公司相比还存在很大差距,高端器件的进口替代才刚刚开始。因此国内半导体企业在提升工艺水平的同时,应不断提高国内功率半导体技术的创新力度和产品性能,以满足高端市场的需求,促进功率半导体市场的健康发展以及国内电子信息产业的技术进步与产业升级。

2需求分析

消费电子、工业控制、照明等传统领域市场需求的稳定增长,以及汽车电子产品逐渐增加,通信和电子玩具市场的火爆,都使功率半导体市场继续保持稳步的增长速度。同时,高效节能、保护环境已成为当今全世界的共识,提高效率与减小待机功耗已成为消费电子与家电产品的两个非常关键的指标。中国目前已经开始针对某些产品提出能效要求,对冰箱、空调、洗衣机等产品进行了能效标识,这些提高能效的要求又成为功率半导体迅速发展的另一个重要驱动力。

根据CCID的统计,从2004年到2008年,中国功率器件市场复合增长率达到17.0%,2008年中国功率器件市场规模达到828亿元,在严重的金融危机下仍然同比增长7.8%,预计未来几年的增长将保持在10%左右。随着整机产品更加重视节能、高效,电源管理IC、功率驱动IC、MOSFET和IGBT仍是未来功率半导体市场中的发展亮点。

在政策方面,国家中长期重大发展规划、重大科技专项、国家863计划、973计划、国家自然科学基金等都明确提出要加快集成电路、软件、关键元器件等重点产业的发展,在国家刚刚出台的“电子信息产业调整和振兴规划”中,强调着重从集成电路和新型元器件技术的基础研究方面开展系统深入的研究,为我国信息产业的跨越式发展奠定坚实的理论和技术基础。在国家中长期科学和技术发展规划纲要(2006-2020年)中明确提出,功率器件及模块技术、半导体功率器件技术、电力电子技术是未来5~15年15个重点领域发展的重点技术。在目前国家重大科技专项的“核心电子器件、高端通用芯片及基础软件产品”和“极大规模集成电路制造装备及成套工艺”两个专项中,也将大屏幕PDP驱动集成电路产业化、数字辅助功率集成技术研究、0.13微米SOI通用CMOS与高压工艺开发与产业化等功率半导体相关课题列入支持计划。在国家973计划和国家自然科学基金重点和重大项目中,属于功率半导体领域的宽禁带半导体材料与器件的基础研究一直是受到大力支持的研究方向。

总体而言,从功率半导体的市场需求和国家政策分析来看,我国功率半导体的发展呈现以下三个方面的趋势:① 硅基功率器件以实现高端产品的产业化为发展目标;② 高压集成工艺和功率IC以应用研究为主导方向;③ 第三代宽禁带半导体功率器件、系统功率集成芯片PSoC以基础研究为重点。

3功率半导体技术发展趋势

四十多年来,半导体技术沿着“摩尔定律”的路线不断缩小芯片特征尺寸。然而目前国际半导体技术已经发展到一个瓶颈:随着线宽的越来越小,制造成本成指数上升;而且随着线宽接近纳米尺度,量子效应越来越明显,同时芯片的泄漏电流也越来越大。因此半导体技术的发展必须考虑“后摩尔时代”问题,2005年国际半导体技术发展路线图(The International Technology Roadmap for Semiconductors,ITRS)就提出了另外一条半导体技术发展路线,即“More than Moore-超摩尔定律”, 如图1所示。

从路线图可以清楚看到,未来半导体技术主要沿着“More Moore”与“More Than Moore”两个维度的方向不断发展,同时又交叉融合,最终以3D集成的形式得到价值优先的多功能集成系统。“More Moore”是指继续遵循Moore定律,芯片特征尺寸不断缩小(Scaling down),以满足处理器和内存对增加性能/容量和降低价格的要求。这种缩小除了包括在晶圆水平和垂直方向上的几何特征尺寸的继续缩小,还包括与此关联的三维结构改善等非几何学工艺技术和新材料的运用等。而“More Than Moore”强调功能多样化,更注重所做器件除了运算和存储之外的新功能,如各种传感功能、通讯功能、高压功能等,以给最终用户提供更多的附加价值。以价值优先和功能多样化为目的的“More Than Moore”不强调缩小特征尺寸,但注重系统集成,在增加功能的同时,将系统组件级向更小型、更可靠的封装级(SiP)或芯片级(SoC)转移。日本Rohm公司提出的“Si+α”集成技术即是“More Than Moore”思想的一种实现方式,它是以硅材料为基础的,跨领域(包括电子、光学、力学、热学、生物、医药等等)的复合型集成技术,其核心理念是电性能(“Si”)与光、力、热、磁、生化(“α”)性能的组合,包括:显示器/发光体(LCD、EL、LD、LED)+LSI的组合感光体、(PD、CCD、CMOS传感器)+LSI的形式、MEMS/生化(传感器、传动器)+LSI等的结合。

在功能多样化的“More Than Moore”领域,功率半导体是其重要组成部分。虽然在不同应用领域,对功率半导体技术的要求有所不同,但从其发展趋势来看,功率半导体技术的目标始终是提高功率集成密度,减少功率损耗。因此功率半导体技术研发的重点是围绕提高效率、增加功能、减小体积,不断发展新的器件理论和结构,促进各种新型器件的发明和应用。下面我们对功率半导体技术的功率半导体器件、功率集成电路和功率系统集成三个方面的发展趋势进行梳理和分析。

1) 功率半导体(分立)器件

功率半导体(分立)器件国内也称为电力电子器件,包括:功率二极管、功率MOSFET以及IGBT等。为了使现有功率半导体(分立)器件能适应市场需求的快速变化,需要大量融合超大规模集成电路制造工艺,不断改进材料性能或开发新的应用材料、继续优化完善结构设计、制造工艺和封装技术等,提高器件功率集成密度,减少功率损耗。目前,国际上在功率半导体(分立)器件领域的热点研究方向主要为器件新结构和器件新材料。

在器件新结构方面,超结(Super-Junction)概念的提出,打破了传统功率MOS器件理论极限,即击穿电压与比导通电阻2.5次方关系,被国际上誉为“功率MOS器件领域里程碑”。超结结构已经成为半导体功率器件发展的一个重要方向,目前国际上多家半导体厂商,如Infineon、IR、Toshiba等都在采用该技术生产低功耗MOS器件。对于IGBT器件,其功率损耗和结构发展如图2所示。从图中可以看到,基于薄片加工工艺的场阻(Field Stop)结构是高压IGBT的主流工艺;相比于平面结结构(Planar),槽栅结构(Trench)IGBT能够获得更好的器件优值,同时通过IGBT的版图和栅极优化,还可以进一步提高器件的抗雪崩能力、减小终端电容和抑制EMI特性。

功率半导体(分立)器件发展的另外一个重要方向是新材料技术,如以SiC和GaN为代表的第三代宽禁带半导体材料。宽禁带半导体材料具有禁带宽度大、临界击穿电场强度高、饱和电子漂移速度高、抗辐射能力强等特点,是高压、高温、高频、大功率应用场合下极为理想的半导体材料。宽禁带半导体SiC和GaN功率器件技术是一项战略性的高新技术,具有极其重要的军用和民用价值,因此得到国内外众多半导体公司和研究结构的广泛关注和深入研究,成为国际上新材料、微电子和光电子领域的研究热点。

2) 功率集成电路(PIC)

功率集成电路是指将高压功率器件与信号处理系统及接口电路、保护电路、检测诊断电路等集成在同一芯片的集成电路,又称为智能功率集成电路(SPIC)。智能功率集成作为现代功率电子技术的核心技术之一,随着微电子技术的发展,一方面向高压高功率集成(包括基于单晶材料、外延材料和SOI材料的高压集成技术)发展,同时也向集成更多的控制(包括时序逻辑、DSP及其固化算法等)和保护电路的高密度功率集成发展,以实现功能更强的智能控制能力。

3)功率系统集成

功率系统集成技术在向低功耗高密度功率集成技术发展的同时,也逐渐进入传统SoC和CPU、DSP等领域。目前,SoC的低功耗问题已经成为制约其发展的瓶颈,研发新的功率集成技术是解决系统低功耗的重要途径,同时,随着线宽的进一步缩小,内核电压降低,对电源系统提出了更高要求。为了在标准CMOS工艺下实现包括功率管理的低功耗SoC,功率管理单元需要借助数字辅助的手段,即数字辅助功率集成技术(Digitally Assisted Power Integration,DAPI)。DAPI技术是近几年数字辅助模拟设计在功率集成方面的深化与应用,即采用更多数字的手段,辅助常规的模拟范畴的集成电路在更小线宽的先进工艺线上得到更好性能的电路。

4我国功率半导体发展现状、

问题及发展建议

在中国半导体行业中,功率半导体器件的作用长期以来都没有引起人们足够的重视,发展速度滞后于大规模集成电路。国内功率半导体器件厂商的主要产品还是以硅基二极管、三极管和晶闸管为主,目前国际功率半导体器件的主流产品功率MOS器件只是近年才有所涉及,且最先进的超结低功耗功率MOS尚无法生产,另一主流产品IGBT尚处于研发阶段。宽禁带半导体器件主要以微波功率器件(SiC MESFET和GaN HEMT)为主,尚未有针对市场应用的宽禁带半导体功率器件(电力电子器件)的产品研发。目前市场热点的高压BCD集成技术虽然引起了从功率半导体器件IDM厂家到集成电路代工厂的高度关注,但目前尚未有成熟稳定的高压BCD工艺平台可供高性能智能功率集成电路的批量生产。

由于高性能功率半导体器件技术含量高,制造难度大,目前国内生产技术与国外先进水平存在较大差距,很多中高端功率半导体器件必须依赖进口。技术差距主要表现在:(1)产品落后。国外以功率MOS为代表的新型功率半导体器件已经占据主要市场,而国内功率器件生产还以传统双极器件为主,功率MOS以平面工艺的VDMOS为主,缺乏高元胞密度、低功耗、高器件优值的功率MOS器件产品,国际上热门的以超结(Super junction)为基础的低功耗MOS器件国内尚处于研发阶段;IGBT只能研发基于穿通型PT工艺的600V产品或者NPT型1200V低端产品,远远落后于国际水平。(2)工艺技术水平较低。功率半导体分立器件的生产,国内大部分厂商仍采用IDM方式,采用自身微米级工艺线,主流技术水平和国际水平相差至少2代以上,产品以中低端为主。但近年来随着集成电路的迅速发展,国内半导体工艺条件已大大改善,已拥有进行一些高端产品如槽栅功率MOS、IGBT甚至超结器件的生产能力。(3)高端人才资源匮乏,尤其是高端设计人才和工艺开发人才非常缺乏。现有研发人员的设计水平有待提高,特别是具有国际化视野的高端设计人才非常缺乏。(4)国内市场前十大厂商中无一本土厂商,半导体功率器件产业仍处在国际产业链分工的中低端,对于附加值高的产品如IGBT、AC-DC功率集成电路,现阶段国内仅有封装能力,不但附加值极低,还形成了持续的技术依赖。

笔者认为,功率半导体是最适合中国发展的半导体产业,相对于超大规模集成电路而言,其资金投入较低,产品周期较长,市场关联度更高,且还没有形成如英特尔和三星那样的垄断企业。但中国功率半导体的发展必须改变目前封装强于芯片、芯片强于设计的局面,应大力发展设计技术,以市场带动设计、以设计促进芯片,以芯片壮大产业。

功率半导体芯片不同于以数字集成电路为基础的超大规模集成电路,功率半导体芯片属于模拟器件的范畴。功率器件和功率集成电路的设计与工艺制造密切相关,因此国际上著名的功率器件和功率集成电路提供商均属于IDM企业。但随着代工线的迅速发展,国内如华虹NEC、成芯8英寸线、无锡华润上华6英寸线均提供功率半导体器件的代工服务,并正积极开发高压功率集成电路制造平台。功率半导体生产企业也应借鉴集成电路设计公司的成功经验,成立独立的功率半导体器件设计公司,充分利用代工线先进的制造手段,依托自身的销售网络,生产高附加值的高端功率半导体器件产品。

设计弱于芯片的局面起源于设计力量的薄弱。虽然国内一些功率半导体生产企业新近建设了6英寸功率半导体器件生产线,但生产能力还远未达到设计要求。笔者认为其中的关键是技术人员特别是具有国际视野和丰富生产经验的高级人才的不足。企业应加强技术人才的培养与引进,积极开展产学研协作,以雄厚的技术实力支撑企业的发展。

我国功率半导体行业的发展最终还应依靠功率半导体IDM企业,在目前自身生产条件落后于国际先进水平的状况下,IDM企业不能局限于自身产品线的生产能力,应充分依托国内功率半导体器件庞大的市场空间,用技术去开拓市场,逐渐从替代产品向产品创新、牵引整机发展转变;大力发展设计能力,一方面依靠自身工艺线进行生产,加强技术改造和具有自身工艺特色的产品创新,另一方面借用先进代工线的生产能力,壮大自身产品线,加速企业发展。

5结束语

总之,功率半导体技术自新型功率MOS器件问世以来得到长足进展,已深入到工业生产与人民生活的各个方面。与国外相比,我国在功率半导体技术方面的研究存在着一定差距,但同时日益走向成熟。总体而言,功率半导体的趋势正朝着提高效率、多功能、集成化以及智能化、系统化方向发展;伴随制造技术已进入深亚微米时代,新结构、新工艺硅基功率器件正不断出现并逼近硅材料的理论极限,以SiC和GaN为代表的宽禁带半导体器件也正不断走向成熟。

半导体的技术例2

中图分类号:TQ163+.4 文献标识码:A 文章编号:

引言

随着科学技术的发展,宇脱国防,是有勘探等领域对半导体电子器件提出了极为严格的要求,开发研制高温、高频、高功率、高耐压及抗辐射等新型半导体器件成为日益紧迫的问题.目前,半导体行业中常用的Si材料由于本身条件的限制,对上述要求难以胜任;而作为N-N族二元半导体材料的SiC具有较大的热导率、高临界击穿电场、宽禁带、高载流子迁移率等特点,越来越引起人们的重视.国外现已研制出多种SiC器件.特别是在高沮功率器件方面,所制备的SiC MC3SFET等器件的性能远远超出同类Si器件.目前已有SiC蓝色发光器件作为商品出售.随着SiC单晶生长技术和薄膜生长技术的突破,SiC材料在研制高温、高频、大功率、抗辐射半导体器件方面受到极大关注,并加速了该领域的发展步伐.近两年来,国际上已掀起了对SiC材料及器件研究的热潮。

一、半导体材料的特征

半导体材料在自然界及人工合成的材料中是一个大的部类。顾名思义,半导体在其电的传导性方面,其电导率低于导体,而高于绝缘体。它具有如下的主要特征。(1)在室温下,它的电导率在103—10-9S/cm之间,S为西门子,电导单位,S=1/r(W. cm) ;一般金属为107—104S/cm,而绝缘体则

二、晶体生长

SiC具有同质异型体的特点,其每一种晶体结构都有着自己独特的电学及光学性质.表1给出了常见的几种具有不同晶体结构的SiC的电学特性与硅及砷化稼的比较.在许多器件应用中,SiC的高击穿电场(比硅的5倍还大、宽的禁带宽度吸大于硅的2倍、高载流子饱和漂移速度(是硅的2倍)以及大热导率(大于硅的3倍)将充分发挥器件的应用潜力。

尽管许多年以前人们就已经知道了SiC的一些潜在的优良电学特性,但由于材料生长的原因,直到现在还不能将这些特性充分应用到器件或集成电路中去.目前通过改进型Lely升华的方法得到了大面积重复性好的&H-SiC单晶,1989年2. 54 cm的6H-SiC单晶片首先商业化,此后SiC半导体器件技术得到迅猛发展。

在众多的SiC晶休结构中,4H-sic和6H-S〔由于其单晶生长工艺的成熟性以及较好的重复性,使它们在电子器件中应用比较广泛.市场上可得到的4H或8H SiC晶片的直径已经达到4.445 cm,具体价格根据其规格的不同从800 -2 000美元/片不等,这些产品主要来自于美国的Cree公司.如果晶片的价格有所下降,将会更加促进SiC技术的发展.另外,Westinghouse公司在SiG材料方面也取得了一些可喜的成果:他们成功地制备了半绝缘SiC晶片,其室温下的电阻率大于10Ωcm,并首次得到7. 82 cm的SFC晶片。

4H-S iC的载流子迁移率较8H-SiC.的要高,这使其成为大多数SiC器件的首选材料. 8H-SiG本身固有的迁移率各向异性使之在平行于G轴方向导通率有所下降,导致纵向MOSFET功率器件多选用4H-SiC.为减小纵向MOSFET功率器件中衬底寄生电阻,目前4H-SiC电阻率可达到0.0028dΩcm.4H-SIG的高迁移率掩盖了利用8H-SiG为衬底进行同质外延而生成3G-SiG薄膜所带来的优点。

目前影响SiG电子器件实现的首要因素之一就是控制生长高质量的SiC外延薄膜.在SiC电子器件的实现过程中,控制生长高质量的外延层是关键的一步、目前,化学气相淀积技术可满足制备重复性好的外延层及批t生产这两方面的需求.为了减少由于晶格失配、热膨胀系数不同所带来的缺陷等间题,生长时选用SiC基片.首先要抛光SiC基片使其表面偏离(0001)基面3 ^4度,这将使外延层中原子堆垛顺序与SiC衬底内的原子堆垛顺序相同.同时,为得到N 型外延层,可在反应气体中加人氮气(N2);而P型则加入三甲基铝或三乙基铝.如果在今后的工作中能够很好地解决在大面权Si上异质外延生长低块陷的3GSiC薄膜的问题。那么3C-SiC必将在以后的SiG器件和集成电路中发挥越来越重要的作用。

随着从SiC器件向着SiC集成电路的发展,SiC外延层的均匀性和外延层表面形态的好坏也越来越重要.目前,商业上SiC外延层厚度的容差为士25%,而研究人员报道了修杂均匀性为士20%厚度均匀性容差为士7%的大于5. 08 cm的SiC基片.对于所有的SiC同质外延层,目前均为观察到具有十分理想的表面形貌、据预侧,借助于精密的CVD反应装置、日益成熟的反应条件,在不远的将来这些问题都会迎刃而解、

三、分立器件

半导体的技术例3

中图分类号:TP317.4文献标识码:B

Auto-focus Base on Semiconductor Photo Lithography

WANG Peng,YANG Yong-yue,LI Qi-de

(School of Instrument Science and Opto-electronic Engineering,Hefei

University of Technology,Hefei230009,China)

Abstract:This paper has provided auto-focus method of semiconduct photo lithography on Digital Image Processing ,using arithmetic of digital image processing realize auto-focus .The result of experiment indicate that this method can achieve.

Keywords:lithography;image processing;auto focus

引言

光刻技术是半导体工业的核心、半导体行业前进的原动力,光刻技术每前进一步都会大大促进半导体技术的提升,半导体技术的每一次革命都是由新一代光刻机的问世引起的。从经济、国家安全角度来说,半导体技术对我们国家尤为重要:有了自己的芯片加工技术可以省去很多外购芯片和其他一些配件的资金;同时自身通讯的安全性也大为提高。自动调焦是半导体光刻技术中必要的一部分,在晶圆(wafer)对准过程中和后续曝光(explore)中都发挥着巨大作用。图1是曝光过程中离焦位置和不同曝光量对光刻效果的影响图,同时也是机器视觉、数字图像处理的重要一环。

1工作原理

光学光刻分辨率的提高带来焦深的急剧减少,从而要求严格控制曝光图形的表面与光刻物镜的高度,减少调焦误差,适应十分有限的焦深。国外的光刻机采用的调焦技术有自动调焦传感器、激光干涉仪等。本实验采用工业CCD和非感光波段的照明光源对曝光表面采集图像(如图2),硅片(wafer)被吸盘(chuck)吸附与平台(satge)固定在一起。移动垂直方向的平台,通过CCD采集图像,然后采用自动对焦算法计算非感光波段的焦点,最后给出感光波段与非感光波段的对焦偏移量,达到感光波段的焦点实现准确曝光。

对焦精度和重复性的要求:实验中选用工业CCD,选用尼康放大倍数为20X、焦深1.8mil的物镜。为了取得最好的曝光效果,必须使曝光位置处于焦深以内(图1中的Best Focus),即调焦后的位置在焦点±0.9mil范围内。

1.1自动调焦算法分析

通常使用的自动调焦算法有灰度梯度函数、频域函数(基于傅立叶变换)、信息学函数和统计学函数。频域要做复杂的数学变换,耗时较长;信息学和统计学函数做出的判断不稳定,经常把非焦点判断为焦点,而将焦点判断为非焦点;灰度梯度函数具有稳定、单峰、速度快的优点。所以这里采用灰度梯度函数作为自动调焦的评价函数。所谓灰度梯度函数就是利用一幅图像自身的对比度(图形的边缘的尖锐程度)来判断图像的清晰程度。

1.2图像清晰度与边缘特征的关系

边缘是图像最基本的特征之一。所谓边缘是指其周围像素灰度有阶跃性变化或屋顶变化的像素的集合。它存在于目标与背景、目标与目标、区域与区域之间。当系统成像清晰时,边缘点处的灰度阶跃性变化就大,不同灰度区域间的界线就清楚。当成像不清晰时,边缘点处灰度阶跃性变化小,不同灰度区域连成了一片,造成图像模糊。利用边缘点处灰度阶跃变化的程度来评价图像的清晰度具有直观性,不用再去考虑成像系统的特性。

1.3灰度梯度函数

这类函数主要利用对图像灰度的各种处理方法来表征图像清晰度. 假设图像某点(x, y) 处的灰度梯度值为g(x, y) , 每种算法所对应的g(x,y)不同,本实验采用SOBEL算法和KRISCH算法。

1.3.1Sobel算法

两个卷积形成sobel边缘检测算子(图3),图像中每个像素都用这两个核作卷积,一个核对垂直边缘影响最大,另一个对水平边缘影响最大。两个卷积的最大值作为该点的输出值g(x,y).数学表达如下:

Gx=C(x-1,y+1)+2*C(x-1,y)+C(x-1,y-1)-

C(x+1,y+1)+2*C(x+1,y)+C(x+1,y-1)

Gy=C(x-1,y-1)+2*C(x1,y-1)+C(x+1,y-1)-

C(x-1,y+1)+2*C(x1,y+1)+C(x+1,y+1)

g(x,y)=max(Gx,Gy),其中Gx为水平边缘影响,Gy为垂直边缘影响,C(x,y)为点(x,y)处的灰度值。

1.3.2Krisch算法

8个卷积核形成了Krisch边缘检测算子(图4),图像中的每个像素都用这8 个掩模进行卷积,每个掩模都对某个特定边缘方向作出最大响应,所有8个方向的最大值作为该点的输出值g(x,y)。清晰度的评价函数选择灰度梯度平方和■■x■y(g(x,y))■。

2实验数据

实验中的对焦图形选择垂直线条,用CCD采集wafer上的线条成像,其图形如图5 所示。

分别选取Sobel算子和Krisch算子作为评价函数的核,采用灰度平方和■■x■y(g(x,y))■评价函数。在不同离焦位置上的像,每隔100nm 采集一幅图像,在离焦位置前后共采集600幅图像,最后再用评价函数进行评价,得到Sobel评价函数的曲线(如图6所示)和Krisch评价函数的曲线(如图7所示)。

由曲线可以看到,Sobel和Krisch的清晰度评价函数曲线几乎没有噪声的影响;满足了对焦稳定性、单峰性的需求,且在正焦位置呈现最大值。

半导体光刻中对对焦重复性的要求很高,为此做了重复性实验。在焦点附近处(±10mil)反复对焦实验,重复性曲线如图8所示。计算标准差为111nm,3 sigma小于400nm;满足对焦后的点在焦深1.8mil以内的要求。

3结论

本文根据数字图像处理的方法,设计了基于半导体光刻技术的自动对焦实验。实验结果表明,采用图像处理方法可以实现快速、高精度的自动对焦。

参考文献

[1] 王耀南,李树涛,毛建旭.计算机图像处理与识别技术[M].高等教育出版社,2001.

[2] 尹作海,刘世元,史铁林.基于线阵CCD的光刻机调焦调平系统的研究[J].半导体技术2007,01(3).

[3] 杨再华,李玉和,李庆祥,郭阳宽.基于边缘特征提取的图像清晰度评价函数[J].计算机工程与应用.2005, 10 (5).

[4] 鲍歌堂,赵辉,陶卫.图像测量技术中几种自动调焦算法的对比分析[J].上海交通大学学报 2005 ,39(1).

半导体的技术例4

引 言

随着经济的发展,全球能耗剧增,能源资源几近危机,想要降低能耗,实现可持续发展,研究和开发新型的环境友好型技术就成为了必须。半导体制冷起源于20世纪50年代,由于它结构简单、通电制冷迅速,受到家电厂家的青睐。但是由于当时局限于材料元件性能的不足而没有普遍使用。近年来,科学技术迅猛发展,半导体制冷器件的各个技术难题逐步攻破,使半导体制冷的优势重新显现出来,广泛应用于军事、航空航天、农业、工业等诸多领域。

1、半导体制冷国内外研究现状

从国内外文献研究来看,半导体制冷技术的理论研究已基本成熟。随着半导体物理学的发展, 前苏联科学院半导体研究所约飞院士发现掺杂的半导体材料 , 有良好的发电和制冷性。这一发现引起学者们对热电现象的重视, 开启了半导体材料的新篇章, 各国的研究学者均致力于寻找新的半导体材料。2001年,Venkatasubramanian等人制成了目前世界最高水平的半导体材料系数2.4。宜向春等人又对影响半导体材料优值系数的因素进行了详细的分析。指出半导体材料的优值系数除与电极材料有关,也与电极的截面和长度有关, 不同电阻率和导热率的电极应有不同的几何尺寸, 只有符合最优尺寸才能获得最大优值系数的半导体制冷器。

2、半导体制冷的工作原理

半导体制冷又称热电制冷,系统仅包括冷热端、电源、电路等设备。P型半导体元件和N型半导体元件构成热电对,热电对两端均有金属片导流条。如图1所示:当电流流经热电对时,就会发射帕尔贴效应,电流在上端由N流向P,温度降低形成冷端,从外界吸热;电流在下端有P流向N,温度升高形成热端,向外界放热。

3、半导体制冷效率的影响因素

半导体制冷的研究涉及传热学原理、热力学定律以及帕尔贴效应, 还要考虑多种因素, 同时影响半导体制冷的各种因素都是相辅相成的, 不是独立的。所以半导体制冷的研究一直是国内外学者关注的热点, 但也面临诸多难点,其中影响其制冷效率主要有两个基本因素:

(1) 半导体材料优值系数Z

半导体制冷的核心部件是热电堆,热电堆的半导体制冷材料热电转换效率不高,是半导体制冷空调器效率较低的主要原因。决定热电材料性能优劣的是优值系数Z 。若要半导体制冷效率达到机械制冷效率水平,制冷材料优值系数必须从3。5×10-3 1/K升高到13×10-3 1/K。如图2 给出了不同优值Z时,半导体制冷与机械式制冷制冷系数的比较结果。

(2) 半导体制冷装置热端散热效果的影响。

热电堆热端的散热效果是影响热电堆性能的重要因素。实际应用的半导体制冷装置总要通过热交换器与冷、热源进行不断的热交换才能维持工作。而热端散热比冷端更为关键,如若设制冷器冷端散热量为Q1,热端散热量为Q2,系统工作消耗的电功为W0。

显然,Q2=Q1+W0

4、提高半导体制冷效率的途径

制冷效率低成为半导体制冷最大的不足,这限制了半导体制冷的推广和应用。为了提高半导体制冷的效率,就要从上文所介绍的两个影响因素入手,找出有效的解决方法。

(1)寻找高优值系数Z的半导体材料:研制功能性非均质材料、方钴矿的研究、带量子空穴的超晶格研究。

(2)优化设计半导体制冷热端散热系统,以保证热端的散热处于良好的状态。

5、半导体制冷应用与前景

随着低温电子学得到迅速的发展, 在多种元器件和设备冷却上, 半导体制冷有独特的作用。 采用半导体制冷技术, 对电子元件进行冷却, 能有效改善其参数的稳定性, 或使信噪比得到改善, 从而提高放大和测量装置的灵敏度和准确度。 半导体制冷器可以用直接制冷方式和间接制冷方式来冷却电子器件和设备。

为了解决石油资源匮乏的问题,部分车辆使用天然气、乙醇作为燃料,但与使用汽油相比,汽车空调运行比较困难。半导体制冷空调冷热一体,独立运行,可直接利用车辆直流电源,因而系统简单,且与车辆具有很好的兼容性,因此半导体制冷在汽车领域内有较好的发展前景。

千瓦级以上的半导体制冷空调成本比压缩制冷空调成本要高的多。但百瓦级的小型空调装置的成本与压缩制冷空调的成本相差不大,且无制冷剂、调控方便、无噪音等特点,用于某些特殊的小型空间非常方便;而十瓦级的微型空调装置的成本则远低于压缩制冷装置,在电子设备冷却、局部微环境温度控制方面,具备压缩制冷装置无法替代的优势,使中小型半导体制冷空调器进入民用领域成为可能。

在半导体制冷技术的应用中,需要因地制宜,根据不用的使用要求,设计出不用的性能,以拓展该技术的应用领域,可以坚信,半导体制冷技术的未来会发展得越来越好,越来越广。■

参考文献

[1]谢玲,汤广发。半导体制冷技术的发展与应用[J]。洁净与空调技术,2008,01:68-71。

[2]罗清海,汤广发,李涛。半导体制冷空调的应用与发展前景[J]。制冷与空调,2005,06:5-9。

[3]宣向春,王维扬。 半导体制冷材料的发展[J]。 制冷技术,2001,02:37-41+48

[4] Venkatasubramanian R, etal[ J]1Nature12001, 413- 597

[5] 张文杰1 热电器件的热弹性应力分析及外加电、磁场环境下的性能测试[ D] 1 甘肃: 兰州大学, 2010

[6]马乔矢。半导体制冷技术的应用和发展[J]。沈阳建筑工程学院学报,1999,01:83-87。

[7]陈振林,孙中泉。半导体制冷器原理与应用[J]。微电子技术,1999,05:63-65。

半导体的技术例5

中图分类号:O471文献标识码: A

1、封装的分类封装(Package)种类繁多,而且每一种封装都有它独特的地方,它所用的封装材料、封装设备、封装技术也都根据其需要有所不同。

(1)根据所用材料划分半导体器件封装形式有金属封装、陶瓷封装、金属一陶瓷封装和塑料封装。

(2)根据封装密封性方式分为气密性封装和树脂封装两类。他们的目的都是将晶体与外部温度、湿度、空气等环境隔绝,使电气绝缘,并实现向外散热及缓和应力。

(3)根据封装外形、尺寸、结构分为引脚插入型、表面贴装型和高级封装。

2、封装过程及工艺说明

来自晶圆前道工艺的晶圆通过芯片(Chip)切割(Saw)工艺后,被切割为小的晶片(Die),然后将切割好的晶片贴装(Die bond/mount)到相应的基板引线框架(Leadframe)上,用银胶(Ag Epoxy)、焊锡等助焊剂进行粘接,再用超细的金属(金、铜、铝)导线或导电性树脂将晶片的接合焊盘(Bond Pad)连接到基板的相应引脚(Lead),该工艺被称为焊接键合(Wire bond);然后对独立的晶片用塑料外壳加以封装保护,塑封之后,还要进行后树脂固化(Post Mold Cure)、切筋和成型(Trim&Form)、电镀(Plating)以及测试(Test)等工艺。最后将测试的良品经过打标(Marking)和包装(Packing)入库出货(Ship)。

(1)芯片切割(Wafer Saw)工艺

芯片切割工艺是将wafer上连接在一起的芯片,经切割机切割分离开,主要操作是贴膜、切割和清洗。贴膜是用蓝、白膜将wafer 固定在绷环上,为下一步切割做准备。该工序用5MPa 的压缩空气为固定蓝膜提供动力,用真空为承载台吸附wafer 提供吸力,承载台45℃的温度使蓝、白膜和wafer 及绷环更好的粘贴在一起。芯片切割是对贴膜后的wafer 进行切割。该工序使用5MPa 的压缩空气为主轴提供悬浮动力,真空为承载台提供吸附力,参入二氧化碳的高纯水对切割中的芯片进行静电防护。清洗主要是对切割后的wafer 进行清洗,使划片后的芯片表面无硅渣等异物残留,以免影响后续压焊及产品质量。

(2)贴片(Die bond/mount)工艺

贴片工艺分为热焊接和冷焊接。热焊接是在氮氢混合气的保护下,用锡银锑焊料将芯片粘贴到框架上,以保护芯片在工作状态下散热良好,冷焊接则不需要气体的保护而进行,但在焊接完成后要进行固化烘干。粘片机使用压缩空气为进料和出料气缸提供动力,用1︰10、1 :5的氮氢混合气对框架进行保护和还原。贴片工序主要由加热、不加热,点锡、胶,压模,贴片四部分组成。加热由长距离的轨道在传送时完成,其加热温度为380℃左右,根据不同产品温度稍有变化;点锡是在高温的框架上将定量的焊锡熔在框架设定的位置上;压模是在贴片前对熔解的焊锡进行整形,使贴片后锡层厚度,芯片的倾斜度能更好的控制在工艺范围内,以保证芯片工作时散热良好;点胶是在不加热的轨道上进行的。贴片是将蓝膜上好的芯片通过图像识别,用邦头吸取并贴在框架熔有焊锡、银胶的位置上,使芯片与框架通过焊锡、银胶焊接起来。

(3)焊接键合(Wire Bond)工艺

W/B在封装工艺中最为关键。其运用超声压焊技术,用铝线,金线或铜线将芯片与引线管脚连接起来。超声压焊是利用压焊台的换能器将电能转化为机械能。超声机械能通过劈刀使焊线和焊接面摩擦,除去焊接表面的氧化层并使焊接面发生塑性形变,同时互相扩散,形成良好的分子键合完成焊线和焊接面的焊接。焊接键合的成功与功率(Power),时间(Time),压力(Force)和温度(Temperature)相关,功率过大会使芯片弹坑(Crater),过小会有虚焊,压力过大会使芯片压碎,过小也会虚焊,时间过长会使焊接过焊,在焊点两侧烧灼色,过小也将造成虚焊,因此好的键合需要根据芯片表面的铝层,焊线的线径制定出合理的参数,既能保证焊接良好,又不损坏芯片。在以上基础上还要有一定的轨道基板温度来实现焊接的完成。

(4)塑封(Mold)工艺

将键合后的芯片用塑料材料(EMC)包装封闭,可以保护和隔热。塑封工艺流程为:a、排片:用排片机将键合好的产品从料盒中拉至预热台;b、上料:用上料架将预热好的整模框架放置于塑封模具内;c、合模加压:操作包封机,合闭上下模具,使模具内形成型腔;d、塑封料加热:操作高频预热机,将塑封料软化;e、加料:将软化好的塑封料通过料筒添加至模具中;f、注塑:操作塑封压机,用注塑组件将塑封料推挤至型腔中;g、塑封料固化:在180℃条件下,通过90 到150 秒使塑封料从玻璃化状态转为固态;h、下料:将整模框架从模具上拿下,并将产品从塑料体上剥离。

(5)后固化工艺

后固化就是对塑封产品进行深度处理,使产品上的塑料粉更充分的粘结,使器件发挥最佳性能。后固化工艺流程:a、设备操作:设置烘箱加热时间和加热温度;b、进料:待烘箱温度稳定在170℃时,佩戴耐高温绝热手套将产品连同老化盒放入烘箱中;c、出料:后固化4 小时后打开烘箱,佩戴耐高温绝热手套取出产品。

(6)电镀(Plating)工艺

产品塑封完成后要去溢料,表面镀锡。先将产品放入盛有软化剂的不锈钢软化槽内,加热到105 度。根据产品溢料严重情况加热30至120 分钟,将产品背部散热片及其它部位的溢料泡软。然后放入盛有清水的不锈钢槽内,将框架表面的软化剂清洗干净,进入去溢料工序。将框架逐条放在去溢料机的进料轨道槽内,要求框架背部散热片朝向操作者,钢带将产品带入高压水槽内,利用高压水将框架上的溢料去除干净。然后钢带将框架带入吹干槽内吹干,再带入烘干槽内烘干,然后下料进入镀锡。将框架按照框架背部散热片向外的原则将框架挂在挂架上。然后将挂架挂在轨道挂具上,以此经过除油槽、热纯水洗槽、冷纯水洗槽、去氧化槽、二道自来水洗槽、一道自来水洗槽、二道纯水洗槽、一道纯水洗槽、酸预浸槽、镀锡槽、二道自来水洗槽、一道自来水洗槽、中和槽、二道自来水洗槽、一道自来水洗槽、二道热纯水洗槽、一道热纯水洗槽、烘干槽。再将产品放入烘箱内,温度设定175 度,烘烤1 小时,以消除镀锡应力。

(7)切筋和成型(Trim&Form)工艺

切筋切断是用切筋切断设备将整条已电镀的产品分割成型的过程。切筋切断工艺流程:a、上料:将检验合格的产品按正确方向放到料盒内,并将料盒推入上料轨道中;b、冲切:操控自动冲切系统,将冲切轨道中的产品切割。成型是在切筋工艺完成后对产品的引脚成型的过程,以达到工艺需要求的形状。

(8)测试(Test)工艺

测试工序:将切筋切断好的产品按料管放入分选机上料槽内,根据产品测试规范连接好相应的测试机,然后打开相应测试站,产品依次经过1、2、3 测试站,最后分选机将合格产品根据分档要求分别放入不同的下料槽内,测试完成。

(9)打标(Marking)工艺

打标是利用激光打标机将测试后的良性产品刻蚀上标记。打标工艺流程:a、设备预热:打开设备氪灯开关,等待5 分钟,设备进入稳定工作状态;b、编程:使用标记软件,按生产要求编辑标记内容;c、上料:按方向将产品放置于轨道上;d、标记:利用高能激光刻蚀塑封体表面,使塑封体表面留下痕迹;e、下料:将打标后的产品放置于传递盒之内。

(10)包装(Packing)工艺

半导体的技术例6

一、“半导体制造技术”课程内容的特点

“半导体制造技术”这门课程广泛涉及量子物理、电学、光学和化学等基础科学的理论概念,又涵盖半导体后端工艺的材料分析等与制造相关的高新生产技术。该课程的主要内容包括微电子集成电路制造工艺中的氧化、薄膜淀积、掺杂(离子注入和扩散)、外延、光刻和刻蚀等工艺,培养学生掌握集成电路制造工艺原理和设计、工艺流程及设备操作方法,使学生掌握集成电路制造的关键工艺及其原理。同时,该课程又是一门实践性和理论性均较强的课程,其涉及涵盖的知识面广且抽象。基于此,培养学生的实践动手、工艺分析、设计及解决问题的能力单纯依靠课堂上的讲和看是远远达不到的。如何利用多种可能的资源开展工艺实践教学,加强科学实验能力和实际工作能力的培养,是微电子专业教师的当务之急。

二、教学条件现状及实践教学的引入

1.教学条件现状

众所周知,半导体制造行业的设备如金属有机化合物化学气相沉淀、等离子增强化学气相沉积(PECVD)和磁控溅射等设备价格昂贵,且对环境条件要求苛刻。与企业相比,高等学校在半导体制造设备和场地方面的投入远远不够。为了达到该课程的教学目标,我们学校购置了一些如磁控溅射系统、PECVD、高温扩散炉和快速热处理炉等与半导体制造工艺相关的设备。

半导体的技术例7

【关键词】太阳能电池 工艺技术

太阳电池光电转换效率受到许多因素的影响,各子电池材料的搭配生长很重要,这决定了电池对光的吸收转换能力。太阳电池在工作的过程中,光电转换效率并不只由本身的材料决定,还受到许多因素的影响。例如,电池表面的入射光反射,电极制作过程中金属半导体接触面积过大导致少子复合速度提高,电池栅线遮光等,这些都会使电池的效率下降。因此,优化器件制造后工艺,对于充分利用太阳能,提高太阳电池的光电转换效率及降低成本具有重要的意义。

针对以上问题,利用工艺技术提高光电转换效率的途径主要有:

1 合理设计栅线结构

如果栅线宽度较大(通常大于10微米)将造成遮光较大,电池填充因子较低,同时金属与半导体接触面积增大将使表面扩散浓度升高,进而影响表面钝化的效果。因此电极栅线的设计显得格外重要,如何使电极线分布广泛,进而快速有效地收集聚光时产生的高密度光生载流子,同时尽可能增大电极透光面积、减小电极电阻是设计的重点。根据现有工艺条件以及预先设定的电池参数(开路电压、短路电流密度、最佳工作点的输出电压和输出电流密度等) 进行设计,合理的栅线结构可以将电极金属层电阻功率损耗,栅线遮挡造成的功率损耗,接触电阻功率损耗,接触层横向电阻功率损耗值降至最低。

2 在电池表面镀多层减反射膜

减反射膜是利用光在减反射膜的两侧处反射光存在位相差的干涉原理而达到减反射效果,可利用菲涅耳公式求得反射率。对于多层膜系, 通常引入光学导纳的概念来分析多层光学薄膜的反射性质,将整个系统等效为一个单层膜,求出多层膜系的等效菲涅耳系数,从而求出反射率。膜系的反射率R取决于上面的膜层结构参数。一般情况下,垂直入射和入射光的光谱分布是已知的,因此可通过调整膜系的层数m和各层膜的光学厚度来得到最小的反射率。

太阳光分布在一个较大的波长范围内,因此,对太阳电池要求在一个较宽的光谱范围内有良好的减反射效果,使更多入射光能进入电池。多层减反膜能够在多个波长附近有好的减反射效果,这样就展宽了具有良好减反射效果的波长范围。为搭配具有良好光电转换能力的太阳能电池材料,减反射膜材料的选择必须满足以下几个条件:

(1)适宜的透明范围,在对应于各太阳能电池吸收层材料波段的光吸收系数最小,尽可能避免光子在进入吸收层前被吸收,浪费光能;

(2)良好的光学、化学稳定性,以保证其在高温聚光条件下或空间极端条件下仍可正常工作;

(3)与窗口层材料结合以及膜层之间的结合性能、牢固度好;

(4) 保证膜层之间、膜与窗口层材料之间的折射率相匹配,这需要遵循麦克斯韦电磁方程组和菲涅耳公式进行多层膜系光学性质的推演,并不是随意的材料都可以进行组合,选择最恰当的材料折射率搭配才能达到最小的反射效果。

满足以上条件的双层膜系有很多,如TiO2/Al2O3、TiO2/SiO2、ZnS/MgF2或ZnS/ZnSe等。在地面应用中,对于III-V族级联电池,MgF2与ZnS组合的减反射膜能给出最佳的减反射效果。

今后,高效率电池的材料会随着资源开发的加剧越来越贵,在如何保证转换效率较高的情况下降低材料的成本就显得尤为重要,尽可能地增加入射光,研发新型减反射结构也是提升电池效率降低电池成本的一个有效途径。

参考文献

[1]Green M A.,Solar cells,New Jersey; Prentice-Hall Inc,1982:164.

[2]([澳]马丁・格林),李秀文等译.太阳电池工作原理、工艺和系统的应用,北京电子工业出版社,1987.

[3]Kasturi Lal Chopra and Suhit Ranjan Das,Thin film solar cell,New York: Plenum Press,c1983.

[4]D.E.Aspnes,et al.Optical Properties of AlxGa1-xAs,Journal of Applied Physics,1986(2):755- 767.

[5]Yuan Hairong,Xiang Xianbi,Chang Xiulan,et al.Double layer antireflection coating on AlxGa1-xAs/GaAs solar cells. Acta Energiae Solaris Sinica,2000,21(4):371(in Chinese).

[6]唐晋发.应用薄膜光学,上海科学技术出版社,1984.

[7]E D Palik,Handbook of Optical Constant of Solids.AcademicPress,1997.

[8]Michael M Sanfacon.Analysis Of AlGaAs/GaAs Solar Cell Structures by Optical Reflectance Spectroscopy. IEEE Transactions on Electron Devices,1990,37(2):450- 454.

[9]J Zhao,et al.Optimized Antireflection Coatings for High-Efficiency Silicon Solar Cells.IEEE Transactionson Electron Devices,1991,38(8):1925- 1934.

作者简介

半导体的技术例8

随着新汽车型号面市的步伐加快中旧市场平均每个月都有几十款新型号的汽车上市,消费者的需求呈现多样化,而且汽车相关法规也在完善,这对汽车0EM厂商的设计提出了更高的灵活性要求这正是包把可编程逻辑(CPLD)、FPGA、MCU在内的嵌入式器件的用武之地。Altera资深技术市场工程师赵敏的“面向汽车电子的可编程逻辑解决方案,ARM公司中国技术行销经理费浙平的“满足汽车系统设计需求的MCU发展趋势”以及Actel应用工程师胡V的“专为汽车电子应用而设的FPGA解决方案”三个主题讲演,发别从娱乐信息平台汽车安全系统和动力系统控制等多个应用角度,向听众展示了嵌入式器件的核心作用。

赵敏详细介绍了Altera公司针对汽车电子系统设计所提供的典型平台方案,包括,具有导航/后座娱乐功能的图形平台,网关/网络平台,音频处理平台和驾驶辅助系统平台ARM公司费浙平在研讨会上透露说:“汽车电子系统设计中,目前有1/8的成本在于软件,到2010年,汽车电子系统设计中软件成本将占1/3以上,高档车MCU将超过50个,软件代码将超过100M容量。”这就对MCU的选择提出了巨大的挑战安全性是汽车电子系统设计永恒的主题Actel的胡V介绍了如何将“Flash和反熔丝的固有优势扩展至汽车领域”,从而构建“灵活、可靠和安全的平台”。胡V指出,在汽车电子应用中“传统的数字逻辑解决方案和固定单元ASIC正由FPGA所取代”,其原因在于Flash和反熔丝的固有优势能够确保“对固件错误具有免疫力”,并且“高度安全”可防止“反求、复制”等对知识产权的盗版行为。

半导体的技术例9

DOI:10.16640/ki.37-1222/t.2016.11.038

0 引言

人来研究半导体器件已经超过135年[1]。尤其是进近几十年来,半导体技术迅猛发展,各种半导体产品如雨后春笋般地出现,如柔性显示器、可穿戴电子设置、LED、太阳能电池、3D晶体管、VR技术以及存储器等领域蓬勃发展。本文针对半导制造技术的演变和主要内容的研究进行梳理简介和统计分析,了解半导体制造技术的专业技术知识,掌握该领域技术演进路线,同时提升对技术的理解和把握能力。

1 半导体技术

半导体制造技术是半导体产业发展的基础,制造技术水平的高低直接影响半导体产品的性能及其发展。光刻,刻蚀,沉积,扩散,离子注入,热处理和热氧化等都是常用的半导体制造技术[2]。而光刻技术和薄膜制备技术是半导体制造技术中最常用的工艺,下面主要对以上两种技术进行简介和分析。

2 光刻技术

主流的半导体制造过程中,光刻是最复杂、昂贵和关键的制造工艺。大概占成本的1/3以上。主要分为光学光刻和非光学光刻两大类。据目前所知,广义上的光刻(通过某种特定方式实现图案化的转移)最早出现在1796年,AloysSenefelder发现石头通过化学处理后可以将图像转移到纸上。1961年,光刻技术已经被用于在硅片上制造晶体管,当时的精度是5微米。现在,X射线光刻、电子束光刻等已经开始被用于的半导体制造技术,最小精度可以达到10微米。

光学投影式光刻是半导体制造中最常用的光刻技术,主要包括涂胶/前烘、曝光、显影、后烘等。非光学光刻技术主要包括极深紫外光刻(EUV)、电子束光刻(E-beam Lithography)、X射线光刻(X-ray lithography)。判断光刻的主要性能标准有分辨率(即可以曝光出来的最小特征尺寸)、对准(套刻精度的度量)、产量。

随着半导体行业的发展,器件的小型化(特征尺寸减小)和集成电路的密集度提高,传统的光学光刻制造技术开始步入发展瓶颈状态,其面临的关键技术问题在于如何提高分辨率。

虽然,改进传统光学光刻制造技术的方法多种,但传统的光学投影式技术已经处于发展缓慢的阶段。与传统的投影式光刻技术发展缓慢相比,下一代光刻技术比如EUV、E-beam、X-ray、纳米压印等的发展很快。各大光刻厂商纷纷致力于研制下一代光刻技术,如三星的极紫外光刻、尼康的浸润式光刻等。目前先进的光刻技术主要集中在国外,国内的下一代光刻技术和光刻设备发展相对较为滞后。

3 薄膜制备技术

半导体制造工艺中,在硅片上制作的器件结构层绝大多数都是采用薄膜沉积的方法完成。薄膜的一般定义为在衬底上生长的薄固体物质,其一维尺寸(厚度)远小于另外二维的尺寸。常用的薄膜包括: SiO2, Si3N4, poli-Si, Metal等。常用的薄膜沉积方法分为化学气相沉积(Chemical Vapor Deposition)和物理气相沉积(Physical Vapor Deposition)两种。化学气相沉积利用化学反应生成所需的薄膜材料,常用于各种介质材料和半导体材料的沉积,如SiO2, poly-Si, Si3N4等[3]。物理气相沉积利用物理机制制备所需的薄膜材料,常用于金属薄膜的制备,如Al, Cu, W, Ti等。沉积薄膜的主要分为三个阶段:晶核形成―聚集成束―形成连续膜。为了满足半导体工艺和器件要求,通常情况下关注薄膜的一下几个特性:(1)台阶覆盖能力;(2)低的膜应力;(3)高的深宽比间隙填充能力;(4)大面积薄膜厚度均匀性;(5)大面积薄膜介电\电学\折射率特性;(6)高纯度和高密度;(7)与衬底或下层膜有好的粘附能力。台阶覆盖能力以及高的深宽比间隙填充能力,是薄膜制备技术的关键技术问题。我们都希望薄膜在不平整衬底表面的厚度具有一致性。厚度不一致容易导致膜应力、电短路等问题。而高的深宽比间隙填充能力则有利于半导体器件的进一步微型化及其性能的提高。同时,低的膜应力对所沉积的薄膜而言也是非常重要的。

4 结语

虽然,与不断更新换代的半导产品相比,半导体制造技术发展较为缓慢,大部分制造技术发展已经趋于成熟。但是,随着不断发展的半导体行业,必然会对半导体制造技术的提出更高的要求,以满足半导体产品的快速发展。因此,掌握和了解半导体制造技术的相关专利知识有利于推进该领域的发展。

参考文献:

半导体的技术例10

中图分类号:O47

文献标识码:A

文章编号:1006-0278(2013)08-185-01

一、半导体物理的发展

(一)半导体物理早期发展阶段

20世纪30年代初,人们将量子理论运用到晶体中来解释其中的电子态。1928年布洛赫提出著名的布洛赫定理,同时发展完善固体的能带理论。1931年威尔逊运用能带理论给出区分导体、半导体与绝缘体的微观判据,由此奠定半导体物理理论基础。到了20世纪40年代,贝尔实验室开始积极进行半导体研究,且组织一批杰出的科学家工作在科学前沿。1947年12月,布拉顿和巴丁宣布点接触晶体管试制的成功。1948年6月,肖克利研制结接触晶体管。这三位科学家做出杰出贡献,使得他们共同获得1956年诺贝尔物理学奖。

晶体管的发明深刻改变人类技术发展的进程与面貌,也是社会工业化发展的必然结果。早在20世纪30年代,生产电子设备的企业希望有一种电子器件能有电子管的功能,但没有电子管里的灯丝,这因为加热灯丝不但消耗能量且要加热时间,这会延长工作启动过程。因此,贝尔实验室研究人员依据半导体整流和检波作用特点,考虑研究半导体能取代电子管的可能性,从而提出关于半导体三极管设想。直到1947,他们经反复实验研制了一种能够代替电子管的固体放大器件,它主要由半导体和两根金属丝进行点接触构成,称之为点接触晶体管。之后,贝尔实验室的结型晶体管与场效应晶体管研究工作成功。20世纪50年代,晶体管重要的应用价值使半导体物理研究蓬勃地展开。到了20世纪60年代,半导体物理发展达到成熟和推广时期,在此基础上迎来微处理器与集成电路的发明,这为信息时代到来铺平道路。1958年,安德森提出局域态理论,开创无序系统研究新局面,这也为非晶态半导体物理奠定基础。1967年,Grove等人对半导体表面物理研究已取得重要进展,并使得Si-MOS集成电路稳定性能得以提高。1969年,江崎与朱兆祥提出通过人工调制能带方式制备半导体超晶格。正是在半导体超晶格研究中,冯·克利青发现整数量子霍尔效应。在1982年,崔琦等发现了分数量子霍尔效应,这一系列物理现象的发现正揭开现代半导体物理发展序幕。

(二)半导体超晶格物理的发展

建立半导体超晶格物理是半导体的能带理论发展的必然。之后,人们对各种规则晶体材料性能有相当认识,从而开创以能带理论作为基础的半导体物理体系,也借助其来解释出现的一系列现象。1969年与1976年的分子束外延和金属有机物化学汽相沉积薄膜生长技术正为半导体科学带来一场革命。随微加工技术的逐步发展,加之超净工作条件的建立,实现了晶体的低速率生长,也使人们能创造高质量的异质结构,同时为新型半导体器件设计及应用奠定技术基础。1969年,江崎和朱兆祥第一次提出“超晶格”概念,这里“超”的意思是在天然的周期性外附加人工周期性。1971年,卓以和利用分子束外延技术生长出第一个超晶格材料。从此拉开了超晶格、量子点、量子线和量子阱等等低维半导体材料研究序幕。

二、半导体物理的启示

综上所述,文章简单地对半导体物理的一个发展历程进行了回顾,并可以从中得到以下几点启示:

(一)半导体物理的发展一直与科学实验与工业技术应用紧密联系