期刊在线咨询服务,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

期刊咨询 杂志订阅 购物车(0)

半导体材料设计模板(10篇)

时间:2023-05-15 17:11:34

半导体材料设计

半导体材料设计例1

1 散热机构的设计与半导体灯具寿命息息相关

对于半导体灯具设计,散热机构设计是设计中的重要一环,散热机构设计能减少材料从而节约成本、提高LED灯珠的可靠性与寿命,长时间工作使用会比较容易造成每个器件性能降低,半导体灯具急速光衰,并造成安全事故,严重影响用户体验。

2 半导体灯具的散热器制造工艺现状

传统的半导体灯具仅仅将LED灯珠嵌设在铝材质制造而成的散热体内,利用铝材质良好的散热性能,将LED灯珠产生的热量散发出去,进而降低LED灯珠工作时升高的温度。尤其是对于大功率LED灯珠矩阵都会通过配置大型散热体来解决散热问题,然而问题随之而来:一方面,半导体灯具的总功率不断上升,为增加散热面积其对应的散热体也越做越大,е铝诵矶喽钔獬杀究销,灯具的重量也无法接受;另一方面,由于LED灯珠在使用时还需安装于专用光学灯罩内,有时候甚至是安置于一个相对密封的罩体中,由于密封的罩体内热量无法与外界空气形成对流,只能通过简单的辐射和大热阻的空气进行很少的热量传递。因此,现有LED灯珠即使使用散热面积较大的散热体,甚至散热体上加置散热风扇,也无法将LED灯珠发出的热量迅速带走,最终导致热量囤积于散热体上,使散热效果大打折扣,从而影响LED灯珠的使用寿命。目前市面上的半导体光源灯具散热器造型各异,散热器的制作工艺大都是采用铝材压铸成型工艺和挤压型材切割工艺制造,导热系数低、散热器重量较大、耗材多、后加工复杂、生产效率低、生产成本高。

2.1 铝合金压铸工艺

铝合金压铸工艺和塑料注塑工艺原理接近,都是将原材料加温成液态后填充到模具型腔形成产品,铝合金压铸的材料有ADC12、A380、A360、YL113,常用的材料是ADC12,相对于其他材料,它更加容易成型,优异的后加工和机械性能。

优点:(1)一体化压铸成型,整体性强;(2)外观可设计弧面,有利于工业造型。

缺点:(1)导热系数低(约为96 W/M・K);(2)表面处理受限制。

2.2 铝挤出成型工艺

铝挤出成型工艺目前在大功率路灯、隧道灯领域相对广泛,近年来室内较少用。常用的材料为AL6063,相对于压铸ADC12材料,它具有很好的导热系数(一般为200 W/M・K)。

优点:(1)导热系数高;(2)容易做表面处理。

缺点:单向挤压型材,外观结构受到限制。

2.3 散热鳍片拼接扣工艺

散热鳍片常用的是五金冲压加工得到,容易实现自动化生产,使用的材料有导热铝合金。

优点:(1)散热面积多,需配合风扇形成空气流效果才能更好;(2)重量轻便。

缺点:成本较高。

2.4 热管结合散热鳍片工艺

热管结合散热鳍片相对来看成本较高,同时对外观和尺寸有一定要求。这将导致市面上一些小型公司放弃使用该项技术。

优点:(1)LED灯珠工作时发出的热能快速传导到散热器散热鳍片;(2)重量轻便。

缺点:(1)工艺相对复杂;(2)成本较高。

2.5 导热塑料注塑成型工艺

导热塑料分为两大类:导热导电塑料和导热绝缘塑料。半导体灯具散热器常用的是导热绝缘塑料。导热绝缘塑料主要成分包括基体材料和填料。基体材料包括PPS、PA6/PA66、PPA、PEEK等,填充材料包括AIN、SIC、AL203、石墨、纤维状高导热碳粉等。

优点:(1)一次成型,光泽度高;(2)绝缘性能优异,宜采用各种不同的电源方案。

缺点:(1)导热系数低;(2)重量相对金属较轻。

2.6 塑包铝结构工艺

市面上现有的塑包铝结构分为两种:(1)导热塑料和铝件是独立分开的2个组件,通常这种做法易成型加工,不需要先把铝块放置注塑模型腔内成型加工得到一体,而是后续通过机械固定结构将独立分开的2个组件固定形成一个整体。(2)导热塑料和铝件是一体注塑成型加工得到的。

优点:表面为导热塑料,绝缘性能好,安全。

缺点:成型工艺复杂。

3 半导体灯具散热

热量的3种传递方式有辐射、对流和传导。一般而言,LED灯珠工作时会产生光和热,散热器通常就是要把LED灯珠工作时产生的热散发出去,从能量层面来看,热并非能量,其实只是传递能量的形式,当外界能量冲击分子,能量就会由高能分子传递到低能分子,从微观层面来看,能力的传递就是热。通常,LED灯珠通过机械结构固定在散热器表面,LED灯珠与散热器的接触良好是决定LED灯珠工作时产生的热量传导到散热器的关键因素,半导体散热器的散热结构还需充分运用空气对流换气,通过传导与对流,使LED灯珠工作时产生的热量散发到空气中。

4 设计优化散热机构

4.1 半导体灯具散热设计方法的选择

散热机构设计通常使用EFD、ANSYS软件仿真,通常流体的固定边界与黏性对流体的阻力所产生的影响,使得流体中的流体元素会小部分受沿程阻力的干扰,另一方面,半导体灯具通常需要增加风扇来加速空气流动,由于风扇的增加会导致半导体灯具机构设计的复杂性,从另一角度来看,也会大大降低半导体灯具的可靠性。因此,半导体灯具的散热器采用被动式自然散热的方式,散热器的外观轮廓依据半导体灯具结构来定,因而直接利用半导体灯具外观从而设计成整体式散热器,针对散热器接触面平整度、基板厚度、散热片状条形状、散热片数量、散热片厚度、散热片与散热片的空气流动、散热片与空气接触的面积等,按照散热器相关设计准则进行优化设计,最后进行打样测试和分析定论。

4.2 被动式散热器设计

参照图1和图2,半导体灯具的散热机构包括基板1和灯体2,基板1经过旋压工艺拉伸出灯体2,再将灯体2上多余部分剪除使灯体2成圆筒状,基板1经过五金冲压扭曲后局部向上隆起形成带拉开片4的散热叶片3并形成通气孔5,基板1上第一围圆形排布设计有14条,第二围圆形排布有36条向散热器外部冲压扭曲的散热叶片3,拉开片4增加了基板1与散热叶片3的接触面积并且垂直分布,结合热量向上散发的特性,从而加快散热速度,提高整体性能。

5 结语

目前,半导体灯具得到广泛应用,其具有体积小、重量轻、使用寿命长和节能效果极佳等优点,但是半导体灯具跟半导体一样普遍存在发热量大、热量不易散发的问题,热量的积累容易导致半导体光源寿命减少、发光效率降低。上述优化后的被动式散热器设计具有制作工艺简单、易一次性成型加工、扭曲过程中较少废料、材料利用率高、生产成本低等优点。

参考文献

半导体材料设计例2

中图分类号:TP316.2 文献标识码:A 文章编号:1007-9416(2017)01-0006-02

基于单片机的半导体制冷智能控制系统,融合了单片机控制技术和半导体制冷技术,实现制冷设备温度控制的智能化,具有体积小、重量轻、使用寿命长等优点。

1 基于单片机的半导体制冷智能控制系统的结构及原理

半导体制冷器是一种利用珀尔帖效应来进行制冷的器件,它具有体积小、重量轻、使用寿命长、没有噪音、无机械运动、加热制冷迅速、控制精度高、不需要制冷剂、无污染等优点。单片机具有系统结构简单,使用方便,实现模块化;可靠性高,处理功能强,速度快;低电压,低功耗,便于生产便携式产品;控制功能强,环境适应能力强等优点,将单片机与半导体制冷技术结合起来,实现制冷设备的智能控制。

1.1 基于单片机的半导体制冷智能控制系统的结构

基于单片机的半导体制冷智能控制系统的主要结构包括处理器、温度传感器、数码管显示、按键调节电路、控制信号驱动电路、半导体制冷执行器连接电路,其结果图如下图1所示。

从系统结构图系统结构图中可以看出,当温度低于(或高于)设定温度时,通过温度传感器感受温度,形成反馈信号,经过单片机内部模糊控制算法处理,形成单片机I/O口输出的PWM信号,单片机根据设定的程序和反馈信号给驱动器发射启动信号,驱动器控制半导体制冷器运转制冷,使得密封箱体的温度升高(或降低),同时,在温度反馈电路中,及时反馈温度值,通过单片机的控制运算达到设定温度,从而实现单片机半导体制冷设备的智能控制。

1.2 半导体制冷设备的原理

半导体制冷设备的原理固体材料所具有的珀尔帖效应。珀尔帖效应是指由于固体材料的原子能级都不相同,材料中的载流子所具有的势能也不同。在外加电场作用下,载流子开始流动,流动方向从低势能材料流向高势能材料,流动过程中吸收热量,从而导致两种不同材料的连结处出现致冷现象。

半导体制冷又叫热电制冷,主要利用了热电效应的原理。当直流电通过两种不同的材料组成的回路时,在两种材料的接触面会产生能量交换的现象。通过直流电的时候,由P型半导体材料和N型半导体材料组成的半导体,当PN接触就会产生电子由一种材料向另一种材料迁移的现象,在迁移的过程中,电子会把多余的能量释放出来,因此该接触面会产生热量。同时,在另一个接触面电子由一种材料进入到另一种材料的过程中,会吸收外界的能量,来保证它完成这种迁移,因此在该接触面会产生吸收热量的现象。

如图2所示为半导体制冷原理图,当线路通电流时,电子由上金属板通过结点a流向N型半导体,电子势能增大,并从上金属板吸热,使之变冷。当N型半导体中的电子通过结点d进入下金属板时,势能由大变小,于是放出热量(能量),使下金属板变热。同理,当电流由上金属板流向P型半导体时,空穴由上金属板通过结点b流入P型半导体,势能增大,并从金属吸收热量(能量),使之变冷;随之,空穴通过结点c到达下金属板时,势能由大变小,放出热量(能量),使下金属板变热。

2 基于单片机的半导体制冷智能控制系统

2.1 单片机

单片机简单点说就是芯片,具有集成电路的芯片,将中央处理器CPU、A/D转换器、只读存储器ROM、模拟多路转换器、定时器/计数器等功能,利用集成电路技术把这些功能集成到微小的硅片上,从而构成一个微型计算机系统。根据具体的控制系统情况,选择适当类型的单片机,一般采用STC12C5A16S2作为核心芯片,使用TEC1-12706半导体制冷片作为核心加热制冷与案件,采用DS18B20温度传感器采集温度,通过上位机和单片机通讯,上位机可以显示实时温度值,并且可以进行温度设置,半导体制冷片控制部分采用H桥驱动控制电路进行电压翻转H桥的导通和截止采用三极管开关电路进行控制,从而达到加热和制冷的自动控制目的。

2.2 半导体制冷片

半导体制冷片选用TEC12706,TEC即半导体制冷器,它的工作原理是基于珀尔贴效应,即当电流以不同方向通过双金属片所构成H桥的结构时能对与其接触的物体制冷或加热。其工作原理图如图1所示。

半导体制冷设备的优点如下:(1)半导体制冷器的规格尺寸非常小,最小的制冷器可以到达1cm;(2)半导体制冷设备重量也非常轻,微型制冷器的重量往往只有几克或几十克。(3)机械传动少甚至没有,环保性能好,工作过程中无噪音,无液、气工作介质,不存在污染环境,(4)制冷参数稳定,不受空间方向以及重力影响,即使机在械过载的条件下,也能够正常地工作;(5)调节方便,电路电流控制制冷效果,通过调节工作电流的大小来调节制冷速率;通过切换电流方向,来快速完成制冷、制热工作状态的转换;(6)作用速度快,使用寿命长,且易于控制。

2.3 数字温度传感器

数字温度传感器就是能把检测设备采集到的温度通过相应的转换设备将温度信号转换为数字信号并通过数字现实屏幕现实出来。数字温度传感器的组成部件有温、湿度敏感元件,信号转换计算机、PLC、智能仪表、LED数字显示器等等。起初,数字温度传感器处于关闭状态,当供电之后,数字温度传感器进入连续转换温度模式或者单一转换模式,用户根据自己的需要选择相应的工作模式,在连续转换模式下,数字温度传感器可以连续转换温度并将结果存于温度寄存器中,读温度寄存器中的内容不影响其温度转换;在单一转换模式,数字温度传感器执行一次温度转换,结果存于温度寄存器中,然后回到关闭模式,这种转换模式适用于对温度敏感的应用场合。在实际应用中,数字温度传感器有多种分辨率可供选择:8位、9位、10位、11位或12位,五种分辨率分别对应温度分辨率分别为1.0℃、0.5℃、0.25℃、0.125℃或0.0625℃,温度转换结果的默认分辨率为9位。

3 结语

本文主要研究基于单片C的半导体制冷智能控制系统,分析了基于单片机的半导体制冷智能控制系统的结构和工作原理,重点分析了半导体制冷设备的工作原理。就基于单片机的半导体制冷智能控制系统的主要组成部分单片机、半导体制冷片、数字温度传感器进行了研究,有利于制冷设备智能控制的研究。

半导体材料设计例3

1965年Intel创始人Moore提出“随着芯片电路复杂度提升,芯片数目必将增加,每一芯片成本将每年减少一半”的规律之后,半导体微细化制程技术日新月异,结构尺寸从微米推向深亚微米,进而迈入纳米时代。半导体制程微细化趋势也改变了产业的成本结构,10年前IC设计产业投入线路设计与掩膜制程的费用,仅占总体成本的13%,半导体生产制造成本约占87%。自2003年进入深亚微米制程后,IC线路设计及掩膜成本便大幅提升到62%。

当芯片结构体尺寸小于100纳米时,光学光刻技术便面临技术关键:硅晶制程光刻技术的线宽已小于曝光的波长长度,而光刻技术所能制作的线宽,是与光源的波长成正比。在朝向45纳米制程的趋势下,必须要能够降低波长、增加数值孔径(NA,NumericalAperture)、提高光刻,才能制作 微细化芯片。所以能否研发出能满足微细化制程所需、且具市场竞争力的光刻曝光技术,对IDM、Foundry、以及Fabless半导体产业来说,非常重要。因此目前在晶圆制程技术上,各厂要面对的课题是:如何有效降低制程微细化电路之间的静态功耗,特别是漏电流;以及RC时间延迟的问题;并防止介质机械强度下滑;同时,增加晶体密度、降低电路耗用面积、提升运作时钟频率,并且节省电能。

举例来说,45纳米芯片在逻辑开关时的切换效率,比起65纳米远高出30%;再者45纳米芯片耗电量较低,在相同运作时钟下,静态功耗的漏电流能比过去减少5倍;动态功耗(亦即场效应管进行切换时)也比以往减少30%。此外,45纳米场效应管密度是65纳米制程的2倍。

不过在纳米制程时代,每芯片量产成本(die cost)的增加,几乎来自于昂贵的制造设备,制程也会更复杂。例如为了让45纳米制程技术更容易,与曝光相关的制造技术也必须同时升级,像曝光装置的影像景深DOF(Depthof Focus)存在技术极限,所以也需要提高芯片全域的化学性机械研磨(CMP)的均一性。还有抗阻剂的薄膜化虽有利于提高芯片整体的膜厚均等化,但由于耐蚀刻性较差,所以必须使用3层抗阻剂或硬掩膜(hard mask),因此微细化制程技术会更复杂。

65与45纳米制程同时并进

因此各半导体厂在进入65纳米以下制程时代时,可能就要花费多达300万美元以上的IC设计成本来制造掩膜和试产(try out),况且光刻技术的应用周期不断缩短,对于微细化制程的技术评估也要提早因应,因此各大厂对于微细化制程也已开始激烈的攻防战。例如UMC就预先针对32与22纳米制程作技术评估,这结技术内容包含绝缘体硅(SOI)、应变硅(strained-Si)、高介电常数门极绝缘层(high-K gate dielectric)、金属门极(metal gate)以及多门极场效应管(multi-gate FET)等。TSMC也提出浸润式光刻技术,被视为未来具备继续挑战65及45纳米、甚至32及22纳米的实力。2006年9月IBM、Chartered、Infineon以及SamsungElectronics,联合开发首款45纳米制程芯片,预计在2007年底前完成验证。Intel和Micron合资的IM Flash,也已宣布成功产出45纳米制程NAND Flash芯片。10月Applied Materi-als也在研发中心完成45纳米制程芯片试验制程机台。

Intel宣布的45纳米制程量产时程则为2007年上半年,TSMC 45纳米制程浸润式光刻技术倾向在2007年Q3量产,UMC在65纳米制程技术已开始量产,45纳米制程技术也已添置新机种,主要新技术已开发完成,正进行整合验证,预计在2007年Q3至Q4可进入量产。

提升浸润式光刻曝光技术

在0.13微米及90纳米制程阶段,要在晶圆(Wafer)上光刻光刻(1ithography)出电路(circuit),就要制作相关的掩膜(Mask)光刻技术。在这个阶段,半导体光刻制程大多采用ArF激光光源(曝光波长为193纳米)进行曝光显影。一般而言,掩膜分辨率视不同技术时代及应用层(layer),定有不同的掩膜等级(Maskgrade),每种掩膜等级有其相对应的品质规格,其规范品质重要项目包括缺陷数(defects)、关键尺寸(CD,Critical Dimension)、或是在整片掩膜中的精准度(accuracy)及均匀度(uniformity)等等。

当进入纳米制程后,由于半导体芯片电路更为精细、电路集积度愈高,所使用的光源波长需求也更为缩短,原本157纳米光刻技术因无法克服二氟化钙透镜结构双折射的问题,多数厂商倾向用浸润式光刻技术(Immersion Li-thography)延伸至193纳米曝光设备,达到大量节省研发及导入成本的目的,这也使得ITRS(International Technlogy Roadmap for Semi-conductors),顺应时势决定采用浸润式光刻技术,并使其成为65纳米技术节点的主流光刻技术。

湿浸式技术是以流体介质的穿透度与折射率的光学特性为基础,相关光刻技术便以水作为流体介质,应用在193纳米波长曝光机基础上,于光源与晶圆之间加入水,可使波长缩短到132纳米,比起干式光刻技术(drylithography),还可支持65、45、甚至到32纳米制程。不过其间形成的微气泡可能损及晶圆成像,如何预先去除纯水(UPW)中的气体,是预防气泡生成的关键之一,再者水与光阻交互作用,会对不同光阻剂造成程度伤害,因此也必须改良相关技术。

虽然浸润式ArF曝光技术可以沿用现有的ArF曝光设备,但微细化制程趋势更严谨地要求解析度与DOF,因此在45纳米之后,如何找到比纯水还高折射率的液体材料来提高数值孔径(NA),便是无可回避的挑战。

主要半导体大厂包括TSMC和UMC都已开始导入浸润式光刻技术,UMC预计在2007年下半年投入45纳米制程,采用浸润式光刻技术。TI在2006年6月已初步研发出浸润式光刻制造45纳米制程芯片的技术,其内存细胞(memory cell)仅占0.24平方微米,较1月Intel率先推出首批导入45纳米制程芯片内存细胞的0.346平方微米,还要缩小30%。另外, 9月Dupont宣布已开发出配合32纳米制程所需之浸润液的新式光刻技术。

先前Nikon于2005年7月各自宣布开发出NA值为1.30的湿浸式ArF曝光设备,已在2006年底使用。ASML在同月NA为1.35的湿浸式设备,被认为是使用纯水的湿浸式曝光设备中的实际最高值,预计在2007年中期问世。

研发无法见光的光刻技术

未来会接续193纳米ArF光刻技术,应该会是超紫外光(Extreme Ultraviolet;EUV)光刻技术,使光波长进入不可见光的极紫外线层次。由于半导体光刻制程往后需要采用高折射率材料来提高NA值,EUV光刻技术的光波长原本就只有13.5纳米,光会在空气中被吸收,所以只能在真空环境中才能透射;其所采用的掩膜透镜,是属于反射式的元件,因此足以应付纳米微细制程所需。Intel预计在2009年,正式采用紫外线(EUV)光刻这项技术来进行32纳米制程的量产作业。

不过目前EUV技术尚未成熟,未能接续193纳米光刻技术,半导体大厂还是会一面沿用浸润式光刻技术、一面寻找更为适合的湿浸式流体介质,以改善掩膜透镜材料。像是其他新时代技术(Next General Lithography;NGL)包括纳米转印光刻技术(Imprint Lithography),也开始被业界期待可达到制程10纳米以下的结构境界,成本与市场潜力甚至可以取代EUV光刻技术。

发展可降低RC延迟的介电材料

为何要解决RC延迟因为到65及45纳米微细化制程阶段,半导体芯片电路的金属线宽愈来愈微小,导线层数越来越多。且由于电气与机械特性的关系,信号传输会因短路而产生延迟。逻辑芯片电路的信号传输,也因制程细微化使绕线距离缩短,绕线容量增加而导致绕线延迟。这些都必须以铜导线与低介电材料,取代先前的铝合金,来解决电容电阻时间延迟(RC Time De-lay)问题,因此低介电材料的开发与应用也变得愈来愈紧迫。

在0.13微米之前的晶圆制程中,SiOF是厂商最多采用的介电质材料,其介电常数K(Keff)值介于3.7~2.8之间。自0.13微米已降微细制程时代开始,降低RC-Delay的需求开始浮现,半导体厂多以采取降低后段制程的金属连接线电阻与金属线间电容的方法,基本上以铜作为材料的低介电常数(cu/low-k)制程技术为主。在降低电阻方面,以铜来取代传统铝导线,尔后持续对铜导线制程中使用扩散绝缘层(diffusion barrier),并对其厚度做最适化(op-timization)处理,绝缘层之材料均采高阻值之钽(Ta)/氮化钽(TaN)等。

因此降低金属线间的电容值,必须应用低介电常数(LOW-k)材料,作为金属导线间的绝缘层(Inter metal dielectrics),一般Low-k材料的K值,涵盖3.1、2.9、2.7,一路演进至目前的2.5。Low-k材料是90纳米技术最重要的关键,90纳米制程所使用Low-k材料的K值约在3.0~2.9之间,60纳米以下的制程,才会采用2.5和2.4K值的材料,以有效降低金属导线间的电容值。综合来说,在微细化制程整合过程中,降低RC延迟技术提升的方向,多以针对会影响电阻的金属连接线厚度、与影响电容值的金属导线间绝缘层厚度为主。

Low-k制程趋势:防止机械强度下滑

下一代Low-k材料的特性,不仅只因应45纳米微细制程的需求,也要有效解决Low-k本身因电路DOF制程所产生的铜阻抗增加以及机械强度下滑的问题。制程从65纳米朝向45纳米时,低介电膜硬度会急速下降,因此经过薄膜化后的Low-k材质,能够具备多小孔尺寸、且具高密度硬度的特性,就显得相当重要。

目前应用Low-k材料的最大问题点,在于如何防止机械强度下滑。因为期望能够降低Low-k材料的介电常数,与希望提高Low-k材料绝缘膜的机械强度,这两者之间是相互矛盾的。未来问题的困难度不在于让Low-k材料的K值达到2.0以下,而是如何让超低K值材料的机械强度提高。除了低K值材料的特性直接影响半导体量产效率外,另外如何让铜与低K值材料有效整合应用,不仅对65纳米和45纳米制程,从整个IC制程技术来看,也将充满关键性的挑战。

无止尽的追寻?

半导体材料设计例4

1非补偿p-n共掺氧化物稀磁半导体薄膜的本征铁磁性

一般来说,过渡金属元素在氧化物半导体中的溶解度较小,容易形成磁性金属原子团簇或第二相杂质,因此制备本征氧化物稀磁半导体具有很大的挑战性。人们尝试不同的氧化物材料和掺杂方法来研究稀磁半导体的本征磁性,但都很难排除磁性原子团簇和第二相杂质的影响[10]。项目组采用非补偿p-n共掺的方法研究了氧化物稀磁半导体,有效克服了磁性原子团簇和第二相杂质的形成,为制备具有本征铁磁性的稀磁半导体材料开辟了新的途径。根据热力学理论,由于p-n离子对之间存在库仑引力,这使掺杂离子在宿主半导体中形成能较低,从而有效增加了其在半导体中的热力学溶解度和稳定性。从动力学角度分析,非平衡生长时,p-n对之间的库仑引力有利于掺杂离子越过形成势垒,也有利于其在宿主半导体中从间隙位置进入替代位置,从而增加了掺入离子在替代位的浓度。可见,利用非补偿p-n共掺可以增大掺杂离子在宿主半导体中的热力学和动力学溶解度,有效阻止过渡金属离子的团聚和化合,形成均相稀磁半导体。以ZnO薄膜为例,以Mn为p型掺杂剂,Ga,Cr和Fe为n型掺杂剂对ZnO进行非补偿p-n共掺,可以得到均匀单相结构的本征ZnO稀磁半导体。图1(a)为Mn/Ga共掺ZnO薄膜的高分辨透射电镜图,没有发现任何团簇和第二相杂质。由于掺杂均匀性和替代位离子浓度的提高使其铁磁性得到明显加强,如图1(b)所示[13]。非补偿p-n共掺的另一个优点是可以通过控制掺入p型和n型掺杂剂的摩尔比有效调控其载流子类型和浓度,在实现局域自旋的同时调节载流子浓度。所以,非补偿p-n共掺的方法既可以降低体系能量,增加过渡金属元素的掺杂浓度,实现氧化物稀磁半导体的本征铁磁性,同时还可以调控体系的载流子浓度和磁性大小。

2氧化物稀磁半导体中缺陷和载流子对磁性的贡献

自从2000年Dietl等预言ZnO基稀磁半导体的TC可以达到室温以来,人们已经通过各种实验方法在过渡金属掺杂的氧化物稀磁半导体中实现了TC高于室温的铁磁性。然而,对于稀磁半导体的铁磁性来源一直没有形成统一的认识,存在较多的理论解释,比如载流子诱导磁性理论、束缚磁极子理论[以及电荷转移铁磁性理论[17]等。在这些氧化物稀磁半导体磁性来源的理论解释中,都分别涉及到材料的载流子浓度和缺陷。项目组在结合氧化物稀磁半导体实验研究的基础上,通过构建双磁极子模型,计算了两个束缚磁极子间隔距离不同时的铁磁稳定化能,如图2所示。氧空位缺陷是形成局域束缚磁极子必不可少的,而载流子则扮演着双重作用,既能增强束缚磁极子的稳定性,又能调控磁极子间产生长程铁磁相互作用。由此提出了载流子调控束缚磁极子间产生长程铁磁性的模型,这个模型综合了载流子诱导和束缚磁极子模型的优点,对进一步阐明氧化物稀磁半导体中磁性产生机制有一定贡献。

3氧化物稀磁半导体的应用

自从发现具有室温铁磁性的氧化物稀磁半导体以来,人们并没有仅停留在新材料的探索和磁性机制的理解上,还初步设计了氧化物稀磁半导体的器件模型,以促进其在自旋电子器件上的应用。隧道结是研究电子自旋极化、注入与输运的理想模型,同时也可以在磁性随机存储器、磁性传感器及逻辑器等器件上广泛应用。人们已经在氧化物稀磁半导体基隧道结中实现了较大的低温磁电阻效应,并且通过优化稀磁半导体/势垒层界面以及提高势垒层结晶质量,使隧道磁电阻效应一直保持到室温,实现了室温下电子自旋注入。但由于非弹性隧穿电导的增强,室温时有效自旋注入效率非常低。项目组在氧化物稀磁半导体实验和理论研究基础上,设计并制备出一种特殊“金属磁性纳米粒子核”与“稀磁半导体壳”的核壳结构,这种核壳结构弥散在半导体基质中形成一种复合薄膜,如图3(a)所示。在这种复合薄膜中获得高达12.3%的室温磁电阻率和37.5%的电子自旋极化率,在室温下实现了有效的自旋注入和探测,如此大的室温磁电阻效应可能与薄膜中“稀磁半导体壳”的自旋过滤效应有关。这不仅为研究金属/半导体界面自旋注入指出了新的途径,而且为新一代室温半导体自旋器件的实现提供了可能[23,24]。与此同时,在这种复合结构中还可以通过改变薄膜的电阻率调节其室温磁电阻率,实现自旋注入效率的宏观调控,并且制备出的一种具有大室温磁电阻率和高透光率的复合超薄磁性金属/半导体复合薄膜有望在透明自旋电子器件中得到应用。

半导体材料设计例5

 

1.半导体材料的概念与特性

当今,以半导体材料为芯片的各种产品普遍进入人们的生活,如电视机,电子计算机,电子表,半导体收音机等都已经成为我们日常所不可缺少的家用电器。半导体材料为什么在今天拥有如此巨大的作用,这需要我们从了解半导体材料的概念和特性开始。

半导体是导电能力介于导体和绝缘体之间的一类物质,在某些情形下具有导体的性质。半导体材料广泛的应用源于它们独特的性质。首先,一般的半导体材料的电导率随温度的升高迅速增大,各种热敏电阻的开发就是利用了这个特性;其次,杂质参入对半导体的性质起着决定性的作用,它们可使半导体的特性多样化,使得PN结形成,进而制作出各种二极管和三极管;再次,半导体的电学性质会因光照引起变化,光敏电阻随之诞生;一些半导体具有较强的温差效应,可以利用它制作半导体制冷器等;半导体基片可以实现元器件集中制作在一个芯片上,于是产生了各种规模的集成电路。这种种特性使得半导体获得各种各样的用途,在科技的发展和人们的生活中都起到十分重要的作用。

2.半导体材料的发展历程

半导体材料从发现到发展,从使用到创新,也拥有着一段长久的历史。在20世纪初期,就曾出现过点接触矿石检波器。1930年,氧化亚铜整流器制造成功并得到广泛应用,使半导体材料开始受到重视。1947年锗点接触三极管制成,成为半导体的研究得到重大突破。50年代末,薄膜生长技术的开发和集成电路的发明,使得微电子技术得到进一步发展。60年代,砷化镓材料制成半导体激光器,固溶体半导体材料在红外线方面的研究发展,半导体材料的应用得到扩展。1969年超晶格概念的提出和超晶格量子阱的研究成功,使得半导体器件的设计与制造从“杂志工程”发展到“能带工程”,将半导体材料的研究和应用推向了一个新的领域。90年代以来随着移动通信技术的飞速发展,砷化镓和磷化铟等半导体材料得成为焦点,用于制作高速、高频、大功率及发光电子器件等;近些年,新型半导体材料的研究得到突破,以氮化镓为代表的先进半导体材料开始体现出其超强优越性,被称为IT产业新的发动机。

3.各类半导体材料的介绍与应用

半导体材料多种多样,要对其进一步的学习,我们需要从不同的类别来认识和探究。通常半导体材料分为:元素半导体、化合物半导体、固溶体半导体、非晶半导体、有机半导体、超晶格半导体材料。不同的半导体材料拥有着独自的特点,在它们适用的领域都起到重要的作用。

3.1元素半导体材料

元素半导体材料是指由单一元素构成的具有半导体性质的材料,分布于元素周期表三至五族元素之中,以硅和锗为典型。硅在在地壳中的含量较为丰富,约占25%,仅次于氧气。硅在当前的应用相当广泛,它不仅是半导体集成电路、半导体器件和硅太阳能电池的基础材料,而且用半导体制作的电子器件和产品已经大范围的进入到人们的生活,人们的家用电器中所用到的电子器件80%以上元件都离不开硅材料。锗是稀有元素,地壳中的含量较少,由于锗的特有性质,使得它的应用主要集中于制作各种二极管,三极管等。而以锗制作的其他器件如探测器,也具备着许多的优点,广泛的应用于多个领域。

3.2化合物半导体材料

通常所说的化合物半导体多指晶态无机化合物半导体,即是指由两种或两种以上元素确定的原子配比形成的化合物,并具有确定的禁带宽度和能带结构的半导体性质。化合物半导体材料种类繁多,按元素在元素周期表族来分类,分为三五族(如砷化镓、磷化铟等),二六族(如硒化锌),四四族(如碳化硅)等。如今化合物半导体材料已经在太阳能电池、光电器件、超高速器件、微波等领域占据重要的位置,且不同种类具有不同的性质,也得到不同的应用。。

3.3固溶体半导体材料

固溶体半导体材料是某些元素半导体或者化合物半导体相互溶解而形成的一种具有半导体性质的固态溶液材料,又称为混晶体半导体或者合金半导体。随着每种成分在固溶体中所占百分比(X值)在一定范围内连续地改变,固溶体半导体材料的各种性质(尤其是禁带宽度)将会连续地改变,但这种变化不会引起原来半导体材料的晶格发生变化.利用固溶体半导体这种特性可以得到多种性能的材料。

3.4非晶半导体材料

非晶半导体材料是具有半导体特性的非晶体组成的材料,如α-硅、α-锗、α-砷化镓、α-硫化砷、α-硒等。。这类材料,原子排列短程有序,长程无序,又称无定形半导体,部分称作玻璃半导体。非晶半导体按键合力的性质分为共价键非晶半导体和离子键非晶半导体两类,可用液相快冷方法和真空蒸发或溅射的方法制备。在工业上,非晶半导体材料主要用于制备像传感器、太阳能电池薄膜晶体管等非晶半导体器件。

3.5有机半导体材料

有机半导体是导电能力介于金属和绝缘体之间,具有热激活电导率且电导率在10-10~100S·cm的负一次方范围内的有机物,如萘蒽、聚丙烯和聚二乙烯苯以及碱金属和蒽的络合物等.其中聚丙烯腈等有机高分子半导体又称塑料半导体。有机半导体可分为有机物、聚合物和给体-受体络合物三类。相比于硅电子产品,有机半导体芯片等产品的生产能力较差,但是拥有加工处理更方便、结实耐用、成本低廉的独特优点。目前,有机半导体材料及器件已广泛应用于手机,笔记本电脑,数码相机,有机太阳能电池等方面。

3.6超晶格微结构半导体材料

超晶格微结构半导体材料是指按所需特性设计的能带结构,用分子束外延或金属有机化学气相沉积等超薄层生产技术制造出来的具有各种特异性能的超薄膜多层结构材料。由于载流子在超晶格微结构半导体中的特殊运动,使得其出现许多新的物理特性并以此开发了新一代半导体技术。。当前,对超晶格微结构半导体材料的研究和应用依然在研究之中,它的发展将不断推动许多领域的提高和进步。

4.半导体材料的发展方向

随着信息技术的快速发展和各种电子器件、产品等要求不断的提高,半导体材料在未来的发展中依然起着重要的作用。在经过以Si、GaAs为代表的第一代、第二代半导体材料发展历程后,第三代半导体材料的成为了当前的研究热点。我们应当在兼顾第一代和第二代半导体发展的同时,加速发展第三代半导体材料。目前的半导体材料整体朝着高完整性、高均匀性、大尺寸、薄膜化、集成化、多功能化方向迈进。随着微电子时代向光电子时代逐渐过渡,我们需要进一步提高半导体技术和产业的研究,开创出半导体材料的新领域。相信不久的将来,通过各种半导体材料的不断探究和应用,我们的科技、产品、生活等方面定能得到巨大的提高和发展!

参考文献

[1]沈能珏,孙同年,余声明,张臣.现代电子材料技术.信息装备的基石[M].北京:国防工业出版社,2002.

[2]靳晓宇.半导体材料的应用与发展研究[J].大众商务,2009,(102).

[3]彭杰.浅析几种半导体材料的应用与发展[J].硅谷, 2008,(10).

半导体材料设计例6

在12英寸厂产能方面, 2008年的总产能预估将比去年增长25%,2009年也有20%的增长。根据SEMI World Fab Forecast,台湾地区目前已有15条 300mm晶圆制造生产线进行量产,预计在今年底前产能将提升15%,达到每月70万片,而在未来两年内将再增加7条产线,届时台湾地区12英寸厂的总产能将可达到每月近120万片,占全球的29%,跃升为全球第一大12英寸晶圆供应地。

在晶圆厂投资方面,由于大厂持续保守投资, 2008年的晶圆厂预估减少38%。不过,根据SEMI World Fab Forecast,2009年将有22座量产晶圆厂计划建置,预估整体投资金额将比今年增长50%以上。其中,台湾晶圆厂投资占全球总投资额的比例更将从今年的27%拉升至40%。

半导体材料设计例7

1半导体材料的战略地位

上世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了电子工业革命;上世纪70年代初石英光导纤维材料和GaAs激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了信息时代。超晶格概念的提出及其半导体超晶格、量子阱材料的研制成功,彻底改变了光电器件的设计思想,使半导体器件的设计与制造从“杂质工程”发展到“能带工程”。纳米科学技术的发展和应用,将使人类能从原子、分子或纳米尺度水平上控制、操纵和制造功能强大的新型器件与电路,必将深刻地影响着世界的政治、经济格局和军事对抗的形式,彻底改变人们的生活方式。

2几种主要半导体材料的发展现状与趋势

2.1硅材料

从提高硅集成电路成品率,降低成本看,增大直拉硅(CZ-Si)单晶的直径和减小微缺陷的密度仍是今后CZ-Si发展的总趋势。目前直径为8英寸(200mm)的Si单晶已实现大规模工业生产,基于直径为12英寸(300mm)硅片的集成电路(IC‘s)技术正处在由实验室向工业生产转变中。目前300mm,0.18μm工艺的硅ULSI生产线已经投入生产,300mm,0.13μm工艺生产线也将在2003年完成评估。18英寸重达414公斤的硅单晶和18英寸的硅园片已在实验室研制成功,直径27英寸硅单晶研制也正在积极筹划中。

从进一步提高硅IC‘S的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,SOI材料,包括智能剥离(Smartcut)和SIMOX材料等也发展很快。目前,直径8英寸的硅外延片和SOI材料已研制成功,更大尺寸的片材也在开发中。

理论分析指出30nm左右将是硅MOS集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、SiO2自身性质的限制。尽管人们正在积极寻找高K介电绝缘材料(如用Si3N4等来替代SiO2),低K介电互连材料,用Cu代替Al引线以及采用系统集成芯片技术等来提高ULSI的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子计算和DNA生物计算等之外,还把目光放在以GaAs、InP为基的化合物半导体材料,特别是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容GeSi合金材料等,这也是目前半导体材料研发的重点。

2.2GaAs和InP单晶材料

GaAs和InP与硅不同,它们都是直接带隙材料,具有电子饱和漂移速度高,耐高温,抗辐照等特点;在超高速、超高频、低功耗、低噪音器件和电路,特别在光电子器件和光电集成方面占有独特的优势。

目前,世界GaAs单晶的总年产量已超过200吨,其中以低位错密度的垂直梯度凝固法(VGF)和水平(HB)方法生长的2-3英寸的导电GaAs衬底材料为主;近年来,为满足高速移动通信的迫切需求,大直径(4,6和8英寸)的SI-GaAs发展很快。美国莫托罗拉公司正在筹建6英寸的SI-GaAs集成电路生产线。InP具有比GaAs更优越的高频性能,发展的速度更快,但研制直径3英寸以上大直径的InP单晶的关键技术尚未完全突破,价格居高不下。

GaAs和InP单晶的发展趋势是:

(1)。增大晶体直径,目前4英寸的SI-GaAs已用于生产,预计本世纪初的头几年直径为6英寸的SI-GaAs也将投入工业应用。

(2)。提高材料的电学和光学微区均匀性。

(3)。降低单晶的缺陷密度,特别是位错。

(4)。GaAs和InP单晶的VGF生长技术发展很快,很有可能成为主流技术。

2.3半导体超晶格、量子阱材料

半导体超薄层微结构材料是基于先进生长技术(MBE,MOCVD)的新一代人工构造材料。它以全新的概念改变着光电子和微电子器件的设计思想,出现了“电学和光学特性可剪裁”为特征的新范畴,是新一代固态量子器件的基础材料。

(1)Ⅲ-V族超晶格、量子阱材料。

GaAIAs/GaAs,GaInAs/GaAs,AIGaInP/GaAs;GalnAs/InP,AlInAs/InP,InGaAsP/InP等GaAs、InP基晶格匹配和应变补偿材料体系已发展得相当成熟,已成功地用来制造超高速,超高频微电子器件和单片集成电路。高电子迁移率晶体管(HEMT),赝配高电子迁移率晶体管(P-HEMT)器件最好水平已达fmax=600GHz,输出功率58mW,功率增益6.4db;双异质结双极晶体管(HBT)的最高频率fmax也已高达500GHz,HEMT逻辑电路研制也发展很快。基于上述材料体系的光通信用1.3μm和1.5μm的量子阱激光器和探测器,红、黄、橙光发光二极管和红光激光器以及大功率半导体量子阱激光器已商品化;表面光发射器件和光双稳器件等也已达到或接近达到实用化水平。目前,研制高质量的1.5μm分布反馈(DFB)激光器和电吸收(EA)调制器单片集成InP基多量子阱材料和超高速驱动电路所需的低维结构材料是解决光纤通信瓶颈问题的关键,在实验室西门子公司已完成了80×40Gbps传输40km的实验。另外,用于制造准连续兆瓦级大功率激光阵列的高质量量子阱材料也受到人们的重视。

虽然常规量子阱结构端面发射激光器是目前光电子领域占统治地位的有源器件,但由于其有源区极薄(~0.01μm)端面光电灾变损伤,大电流电热烧毁和光束质量差一直是此类激光器的性能改善和功率提高的难题。采用多有源区量子级联耦合是解决此难题的有效途径之一。我国早在1999年,就研制成功980nmInGaAs带间量子级联激光器,输出功率达5W以上;2000年初,法国汤姆逊公司又报道了单个激光器准连续输出功率超过10瓦好结果。最近,我国的科研工作者又提出并开展了多有源区纵向光耦合垂直腔面发射激光器研究,这是一种具有高增益、极低阈值、高功率和高光束质量的新型激光器,在未来光通信、光互联与光电信息处理方面有着良好的应用前景。

为克服PN结半导体激光器的能隙对激光器波长范围的限制,1994年美国贝尔实验室发明了基于量子阱内子带跃迁和阱间共振隧穿的量子级联激光器,突破了半导体能隙对波长的限制。自从1994年InGaAs/InAIAs/InP量子级联激光器(QCLs)发明以来,Bell实验室等的科学家,在过去的7年多的时间里,QCLs在向大功率、高温和单膜工作等研究方面取得了显着的进展。2001年瑞士Neuchatel大学的科学家采用双声子共振和三量子阱有源区结构使波长为9.1μm的QCLs的工作温度高达312K,连续输出功率3mW.量子级联激光器的工作波长已覆盖近红外到远红外波段(3-87μm),并在光通信、超高分辨光谱、超高灵敏气体传感器、高速调制器和无线光学连接等方面显示出重要的应用前景。中科院上海微系统和信息技术研究所于1999年研制成功120K5μm和250K8μm的量子级联激光器;中科院半导体研究所于2000年又研制成功3.7μm室温准连续应变补偿量子级联激光器,使我国成为能研制这类高质量激光器材料为数不多的几个国家之一。

目前,Ⅲ-V族超晶格、量子阱材料作为超薄层微结构材料发展的主流方向,正从直径3英寸向4英寸过渡;生产型的MBE和M0CVD设备已研制成功并投入使用,每台年生产能力可高达3.75×104片4英寸或1.5×104片6英寸。英国卡迪夫的MOCVD中心,法国的PicogigaMBE基地,美国的QED公司,Motorola公司,日本的富士通,NTT,索尼等都有这种外延材料出售。生产型MBE和MOCVD设备的成熟与应用,必然促进衬底材料设备和材料评价技术的发展。

(2)硅基应变异质结构材料。

硅基光、电器件集成一直是人们所追求的目标。但由于硅是间接带隙,如何提高硅基材料发光效率就成为一个亟待解决的问题。虽经多年研究,但进展缓慢。人们目前正致力于探索硅基纳米材料(纳米Si/SiO2),硅基SiGeC体系的Si1-yCy/Si1-xGex低维结构,Ge/Si量子点和量子点超晶格材料,Si/SiC量子点材料,GaN/BP/Si以及GaN/Si材料。最近,在GaN/Si上成功地研制出LED发光器件和有关纳米硅的受激放大现象的报道,使人们看到了一线希望。

另一方面,GeSi/Si应变层超晶格材料,因其在新一代移动通信上的重要应用前景,而成为目前硅基材料研究的主流。Si/GeSiMODFET和MOSFET的最高截止频率已达200GHz,HBT最高振荡频率为160GHz,噪音在10GHz下为0.9db,其性能可与GaAs器件相媲美。

尽管GaAs/Si和InP/Si是实现光电子集成理想的材料体系,但由于晶格失配和热膨胀系数等不同造成的高密度失配位错而导致器件性能退化和失效,防碍着它的使用化。最近,Motolora等公司宣称,他们在12英寸的硅衬底上,用钛酸锶作协变层(柔性层),成功的生长了器件级的GaAs外延薄膜,取得了突破性的进展。

2.4一维量子线、零维量子点半导体微结构材料

基于量子尺寸效应、量子干涉效应,量子隧穿效应和库仑阻效应以及非线性光学效应等的低维半导体材料是一种人工构造(通过能带工程实施)的新型半导体材料,是新一代微电子、光电子器件和电路的基础。它的发展与应用,极有可能触发新的技术革命。

目前低维半导体材料生长与制备主要集中在几个比较成熟的材料体系上,如GaAlAs/GaAs,In(Ga)As/GaAs,InGaAs/InAlAs/GaAs,InGaAs/InP,In(Ga)As/InAlAs/InP,InGaAsP/InAlAs/InP以及GeSi/Si等,并在纳米微电子和光电子研制方面取得了重大进展。俄罗斯约飞技术物理所MBE小组,柏林的俄德联合研制小组和中科院半导体所半导体材料科学重点实验室的MBE小组等研制成功的In(Ga)As/GaAs高功率量子点激光器,工作波长lμm左右,单管室温连续输出功率高达3.6~4W.特别应当指出的是我国上述的MBE小组,2001年通过在高功率量子点激光器的有源区材料结构中引入应力缓解层,抑制了缺陷和位错的产生,提高了量子点激光器的工作寿命,室温下连续输出功率为1W时工作寿命超过5000小时,这是大功率激光器的一个关键参数,至今未见国外报道。

在单电子晶体管和单电子存贮器及其电路的研制方面也获得了重大进展,1994年日本NTT就研制成功沟道长度为30nm纳米单电子晶体管,并在150K观察到栅控源-漏电流振荡;1997年美国又报道了可在室温工作的单电子开关器件,1998年Yauo等人采用0.25微米工艺技术实现了128Mb的单电子存贮器原型样机的制造,这是在单电子器件在高密度存贮电路的应用方面迈出的关键一步。目前,基于量子点的自适应网络计算机,单光子源和应用于量子计算的量子比特的构建等方面的研究也正在进行中。

与半导体超晶格和量子点结构的生长制备相比,高度有序的半导体量子线的制备技术难度较大。中科院半导体所半导体材料科学重点实验室的MBE小组,在继利用MBE技术和SK生长模式,成功地制备了高空间有序的InAs/InAI(Ga)As/InP的量子线和量子线超晶格结构的基础上,对InAs/InAlAs量子线超晶格的空间自对准(垂直或斜对准)的物理起因和生长控制进行了研究,取得了较大进展。

王中林教授领导的乔治亚理工大学的材料科学与工程系和化学与生物化学系的研究小组,基于无催化剂、控制生长条件的氧化物粉末的热蒸发技术,成功地合成了诸如ZnO、SnO2、In2O3和Ga2O3等一系列半导体氧化物纳米带,它们与具有圆柱对称截面的中空纳米管或纳米线不同,这些原生的纳米带呈现出高纯、结构均匀和单晶体,几乎无缺陷和位错;纳米线呈矩形截面,典型的宽度为20-300nm,宽厚比为5-10,长度可达数毫米。这种半导体氧化物纳米带是一个理想的材料体系,可以用来研究载流子维度受限的输运现象和基于它的功能器件制造。香港城市大学李述汤教授和瑞典隆德大学固体物理系纳米中心的LarsSamuelson教授领导的小组,分别在SiO2/Si和InAs/InP半导体量子线超晶格结构的生长制各方面也取得了重要进展。

低维半导体结构制备的方法很多,主要有:微结构材料生长和精细加工工艺相结合的方法,应变自组装量子线、量子点材料生长技术,图形化衬底和不同取向晶面选择生长技术,单原子操纵和加工技术,纳米结构的辐照制备技术,及其在沸石的笼子中、纳米碳管和溶液中等通过物理或化学方法制备量子点和量子线的技术等。目前发展的主要趋势是寻找原子级无损伤加工方法和纳米结构的应变自组装可控生长技术,以求获得大小、形状均匀、密度可控的无缺陷纳米结构。

2.5宽带隙半导体材料

宽带隙半导体材主要指的是金刚石,III族氮化物,碳化硅,立方氮化硼以及氧化物(ZnO等)及固溶体等,特别是SiC、GaN和金刚石薄膜等材料,因具有高热导率、高电子饱和漂移速度和大临界击穿电压等特点,成为研制高频大功率、耐高温、抗辐照半导体微电子器件和电路的理想材料;在通信、汽车、航空、航天、石油开采以及国防等方面有着广泛的应用前景。另外,III族氮化物也是很好的光电子材料,在蓝、绿光发光二极管(LED)和紫、蓝、绿光激光器(LD)以及紫外探测器等应用方面也显示了广泛的应用前景。随着1993年GaN材料的P型掺杂突破,GaN基材料成为蓝绿光发光材料的研究热点。目前,GaN基蓝绿光发光二极管己商品化,GaN基LD也有商品出售,最大输出功率为0.5W.在微电子器件研制方面,GaN基FET的最高工作频率(fmax)已达140GHz,fT=67GHz,跨导为260ms/mm;HEMT器件也相继问世,发展很快。此外,256×256GaN基紫外光电焦平面阵列探测器也已研制成功。特别值得提出的是,日本Sumitomo电子工业有限公司2000年宣称,他们采用热力学方法已研制成功2英寸GaN单晶材料,这将有力的推动蓝光激光器和GaN基电子器件的发展。另外,近年来具有反常带隙弯曲的窄禁带InAsN,InGaAsN,GaNP和GaNAsP材料的研制也受到了重视,这是因为它们在长波长光通信用高T0光源和太阳能电池等方面显示了重要应用前景。

以Cree公司为代表的体SiC单晶的研制已取得突破性进展,2英寸的4H和6HSiC单晶与外延片,以及3英寸的4HSiC单晶己有商品出售;以SiC为GaN基材料衬低的蓝绿光LED业已上市,并参于与以蓝宝石为衬低的GaN基发光器件的竟争。其他SiC相关高温器件的研制也取得了长足的进步。目前存在的主要问题是材料中的缺陷密度高,且价格昂贵。

II-VI族兰绿光材料研制在徘徊了近30年后,于1990年美国3M公司成功地解决了II-VI族的P型掺杂难点而得到迅速发展。1991年3M公司利用MBE技术率先宣布了电注入(Zn,Cd)Se/ZnSe兰光激光器在77K(495nm)脉冲输出功率100mW的消息,开始了II-VI族兰绿光半导体激光(材料)器件研制的高潮。经过多年的努力,目前ZnSe基II-VI族兰绿光激光器的寿命虽已超过1000小时,但离使用差距尚大,加之GaN基材料的迅速发展和应用,使II-VI族兰绿光材料研制步伐有所变缓。提高有源区材料的完整性,特别是要降低由非化学配比导致的点缺陷密度和进一步降低失配位错和解决欧姆接触等问题,仍是该材料体系走向实用化前必须要解决的问题。

宽带隙半导体异质结构材料往往也是典型的大失配异质结构材料,所谓大失配异质结构材料是指晶格常数、热膨胀系数或晶体的对称性等物理参数有较大差异的材料体系,如GaN/蓝宝石(Sapphire),SiC/Si和GaN/Si等。大晶格失配引发界面处大量位错和缺陷的产生,极大地影响着微结构材料的光电性能及其器件应用。如何避免和消除这一负面影响,是目前材料制备中的一个迫切要解决的关键科学问题。这个问题的解泱,必将大大地拓宽材料的可选择余地,开辟新的应用领域。

目前,除SiC单晶衬低材料,GaN基蓝光LED材料和器件已有商品出售外,大多数高温半导体材料仍处在实验室研制阶段,不少影响这类材料发展的关键问题,如GaN衬底,ZnO单晶簿膜制备,P型掺杂和欧姆电极接触,单晶金刚石薄膜生长与N型掺杂,II-VI族材料的退化机理等仍是制约这些材料实用化的关键问题,国内外虽已做了大量的研究,至今尚未取得重大突破。

3光子晶体

光子晶体是一种人工微结构材料,介电常数周期的被调制在与工作波长相比拟的尺度,来自结构单元的散射波的多重干涉形成一个光子带隙,与半导体材料的电子能隙相似,并可用类似于固态晶体中的能带论来描述三维周期介电结构中光波的传播,相应光子晶体光带隙(禁带)能量的光波模式在其中的传播是被禁止的。如果光子晶体的周期性被破坏,那么在禁带中也会引入所谓的“施主”和“受主”模,光子态密度随光子晶体维度降低而量子化。如三维受限的“受主”掺杂的光子晶体有希望制成非常高Q值的单模微腔,从而为研制高质量微腔激光器开辟新的途径。光子晶体的制备方法主要有:聚焦离子束(FIB)结合脉冲激光蒸发方法,即先用脉冲激光蒸发制备如Ag/MnO多层膜,再用FIB注入隔离形成一维或二维平面阵列光子晶体;基于功能粒子(磁性纳米颗粒Fe2O3,发光纳米颗粒CdS和介电纳米颗粒TiO2)和共轭高分子的自组装方法,可形成适用于可光范围的三维纳米颗粒光子晶体;二维多空硅也可制作成一个理想的3-5μm和1.5μm光子带隙材料等。目前,二维光子晶体制造已取得很大进展,但三维光子晶体的研究,仍是一个具有挑战性的课题。最近,Campbell等人提出了全息光栅光刻的方法来制造三维光子晶体,取得了进展。

4量子比特构建与材料

随着微电子技术的发展,计算机芯片集成度不断增高,器件尺寸越来越小(nm尺度)并最终将受到器件工作原理和工艺技术限制,而无法满足人类对更大信息量的需求。为此,发展基于全新原理和结构的功能强大的计算机是21世纪人类面临的巨大挑战之一。1994年Shor基于量子态叠加性提出的量子并行算法并证明可轻而易举地破译目前广泛使用的公开密钥Rivest,Shamir和Adlman(RSA)体系,引起了人们的广泛重视。

所谓量子计算机是应用量子力学原理进行计的装置,理论上讲它比传统计算机有更快的运算速度,更大信息传递量和更高信息安全保障,有可能超越目前计算机理想极限。实现量子比特构造和量子计算机的设想方案很多,其中最引人注目的是Kane最近提出的一个实现大规模量子计算的方案。其核心是利用硅纳米电子器件中磷施主核自旋进行信息编码,通过外加电场控制核自旋间相互作用实现其逻辑运算,自旋测量是由自旋极化电子电流来完成,计算机要工作在mK的低温下。

这种量子计算机的最终实现依赖于与硅平面工艺兼容的硅纳米电子技术的发展。除此之外,为了避免杂质对磷核自旋的干扰,必需使用高纯(无杂质)和不存在核自旋不等于零的硅同位素(29Si)的硅单晶;减小SiO2绝缘层的无序涨落以及如何在硅里掺入规则的磷原子阵列等是实现量子计算的关键。量子态在传输,处理和存储过程中可能因环境的耦合(干扰),而从量子叠加态演化成经典的混合态,即所谓失去相干,特别是在大规模计算中能否始终保持量子态间的相干是量子计算机走向实用化前所必需克服的难题。

5发展我国半导体材料的几点建议

鉴于我国目前的工业基础,国力和半导体材料的发展水平,提出以下发展建议供参考。

5.1硅单晶和外延材料硅材料作为微电子技术的主导地位

至少到本世纪中叶都不会改变,至今国内各大集成电路制造厂家所需的硅片基本上是依赖进口。目前国内虽已可拉制8英寸的硅单晶和小批量生产6英寸的硅外延片,然而都未形成稳定的批量生产能力,更谈不上规模生产。建议国家集中人力和财力,首先开展8英寸硅单晶实用化和6英寸硅外延片研究开发,在“十五”的后期,争取做到8英寸集成电路生产线用硅单晶材料的国产化,并有6~8英寸硅片的批量供片能力。到2010年左右,我国应有8~12英寸硅单晶、片材和8英寸硅外延片的规模生产能力;更大直径的硅单晶、片材和外延片也应及时布点研制。另外,硅多晶材料生产基地及其相配套的高纯石英、气体和化学试剂等也必需同时给以重视,只有这样,才能逐步改观我国微电子技术的落后局面,进入世界发达国家之林。

5.2GaAs及其有关化合物半导体单晶材料发展建议

GaAs、InP等单晶材料同国外的差距主要表现在拉晶和晶片加工设备落后,没有形成生产能力。相信在国家各部委的统一组织、领导下,并争取企业介入,建立我国自己的研究、开发和生产联合体,取各家之长,分工协作,到2010年赶上世界先进水平是可能的。要达到上述目的,到“十五”末应形成以4英寸单晶为主2-3吨/年的SI-GaAs和3-5吨/年掺杂GaAs、InP单晶和开盒就用晶片的生产能力,以满足我国不断发展的微电子和光电子工业的需术。到2010年,应当实现4英寸GaAs生产线的国产化,并具有满足6英寸线的供片能力。

5.3发展超晶格、量子阱和一维、零维半导体微结构材料的建议

(1)超晶格、量子阱材料从目前我国国力和我们已有的基础出发,应以三基色(超高亮度红、绿和蓝光)材料和光通信材料为主攻方向,并兼顾新一代微电子器件和电路的需求,加强MBE和MOCVD两个基地的建设,引进必要的适合批量生产的工业型MBE和MOCVD设备并着重致力于GaAlAs/GaAs,InGaAlP/InGaP,GaN基蓝绿光材料,InGaAs/InP和InGaAsP/InP等材料体系的实用化研究是当务之急,争取在“十五”末,能满足国内2、3和4英寸GaAs生产线所需要的异质结材料。到2010年,每年能具备至少100万平方英寸MBE和MOCVD微电子和光电子微结构材料的生产能力。达到本世纪初的国际水平。

宽带隙高温半导体材料如SiC,GaN基微电子材料和单晶金刚石薄膜以及ZnO等材料也应择优布点,分别做好研究与开发工作。

半导体材料设计例8

中图分类号: TN304.055?34; TN321.5 文献标识码: A 文章编号: 1004?373X(2017)12?0136?04

Abstract: The previously?proposed energy?saving design method of the semiconductor thin?film transistor has poor energy?saving effect because the semiconductor thin?film transistor is not easy to control, so a superior energy?saving design method of semiconductor thin?film transistor is put forward. The energy?saving design principles of the power loop and drive circuit in semiconductor thin?film transistor are summarized. The architecture design scheme of the terminal device is given. The power loop is used to control the power?supply frequency of the semiconductor thin?film transistor to realize the basic energy saving. The drive circuit is adopted to regulate the electric energy loss further, manage the current harmonic of the power loop, and improve the switching performance of the semiconductor thin?film transistor. The mode of model construction is employed to eliminate the circuit noise, and optimize the energy storage performance. The experimental verification results show that the method makes the semiconductor thin?film transistor have high switching performance, high energy storage level, and superior energy?saving effect.

Keywords: semiconductor; thin?film transistor; energy saving; power loop

0 引 言

随着信息时代的悄然来临,显示器也向着智能化、节能化的目标不断迈进,半导体薄膜晶体管以其加工简便、成本低廉、体积小和高迁移率等优势,逐渐成为显示器的主流制作材料[1]。近年来,人们对显示器节能效果的要求越来越高。为了响应市场需求,有关组织曾提出多种节能设计方法,但由于受到半导体薄膜晶体管不易受控缺陷的影响,其节能效果不佳,更为优异的半导体薄膜晶体管的节能设计方法仍在研究中[2]。

文献[3]以无机复合材料为涂层,对半导体薄膜晶体管进行了节能设计。无机复合材料能够有效改善半导体的兼容性能,并弱化分子层,提高半导体薄膜晶体管的开关性能,但却无法对半导体薄膜晶体管中不同层次组件之间的平衡能力进行优化,因此节能效果不佳。文献[4]基于有机半导体材料提出一种半导体薄膜晶体管的节能设计方法,这一方法将有机半导体材料置于设计中心点,对半导体薄膜晶体管中的通信工作进行性能优化,其成本低廉,并且储能水平良好,但迁移率低、寿命短,并非良好的节能方法。文献[5]通过变更半导体薄膜晶体管中的电极材料达到节能目的,电极材料的导电性、鲁棒性和接触点对管中电流的流通性具有较大的影响,因此该方法的节能效果要优于以上两种方法,但在一定程度上限制了半导体薄膜晶体管的开关性能。

为了改善以上问题,提出一种能够同时兼具优良的开关性能和储能水平,并且节能效果较好的半导体薄膜晶体管的节能设计方法,给出节能原理,对电源回路和驱动电路进行重点设计。

1 半导体薄膜晶体管节能原理

半导体薄膜晶体管的电能耗损率与其供电频率有很大关系,如图1所示。当供电频率处于[500 Hz,50 kHz]的范围内,半导体薄膜晶体管的电能耗损率迅速增长,最高可达125%。而当供电频率处于[50 Hz,18 kHz]的范围内,电能耗损率最高仅为102%,可节约大概23%的电能[6]。基于上述原理,所提半导体薄膜晶体管的节能设计方法将设计出一种电源回路,使半导体薄膜晶体管的供电频率始终维持在50 Hz~18 kHz,保证最基本的节能效果。

为了在保证节能效果的同时,使半导体薄膜晶体管仍具有优良的开关性能,所提方法还对半导体薄膜晶体管驱动电路的设计提出了要求:

(1) 在维持节能效果的前提下,驱动电路的驱动电压应富余,保证半导体薄膜晶体管的可持续工作;

(2) 为半导体薄膜晶体管提供的工作电流应低于其额定值,并使驱动电路稳定不变;

(3) 可对电源回路的电流谐波进行实时管控;

(4) 驱动电路中各组件应具备较强的兼容性和安全性。

根据上述要求,应在驱动电路中使用具有强耐高温性和抗干扰性的可编程硅单晶片,其电阻率为50 ,可对电流、电压和驱动时间进行合理调节,适应所提方法对半导体薄膜晶体管的节能要求。

同时,为了获取较为优异的储能水平,需要对半导体薄膜晶体管的终端设备架构进行调节,以合理消除其内部电路噪音,如图2所示。以半导体薄膜晶体管中基区的结深和运动分子数量为依据,设置展宽区长度,通常当结深为20 μm时,展宽区为60 μm。终端设备所使用的管分压为2环,可在减轻储能压力的同时节约设计成本[7]。

2 半导体薄膜晶体管的节能设计方法研究

2.1 电源回路设计

本文半导体薄膜晶体管节能设计方法给出的电源回路主要由单相半控桥和三相全桥变流器构成,如图3所示,其功能参数如表1所示。由图3可知,单相半控桥的作用是整流,电源回路的初始输入电压为恒定的交流电,如果电源回路中的电容储能效果非常好,那么经单相半控桥整流后的交流电则能够以任意电压进行直流变换。调节直流电压至所需数值,再通过三相全桥变流器进行直流、交流电压转换,便可使半导体薄膜晶体管的供电频率维持在[50 Hz,18 kHz]范围内。

以往提出的半导体薄膜晶体管节能设计方法通常使用变压器实现电压转换,导致电源回路产生了较多的功率干扰,并且无法带来优异的节能效果,而三相全桥变流器具有携带方便、稳定性强的优点,可持续工作3 800 h,电压转换性能更加强劲[8]。在进行电压转换时,应使三相全桥变流器内部的两个晶体管单独工作,防止电源回路出现短路状况,故应将二者的排列角度置于120°。

2.2 驱动电路设计

本文提出的半导体薄膜晶体管节能设计方法中,驱动电路的作用是调节半导体薄膜晶体管中不必要的电能损耗,并对电源回路的电流谐波进行管控,达到改善半导体薄膜晶体管开关性能的目的。驱动电路中标准电流波形以及其电路设计图如图4、图5所示。

由图4、图5可知,驱动电路以其标准电流波形进行工作,通过光电耦合方式对半导体薄膜晶体管和电源回路的受控区域进行划分。整个驱动电路拥有8个监控接口。接口1,2用来连接脉冲,其两端电压为3.5 V,可实现半导体薄膜晶体管与电源回路的高性能连通。

当驱动电路对半导体薄膜晶体管的电能损耗进行调节时,需要将接口1,2的两端电压调至0 V,此时电容C5处于放电状态,接口3,8可实现连通,并使电路产生降压现象,半导体薄膜晶体管将出现反向偏置电压,电能损耗也相应缩减[9]。驱动电路对电源回路电流谐波的管控工作与上述调节较为类似,其操控的是接口7,8两端电压,使用开关控制电压升降,使接口5,6处于连通状态,进而实现对电流谐波的缩减,增强半导体薄膜晶体管的开关性能,为优异的节能效果提供后台支持。

2.3 电路噪音消除模型

半导体薄膜晶体管的内部电路噪音会导致其储能水平的降低,对节能效果造成较大的影响,必须采用一种较为有效的方式对噪音进行消除。为此,所提半导体薄膜晶体管的节能设计方法构建了电路噪音消除模型,该模型将半导体薄膜晶体管的内部电路分为正、反相两部分,将正向的输入、输出电压设为,,反向的输入、输出电压设为,,当正、反两相的电压近视相等时,便可实现对半导体薄膜晶体管内部电路噪音的消除[10]。如果将正、反两相的实时电压绘制成曲线,用表示正相电压曲线,那么反相电压曲线则可表示为。从坐标处向正相电压曲线做一条斜率为1的辅助线,将该辅助线与的交点坐标设为,则可获取关系式如下:

式中:是驱动电路输出电压;是半导体薄膜晶体管实际供电电压;是漏电电压;是半导体薄膜晶体管的设计参数。至此,消除半导体薄膜晶体管内部电路噪音可看作是求解的过程。由于不同的半导体薄膜晶体管正、反两相电压曲线并不重合,故电路噪音消除模型定义了一个噪音极限值,当取最大值时,和可看作近似相等,的最大值如下:

3 实验验证

3.1 验现场

为了验证本文提出的半导体薄膜晶体管节能设计方法的各项性能,需要进行实验。实验将国内某科技公司生产的半导体薄膜晶体管与万用表、存储电容和显示板相连,如图6所示。使用电压、频率调节仪控制实验自变量,对本文方法、文献[3]方法和文献[4]方法的开关性能、储能水平和节能效果进行对比验证。

3.2 开关性能验证

半导体薄膜晶体管的开关性能是其最重要的性能之一,是保证半导体薄膜晶体管与其他电路元件有效沟通的基础性能。以往的节能设计中通常会削弱开关性能,导致半导体薄膜晶体管的兼容性降低,得不偿失,因此,开关性能的验证必不可少。在本文实验中,通过调节半导体薄膜晶体管的偏置电压,观察其偏置电流随时间的变化趋势,来确定不同方法下半导体薄膜晶体管开关性能的优劣性,如图7所示。与文献[3]方法和文献[4]方法相比,本文方法下半导体薄膜晶体管偏置电流最为稳定,表现出优良的开关性能。

3.3 储能水平验证

在光照状态下和无光状态下对不同方法下半导体薄膜晶体管的储能水平进行了验证,使用偏置电压来表示储能水平,二者成正比关系,实验结果如图8所示。可看出,在光照状态下,三种方法的储能水平无较大差别,而在无光状态下,本文方法的偏置电压要远高于文献[3]方法以及文献[4]方法,表现出优良的储能水平。

3.4 节能效果验证

实验令半导体薄膜晶体管正常运行48 h,使用文献[3]方法、文献[4]方法以及本文方法对其进行节能,实验结果如表2所示,可知本文方法的节能效果最佳。

表2 节能效果验证实验结果 kW・h

4 结 论

本文提出一种能够同时兼具优良的开关性能和储能水平,并且节能效果较好的半导体薄膜晶体管的节能设计方法。半导体薄膜晶体管的电能耗损率与其供电频率有很大关系,使半导体薄膜晶体管的供电频率始终维持在50 Hz~18 kHz,可保证最基本的节能效果。因此,本文方法给出节能原理,对电源回路和驱动电路进行了重点设计。经实验验证可得,在本文方法下,半导体薄膜晶体管的开关性能、储能水平和节能效果均优于以往提出的节能设计方法,具有较高的使用价值。

参考文献

[1] 栾庆彬,皮孝东.半导体纳米晶体在薄膜晶体管中的应用[J].材料导报,2014,28(21):1?7.

[2] 刘振,徐文亚,钱龙,等.印刷半导体碳纳米管薄膜晶体管光电性能研究[J].影像科学与光化学,2014,32(3):260?266.

[3] 周腾,陈征,崔铮.透明氧化物半导体及其溶液法制备薄膜晶体管[J].中国材料进展,2014,33(3):144?150.

[4] 李谊,刘琪,蔡婧,等.n?型有机半导体插入层提高p?型并五苯薄膜晶体管性能(英文)[J].无机化学学报,2014,30(11):2621?2625.

[5] 朱大龙,谢应涛,许鑫,等.基于金属电极和有机半导体层的制备工艺对有机薄膜晶体管性能的研究[J].半导体光电,2015,36(1):88?91.

[6] 周小娜,陈志英,苏焕先,等.智能型节能交流接触器控制器设计[J].电气工程学报,2015,10(12):27?31.

[7] 祁祥.谈绿色建筑和建筑节能设计[J].山西建筑,2014,40(32):198?200.

半导体材料设计例9

中国科学院王占国院士同半导体打了一辈子交道,他这样回答:半导体是介于导体和绝缘体之间的一类材料。它有四个特点:热敏性,与金属不同,半导体的电阻与温度变化是相反的,电阻越小温度越高;光敏性,光一照,它的电导就发生变化;光伏效应,光照产生光电压;整流效应,从A端到B端是通的,从B端到A端就不通了。

半导体的特性为我们带来了无穷益处:“如发射一吨重的卫星,假如用晶体管代替电子管重量可减轻100千克,就可以节省9吨的燃料。它不仅广泛应用在航空航天、人造卫星等高科技领域,而且是我们生活中不可或缺的:医学上的核磁共振仪,日常用的收音机、电视机、洗衣机、微波炉、电冰箱、电子表、手机……里面核心控制的设备都是半导体。半导体应该说是无孔不入、无处不在。”

硅作为半导体材料的代表,现在已经成为微电子技术的基础材料,我们用的电子元器件和电路的90%都是硅材料。使用硅材料做集成电路,产值已达到每年约3000亿美元,由硅材料做成的器件和电路可以拉动几万亿美元的电子产业,半导体硅材料可以说是信息时代的基础。

追随一生的半导体

王占国1938年12月29日生于河南镇平。1962年毕业于南开大学物理系,同年到中科院半导体所工作。从那时起,他的人生脚步,就没有离开过半导体这个领域。

参加工作以后,王占国致力于半导体材料光电性质和硅太阳电池辐照效应研究。其中,硅太阳电池电子辐照效应研究成果为我国人造卫星用硅太阳电池定型(由PN改为NP)投产起了关键作用。

1971~1980年,他负责设计、建成了低温电学测量和光致发光实验系统,并对GaAs和其它III-V族化合物半导体材料的电学、光学性质进行了研究。其中,体GaAs热学和强场性质的实验结果以及与林兰英先生一起提出的“GaAs质量的杂质控制观点”,对我国70年代末纯度GaAs材料研制方向的战略转移和GaAs外延材料质量在80年代初达国际先进水平贡献了力量。

1980~1983年,经黄昆和林兰英两位所长推荐,他赴国际著名的深能级研究中心瑞典隆德大学固体物理系,从事半导体深能级物理和光谱物理研究。在该领域权威H.G.Grimmeiss教授等的支持和合作下,做出了多项有国际影响的工作:提出了识别两个深能级共存系统两者是否是同一缺陷不同能态新方法,解决了国际上对GaAs中A、B能级和硅中金受主及金施主能级本质的长期争论;提出了混晶半导体中深能级展宽和光谱谱线分裂的物理新模型,解释了它们的物理实质;澄清和识别了一些长期被错误指派的GaAs中与铜等相关的发光中心等。

1984~1993年,在半导体材料生长及性质研究中,提出了GaAs电学补偿五能级模型和电学补偿新判据,为提高GaAs质量、器件与电路的成品率提供了依据。与人合作,提出了直拉硅中新施主微观结构新模型,摒弃了新施主微观结构直接与氧相关的传统观点,成功地解释了现有的实验事实,预示了它的新行为;与龚秀英等同事合作,在国内率先开展了超长波长锑化物材料生长和性质研究,并首先在国内研制成功InGaAsSb,AlGaAsSb材料及红外探测器和激光器原型器件。

他协助林兰英先生,开拓了我国微重力半导体材料科学研究新领域,首次在太空从熔体中生长出GaAs单晶并对其光、电性质作了系统研究,受到国内外同行的高度评价。

他于1986年任半导体所研究员,材料室主任;1990年任博士生导师,1991~1995年担任副所长;1995年当选为中国科学院院士。1991~2001年任国家高技术新材料领域专家委员会委员、常委、功能材料专家组组长,因对863计划做出突出贡献,2001年863计划实施十五周年时,被科技部授予先进个人称号;1996~2000年任国家S-863计划纲要建议软课题研究新材料技术领域专家组组长;2003年任国家材料中长期科技发展战略研究新材料专家组组长;1997~2002年和2006~2009年任国家自然科学基金信息学部半导体学科评审专家组组长等。此外,还有多种学术兼职。

任863专家委员会委员期间,他积极推动了我国全固态激光器的研发和半导体照明事业的发展。如今,我国的半导体白光照明已经处于国际先进水平,极大地促进了节能环保事业的发展。

从上世纪90年代起,他工作的重点已集中在半导体低维结构和量子器件这一国际前沿研究方面,先后主持和参与负责十多个国家863、973,国家重点科技攻关,国家自然科学基金重大、重点和面上项目以及中科院重点、重大等研究项目。

他和MBE组的同事一起,在成功地研制了国内领先、国际先进水平的电子迁移率(4.8K)高达百万的2DEG材料和高质量、器件级HEMT和P-HEMT结构材料的基础上,又发展了应变自组装In(Ga)As/GaAs,InAlAs/AlGaAs/GaAs, InAs/InAlAs/InP和InAs/InGaAs/InP等量子点、量子线和量子点(线)超晶格材料生长技术,并初步在纳米尺度上实现了对量子点(线)尺寸、形状和密度的可控生长;首次发现InP基InAs量子线空间斜对准的新现象;成功地制备了从可见光到近红外的量子点(线)材料,并研制成功室温连续工作输出光功率达4瓦(双面之和)的大功率量子点激光器,为当时国际上报道的最好结果之一;红光量子点激光器和 InGaAs/InAlAs、GaAs/AlGaAs量子级联激光器与探测器材料及其器件的研究水平也处在国际的前列;2001年,他作为国家重点基础研究发展计划973项目“信息功能材料相关基础问题”的首席科学家,又提出了柔性衬底的概念,为大失配异质结构材料体系研制开辟了一个可能的新方向。

上述研究成果曾获国家自然科学二等奖和国家科技进步三等奖,中国科学院自然科学一等奖和中国科学院科技进步一、二和三等奖,何梁何利科学与技术进步奖,国家重点科技攻关奖以及优秀研究生导师奖等十多项;从1983年以来,先后在国外著名学术刊物180多篇,培养博士、硕士和博士后百余名。

新科技革命的起点

半导体材料设计例10

近年来,饮料工业已逐渐成为我国食品工业中新崛起的一大行业。如何构想出一个外形教美观、手感较好,制造成品所需材料体积又较省的易拉罐是每个商家都力争的。只要稍加留意就会发现销量很大的饮料的易拉罐的形状和尺寸几乎都是一样的。看来,这并非偶然,这是高等数学中导数知识在包装设计中的最优化设计问题。

案例1:(易拉罐的设计)如果把易拉罐视为圆柱体,是否注意到大饮料公司出售的易拉罐的半径与高之比是多少?不妨测量一下,为什么这些公司会选择这种比例呢?若要设计一个容积为500 的圆柱形容器,当其底面半径与高之比为多少时容器所耗材料最少?

分析:当设计易拉罐时,大饮料公司除考虑外包装的美观之外,还必须考虑容积一定的情况下,所用材料最少、焊接或加工制作费最低等。

解:设其底面半径为 ,高为 ,其面积为 (1)

容积为 (2)

将 代入(1)式得 ,令 ,得唯一驻点 。

因为此问题的最小值一定存在,此驻点即为最小值点,此时 ,即 。

故当底面半径与高之比为1:2时,所用材料最少。

案例2:饮料瓶大小对饮料公司利润的影响

(1)你是否注意过,市场上等量的小包装的物品一般比大包装的要贵些?

(2)是不是饮料瓶越大,饮料公司的利润越大?

【背景知识】某制造商制造并出售球型瓶装的某种饮料.瓶子的制造成本是 分,其中 是瓶子的半径,单位是厘米。已知每出售1 的饮料,制造商可获利0.2分,且制造商能制作的瓶子的最大半径为 。

(1)瓶子半径多大时,能使每瓶饮料的利润最大?

(2)瓶子的半径多大时,每瓶的利润最小?

分析:根据净利润=利润总额-制造成本先建立目标函数,再转化为函数的最值问题求解。

解:设每瓶饮料的利润为 ,得

则 ,令 ,得驻点 (舍去)

当 时, ,它表示 为减函数,即半径越大,利润越低;

当 时, ,它表示 为增函数,即半径越大,利润越高。

故当半径 时,此时利润最小为 ;因 ,故此时利润小于0,表示此种瓶内饮料的利润还不够瓶子的成本。

当半径为 时,此时利润最大为 分。

案例3:请你设计一个包装盒.如图所示, 是边长为60 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得 四个点重合于图中的点 ,正好形成一个正四棱柱形状的包装盒. 在 上,是被切去的等腰直角三角形斜边的两个端点.设 。试问 取何值时,包装盒的容积 最大?此时包装盒的高与底面边长的比值是多少?

分析:由实际问题抽象出函数模型,利用导数求函数最优解.

解:设包装盒的高为 ,底面边长为 ,由 得

由 ,得 ,又包装盒为长方体,故容积

则 ,令 ,得驻点 (舍去)。

当 时,

由判定极值的第一充分条件得 时, 取得极大值,也是最大值。

此时 , ,即包装盒的高与底面边长的比值为1:2。

参考文献