期刊在线咨询服务,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

期刊咨询 杂志订阅 购物车(0)

航空航天的技术领域模板(10篇)

时间:2023-07-30 10:09:39

航空航天的技术领域

航空航天的技术领域例1

激光技术作为科学技术发展的重要产物,对带动相关行业领域的发展具有不可替代的作用。但较多领域如航空航天、机械加工在应用激光技术中,并未取得良好的效果,究其原因在于未使激光技术中较多技术手段的优势发挥出来,这就要求实际运用正确认识激光技术的本质并结合具体行业要求进行技术手段选择。因此,本文对航空航天领域、机械加工行业中现代激光技术的运用研究,具有十分重要的意义。

机械加工行业中激光技术的运用分析

a打标与切割技术的运用

机械加工行业中,一般对设备产品进行特殊符号、标记的设计都要求利用到激光打标技术。该技术应用极为广泛,如机械加工行业中的仪表、仪器、量具、汽车工业以及电子工业等,都涉及到打标工作。一般打标技术涉及到的对象多集中在印刷电路板、合成材料、橡胶、陶瓷、塑料、铝合金以及不锈钢等方面。另外,机械加工过程中往往也涉及较多材料处理工作,此时便要求引入切割技术,其主要通过聚焦镜的应用融化材料,并在激光束作用下将熔化材料吹走,这样便有相应的切缝形成。现代机械加工领域中,都将激光切割技术作为高新加工方式,能够使传统切割过程中变形过大、缝隙过大以及操作时间较长等问题得到解决。

b焊接与淬火技术的运用

关于激光焊接技术,其实质为将设备构件至于激光下,使构件能够连接为一体。将该技术引入机械加工领域中,其优势主要表现在对多种类型金属都可进行焊接,的 且焊接后不会出现凹陷或其他变形现象,整个焊缝在外表上极为美观。目前机械加工领域中焊接技术的运用主要表现在两方面,即:①焊接金刚石锯片,可直接利用该技术实现;②对壳体类零件、汽车板以及钢板等,可利用激光焊接技术。该技术的运用对于解决传统机械加工中焊接质量不高、焊接表面美观性差等问题可起到明显的作用。另外,在淬火技术运用方面,其主要对工件表面利用高能激光进行扫描,这样整个工件面温度上升极快,且可瞬间自冷。所以其优势集中表现为:①相比一般淬火硬度,激光淬火方式下的制品将超出其15%左右;②加工时间较短,且可直接利用计算机对整个操作进行控制,具有一定的自动化加工特点,生产效率极高;③技术应用下不会产生较多的污染,且不必引入冷却介质便可快速完成低温淬火。

c熔覆技术与打孔技术的运用

对于机械加工领域中的再制造工程,常涉及到旧设备修复工作,而设备修复的主要技术便以激光熔覆为主。实际应用过程中,可直接对旧设备二次加工,提升设备的使用性能,能够满足现代企业发展中资源节约的要求。另外,机械加工领域中的激光技术,也表现在打孔技术方面。一般对于较软材料、金属材料或非金属材料等,往往需进行不同类型孔的加工,该过程中便可引入打孔技术。从打孔技术应用的优势看,主要表现在打孔精密度较高,能够准确定位中心孔,且能够自由控制打孔深度,不会产生较大的变形问题。

航空航天领域中激光技术的运用分析

a航空航天工业中激光焊接的应用

一般该工业较多零部件的焊接多引入铆接方式,其应用下尽管能够熔铝合金材料,但由于热处理效果较差,极易导致晶间裂纹的产生。而将激光焊接方式引入,这些问题可直接得到解决,且整个机身制造过程都得以简化。相关实践研究发现,利用激光焊接取代铆接工艺,其可使机身自重降低许多,这样相应的制造成本也会节约,可见激光焊接的作用极为明显。此外,该工业领域中,对于零件冷却孔打孔工作,要求引入激光打孔方式,其成本较低且打孔效果较高。

b航空航天工业中激光切割的应用

传统用于该工业中的切割手段很难保证外壳材料得到有效处理,原因在于外壳材料多具有硬度高、强度高等特点。而在激光切割技术运用下,许多如发动机机匣、主旋翼、尾翼壁板以及蒙皮等自带处理中都可起到良好的效果。

c航空航天工业中表面与成形技术的应用

由于航空发动机较多构件在价格上较为昂亏,若不断更换将会耗费极多的成本,因此可引入激光表面技术,对受损的构件进行修复,如发动机叶片受损后,便可采取表面技术中的三维修复措施,可保证修复后的构件整体性能不受到影响。由此可见,航空工业中的构件制造与修复很大程度需依托表面技术、成形技术来实现。

结论

现代激光技术的运用为航空工业以及机械加工工业提供坚实的技术保障。实际应用中,应结合具体的行业领域要求,合理选择相应的技术手段,如机械加工领域中的焊接、打标打孔以及切割等,以及航空工业中焊接、切割、成形与表面技术等,确保激光技术作用得到充分发挥,才能推动相关行业领域的快速发展。

参考:

航空航天的技术领域例2

新航天战略的主要内容

新航天战略是指导俄罗斯未来航天发展的纲领性文件,凸显了俄对航天活动的高度重视和前瞻谋划,反映了俄航天领域发展的整体思想。其主要内容包括以下5个方面:①在月球研究及行星学、天体物理学等基础研究领域居国际领先地位;②参与包括太阳系行星研究在内的国际空间研究项目;③保持国产航天设备及操控技术等方面的国际领先水平;④拥有可确保从本土独立进入太空能力的尖端航天工业;⑤在世界航天市场占据有利位置。

为了实现上述目标,新航天战略明确了未来航天活动三大优先方向:一是发展航天通信、对地观测、卫星导航等系统,以及用于基础研究的航天设备和技术;二是建造用于空间开发的载人、运输和行星着陆设备,以及可重复使用的航天发射系统;三是实施载人探测火星的国际合作,为建造新一代的轨道站而建立科学技术储备。

此外,该战略还阐明了俄罗斯未来航天活动遵循的6项基本原则:①航天活动要与国家经济、科技潜力相适应,确保有利于新技术研发;②确保俄罗斯独立进入太空的能力,以实现航天领域的战略利益;③鼓励俄国内机构与外国建立战略伙伴关系,以互利合作原则参与国际合作;④保持国家控制和主导核心科研生产实体、关键航天技术及重大科研项目,同时鼓励商业机构利用航天活动成果提供社会服务;⑤坚持国际太空权高于国家太空权,不承认一国对空问及任何天体的要求,坚决行使自卫权并在必要时利用各种手段保持本国航天设备免受干扰和侵犯;⑥发展初期,利用外国先进技术尽快使俄无线电子和特种材料工业达到国际先进水平,恢复尖端人才培养体系。

在新的航天战略中,俄罗斯将未来的航天能力发展划分为4个主要阶段:

能力恢复阶段(2015年前) 部署必要数量的在轨航天器;保持运载工具和载人航天领域的主导地位;借助国外先进电子元器件升级国产航天器;完成东方航天发射场一期工程建设;建立具有国际竞争力的综合性企业;

能力巩固阶段 (2016~2020年)部署可全面保障社会经济、科学、国防和国家安全需求,具有国际先进水平的在轨航天器;为生产尖端国产电子元器件创造条件;做好国际空间站离轨坠落的准备工作;建造新一代重型载人飞船;完成月球车发射和土壤取样等探月任务;参与在火星表面部署研究站等国际合作项目;在航天领域新兴市场占据主导地位;

突破阶段(2021~2030年) 部署和维护在轨航天器群,为用户提供全面、优质服务,开发先进的近地空间航天器维护、校正和维修技术;在近空、深空、行星等天体表面建设航天设施;建造地球信息模型;拓展独立进入太空的能力,启用东方航天发射场,建设超重型运载火箭系统;开展载人登月的演示验证飞行;在国际航天技术和服务市场占据有竞争力的地位;

突破性发展阶段(2030年后) 探索全新的、目前尚未预知或出于概念阶段的航天活动;落实开发近地空间和月球的大型项目。为全面参与准备和实施载人探测火星计划的国际协作建立科学技术和工艺基础;实现定期载人登月飞行,在月球部署永久性的工作站和科学实验室;开发可重复使用的登月系统。

新航天战略制定的背景和意图

近年来,随着经济状况的不断好转,俄罗斯一直致力于恢复航天强国地位,并认为发展航天有利于带动大国地位的提升。然而近期一连串的航天事故不仅暴露了俄罗斯航天工业存在的一些弊病,而且对俄罗斯的航天发展也产生了一定的消极影响。新航天战略提出了俄罗斯未来航天发展目标,明确了俄航天领域未来发展的整体思想,并且把拥有安全稳定、高水平的航天工业作为发展目标之一。

谋求航天领域的优势地位

随着苏联解体,曾经处于世界领先地位的俄罗斯航天工业由于资金问题被不断削弱,俄罗斯的世界航天地位也受到不利影响。进入21世纪以来,随着经济的复苏,俄罗斯开始致力于恢复其航天强国地位,并希望以此促进大国地位的提升。俄罗斯为航天活动提供包括财政在内的全方位的国家支持,促进新技术的研发,以满足国家安全和I社会发展的需求。新航天战略的目标是确保俄罗斯航天处于世界先进水平,巩固俄罗斯在航天活动领域的领先地位。正如俄罗斯总统普京所言,“航天是一个国家的威望,航天技术是国家经济竞争和安全保障的基础。毫不夸张地说,航天是世界稳定的基础。政府要把支持国有航天企业作为国家政策的重点,把恢复俄罗斯世界航天大国和军事强国的地位作为政府施政纲领的首要任务,要让航天工业更多地为国民经济服务,要创造和应用具有军民双重目的的航天系统。”

明确俄罗斯航天的未来目标

航空航天的技术领域例3

空天一体化是指航天力量与空军在作战、力量、指挥、建设诸方面的一体化。在作战上,航天力量与空军之间单向或相互提供支援,形成整体战斗力。空天一体化必须具备三个要素:

一是环境无缝衔接。航空、航天、信息领域虽然物理属性不同,但航空空间与航天空间没有明确的分界线,航空航天与信息领域交织融合不存在障碍,而即将进入军事领域的空天飞机,也使这种差别荡然无存。

二是技术交织融合。航空器与航天器,从平台结构、动力、飞控、保障等方面有许多相同与相近之处。我们所关注的信息在编织的“网”上发挥作用,而空天平台恰似“网”的经线、纬线和结点。

三是作战高度一体。信息、航空与航天领域的具体作战行动,虽可分别实施,但构成战术战役概念则必须高度一体化。航天领域是新的战略制高点,没有航天支援也就没有现代意义的空中作战,而且航天领域可以以软硬杀伤形式直接作用于航空与地面领域。

航空航天的技术领域例4

一、航空产业与航空教育的关系

航空产业的水平代表着制造国整体的工业技术和创新能力水平。作为典型的高技术密集型产业,具有高投入、周期长和市场相对集中的特点。[2]具体表现在研发的前期投入大,制造过程中技术要求水平高,产品后续服务保障技术专业性强。从航空发达国家开展航空制造业的历程来看,其前期投入的研发经费和人员数量是巨大的。例如空中客车A380的研发费用就高达170亿美元。同时,研发的周期和投资回报周期都很长。因此,航空产业没有国家政府的支持和投入是难以立足和发展的,而国家之所以愿意投入巨资进行航空器的研发,看重的是航空产业背后高度的产业关联性和创新拉动作用。一般一个航空项目发展十年后给当地带来的效益能达到投入产出比1∶80,技术转移比1∶16,就业带动比1∶12。[3]日本曾做过一次500余项技术扩散案例分析,发现60%的技术源于航空工业。从产业投入产出的经济效益分析来看,飞机制造业的影响力系数在全部96个主要产业中位于第三,说明飞机制造业的最终产品对整个国民经济的发展具有较强的拉动作用。[4]作为位于产业链高端的高技术密集行业,航空产业的发展更多地依赖于技术创新水平的提升,而创新离不开高素质专业化的人才。因此,从航空发达国家的成功经验来看,注重航空教育是实现航空产业持续健康发展的前提和源泉。

二、航空教育的比较研究方法

航空发达国家在航空教育方面走过了较长的发展道路,积累了丰富的经验,对于我国尚处于大型民用航空器制造起步阶段的航空教育有许多值得参照和借鉴的地方。因此,本文通过运用比较教育的研究方法,对于不同体制下航空教育特点和要求进行研究。

1.比较教育的研究方法

比较教育学是用比较法研究和论述各国教育的发展、现状和趋向的一门教育学科。比较教育研究的一个主要目的就在于研究外国、思考本国、借鉴他国的教育经验,改进本国的教学实践。作为教育学的一个分支,其研究重点是各国的教育制度和基本的教育问题。但其基本研究方法可以推广用于与教育相关的诸多领域。比较教育的主要研究方法之一就是因素分析法,即抽出形成各国教育制度特点的各种因素,并把它们摆在历史文化传统和国民特性中加以研究。[5]通过对教育制度各因素的描述、解释、并置和比较研究,明晰研究对象国在教育制度形成中的影响因素和决策过程,特别是在教育改革中的经验与教训,为本国实施合理的教育制度和构建教育体系提供实证分析。

2.航空教育的比较研究对象

航空教育作为一个重要的教育领域,由于其服务的航空工业具有高技术密集型的特点,因此其培养层次主要以高等教育为主。长期以来,我国在航空高等教育方面主要偏重于为从事航空制造的航空工业企业和部门培养人才,也就形成了以航空制造为核心的学科专业体系和培养模式。而在航空运营领域,则建立的是与我国航空制造业基本联系很少的民航教育体系。二者长期分割的局面,造成了我国航空教育领域学科专业的过度分离,航空工业和民航业难以形成互相促进、互相支持发展的格局。从国际上来看,航空教育服务的对象应当是包括航空制造业和航空器运行在内的航空业全产业链。无论从学科结构、培养模式、专业建设、实验室建设等方面都有相通之处,故此本文将根据国际航空发达国家的航空教育基本形态与我国相对应的航空教育领域进行比较,为我国航空教育的改革和发展提出建议。

3.航空教育的比较研究要素

在对国内外航空教育进行比较前需要明确比较的要素。由于航空教育是教育领域之一,在确定比较要素时既要考虑一般对不同国度教育进行比较时需考虑的要素,同时还要充分挖掘能够体现航空教育特色的关键要素,能够突出比较效果,实现比较目的。在比较教育方法论中,认可度最高、最典型的一种方法是利用托马斯立方体进行多层次分析。在该立方体中给出了比较的维度和层次,其中按照地理/地域层次分为世界区域、国家、州/省、地区、学校、课堂和个体;按照非地域人口群体分为种族、年龄、宗教、性别、其他和全部人口;按照教育与社会方面分为课程、教学方法、教育财政、管理结构、政治变化、劳动力市场等。每一项比较教育研究都会涉及这三个维度,从而可以在这个立方体中找到相应的位置。[6]本文主要针对中法两国在航空教育领域选取相应比较项进行研究。

三、基于因素分析法的中法航空教育比较

航空教育的目的是为本国航空业的发展提供人才和科技的支持。因此,航空教育的水平与产业的发展水平和进程直接相关。在对中法航空教育进行比较分析中,选取了产业发展状况、教育资源、教育制度和与科技创新关联度等因素进行研究。

1.产业发展因素

法国航空航天工业在欧洲排名第一。法国西南部比邻的南比利牛斯大区和阿基坦大区是法国航空航天业的摇篮,也被称为航空航天谷。两个大区的著名城市图卢兹和波尔多构成了航空航天谷的核心。整个航空航天谷在机载系统方面是国际业界领袖,在下列产品市场中占据世界领先的位置:100座以上的民用飞机、豪华商用飞机、直升飞机专用涡轮发动机、起落架、航空器电池。居于欧洲领先水平的科技领域有:卫星制造、固体火箭燃料推进器、军用飞机、高性能复合材料、地球观测、机舱系统、返回大气层技术等。同时,还在航空学、航空电子学、试验和模拟等领域始终保持一流地位。中国在航空制造领域经过了60余年的发展,主要产品为军用飞机和民用中小型飞机。在大型客机和商用飞机领域,刚刚启动研制C919和ARJ21机型,为大型客机配套的大型商用发动机的研制也刚刚起步。总体上,中国航空制造业,特别是民用航空器的制造距离世界先进水平尚有一定差距。

2.教育资源因素

法国航空航天谷与航空领域高等教育有着密切的联系,它是欧洲航空和机载系统领域高级人才的摇篮。图卢兹高等教育发达,是仅次于巴黎的法国第二“大学城”,法国每年约16%的工程师毕业于图卢兹。法国最重要的3所航空航天大学均设于此:国立高等航空航天学院(SUPAERO)培养飞行器和运输工具工程师,进行空间学、系统动能学、信息获取和处理、操纵与机载系统、系统工程与管理等方面的系统教育;设有航空学方向的航空航天技术专业硕士学位。国立民航学院(ENAC)培养航空安全系统电子工程师、航线驾驶员;设有高级机械学和民航运营学、运营职员等专业;培养卫星通讯、航行和监视专业硕士、飞行安全/飞行操作硕士等专业人员。国立高等航空工程师学院(ENSICA)培养航空维修专业硕士和直升机工程学专业硕士。中国在航空领域的人才培养总体上较为分散,分别隶属于两个系统,一是航空工业系统,包括北京航空航天大学、南京航空航天大学、西北工业大学等一批以培养航空制造领域人才为主的院校;另一个是民航系统,包括中国民航大学等一批以培养航空运营人才为主的院校。两个系统的院校地理位置分布较广,院校间交流不多,形成了相对独立的培养体系。

3.教育制度因素

法国航空航天产业作为重要的国家支柱产业,需要大批高水平的专业技术人才。法国教育的品质是世界公认的,其中“大学校”是其特有的精英教育体系,以培养工程师为主,与综合性大学相比,其入学要求严格,教学质量更优。法国每年大约有70万高中毕业生参加会考,通过会考的学生就有资格在法国的任何一所综合性大学注册学习,然后其中2万名左右成绩优秀者才有资格进入大学校的预科班,再经过两年或三年的艰苦准备,参加激烈的全国性选拔考试,成绩优秀者方可能进入大学校学习。大学校的最大特点是和企业的关系非常密切,相当比例的任课教师是政府、企业和研究机构中的技术和管理骨干。法国航空航天类院校共同组建了航空航天大学校集团,依托大学校教育体系,开展航空工程师的培养,成为航空产业发展关键技术人才的重要来源。中国航空类教育是在现有普通高等教育体制下开展的,在培养层次、培养模式和组织方式上与其他专业领域并无太大差别。在与企业的关系上,虽然建立了实习制度,但多数由于各方面原因在实际运行中仅停留在认知实习层面,难以真正起到工程实践的作用。

4.与科技创新关联因素

在法国航空航天谷有17个研究中心、上千所科研单位、2万余名科研人员,研究的优势领域包括航空、航天和机载系统。研究中心是该地区技术能力和专业特长的集合体,可以为航空航天领域的大型工业集团、民用军用企业和中小型工业企业提供技术支持,以保证其材料、加工过程或被测试机器的性能、安全性和可靠性。其中,著名的研究中心如图卢兹航空试验中心,是欧洲军民用航空器地面试验、专家鉴定和评估的主要中心,承担包括结构机械行为分析、动力系统评估、着陆和滑行系统评估、环境组合、结构材料的性能和特征、系统和分系统对电磁入侵防御的评估、系统和软件功能安全可靠性分析等。中国围绕航空产业的科研机构一般均隶属于航空制造企业,主要从事企业产品的研发和技术验证。从地缘上看,这类科研机构一般都位于所主研产品的制造企业附近,与企业之间关系密切,而相关院校多数仅在选聘毕业生方面存在联系。

5.差异分析

从以上四方面因素的对比分析来看,在关系人才培养的教育资源和教育制度上,在科技创新上,在与社会服务的对象——航空产业的关系上,中法航空教育均存在较大的差异,这种差异也间接反映了我国在航空产业发展上的短板。总结起来,中国相对法国在航空教育上的差异体现为以下几点:

一是产学紧密度不足。航空产业对人才的专业度和水平要求高,人才培养的指向性明确,加强与航空制造和运营企业的合作是提高航空专业人才培养质量的必由之路。缺少企业的实践锻炼,院校培养的人才在工作中会直接反映为更长的职业适应期。同时,由于缺少更富实践经验的企业专业技术和管理人员加入到人才培养的环节中,也使得学生的学习内容针对性和有效性不足。

二是航空教育体系缺乏整合。法国拥有大型航空器的制造商,也是航空运输的大国,因此在航空人才培养上对于航空器制造和航空器运营并无明显的专业差异,作为航空类院校在人才培养上要求学生具备航空领域宽厚的知识基础,同时面向专业领域加强工程实践能力培养。而目前,我国在航空领域明确分为制造领域院校和民航运营领域院校,两类院校在人才培养体系方面缺乏沟通和整合,在人才培养上没有形成沟通协调和良性互动的局面。

三是学生工程实践能力培养欠缺。航空业作为资金密集型、技术密集型产业,无论从价值还是安全角度考虑都对从业人员的职业素质提出了较高要求。这就要求学生在接受教育中要有更长时间的培养和更为专业的训练,而目前我国在航空制造领域由于产品距离世界先进水平差距较大,产量有限,实际接收学生进行工程实习非常少。而在航空运营领域,出于安全方面的考虑,学生更多的是进行认知实习,缺少有工程实践目的的训练。

四是科技创新对人才培养的促进作用未完全体现。科技创新是推进人才培养和产业发展的重要动力。一方面科研为产业输出技术和产品,另一方面科研为人才培养输送人才和培养资源。在航空产业发展中,科研是技术进步的源泉,因此要充分发挥科研机构的作用,提升人才培养,特别是高端人才培养的水平。目前,我国航空制造领域的科研机构多附于制造企业,而航空运营领域的科研介入不深,在人才培养领域的作用均未充分体现。

四、对我国航空教育的启示

我国的航空教育从时间上看经历了60余年的发展,但由于在航空制造业的发展上经历了仿苏、仿美、自主研发等多条道路的探索和摇摆,航空教育的发展也经历了许多变化。当前,我国确定了自主研发大型客机的战略,并积极开展国际合作,推进航空制造水平的提升,为未来成为世界航空制造领域一极而努力。在我国由航空大国向航空强国迈进过程中,关键是人才,因此航空教育的发展直接关系到航空产业战略的实现。通过以上对比分析,借鉴航空发达国家的先进经验,对于我国航空教育发展有以下启示:

航空航天的技术领域例5

在浩瀚的地球外层空间,“神九”飞船与“天宫一号”的对接,包含四大技术领域的重要突破。

首先,对中国航天设计人员来说,“神九”飞船与“天宫一号”进行的载人交会对接,其技术状态新、安全标准高、涉及技术广、天地协同多,是未来建设空间站必须攻克的难题;另外,“神九”飞船有3名航天员参与交会对接,不确定因素多,所以“神九”飞船在空间运动控制、交会对接、组合体飞行、组合体载人的环控生保系统以及整个飞船的可靠性等诸多方面都包含着一系列的创新技术。

其次,“神九”飞天,航天员首次进入天宫一号。在这次任务中,“神九”飞船与“天宫一号”实现空间连通,航天员进入在轨的“天宫一号”驻留,并开展失重条件下的各种空间生活和科学实验,所以,在“神九”飞船与“天宫一号”组合体的控制与管理、舱内温控和生命保障等系统协调配合等技术方面包含着一系列创新技术。

第三,“神九”任务要求宇航员在太空停留超过10天。针对飞行时间较长的特点,为了保障航天员健康,避免抗失重环境对航天员健康的不利影响,“神九”飞船突破一些防护措施。如在飞行中,新增了自行车训练器、企鹅服、套带等对抗防护和锻炼用品。另外,因为3名宇航员在太空停留超过10天,所以“神九”飞船考核了地面向在轨航天器的工作人员和物资运输与补给技术。

第四,“神九”飞船首次搭载女宇航员。从航天医学角度看,男性和女性的生理结构不同,在太空生活期间的生理变化不同,女航天员对环控生保等一系列分系统的要求不同于男航天员。神舟飞船的多项设计考虑女性特点,在“神七”和“神八”飞船基础上,进行了修改和完善,在飞行程序设计和在轨运行的生活照料系统等方面,充分考虑到女性需求。

载人航天工程是一项系统化的工程,它与基础科学、材料科学、电子技术及控制工程等多个领域都有着密切的联动关系。“神九”飞天将带动整个中国科学技术的发展与经济繁荣。

过去的60年里,航天活动与自然科学和社会科学的每一个学科都有着密切的联动关系。首先,它无可辩驳地证明了近代科学过去所积累的知识绝大部分是正确的。天文、生物学、数学、物理学、化学和唯物论哲学的主要科学理论过去都是在地球上由观察、实验、抽象和推理得到的,航天事业的实践已经证明这些知识在地球以外也是可靠的、正确的和可以信赖的。其次,航天活动对现代科学技术的发展产生重大的影响。如地质学是航天探测其它天体的基础,航天探测结果对地质学又产生了重大影响,航天探测通过对月球的直接观察表明,在地球上找到46亿年以前的岩石可能性几乎没有;一批新的学科,如行星地质学和宇宙地质学已经诞生。航天探测对生命科学的触动最大,使得争论数百年的生命起源问题又进入了新的热潮,在航天活动的推动下,宇宙化学已经诞生,为了解生命起源提供新的知识。今天,人们不仅认同地外生命存在的可能性,而且竞相实施部级的大科学工程去探测,如为了挖掘生命起源的“种子”,美国曾设计航天器“深度”撞击彗星。

航天产业的重要特点,就是能够带动其它科技领域的发展,进而推动社会经济发展。如美国的“阿波罗”登月计划持续近10年,耗资达255亿美元,但投入产出比却高达1:14,在此后的十多年间催生了液体燃料火箭、微波雷达、无线电制导、合成材料、高性能电子计算机等一大批高新科技产业群体,并衍生出了包括航空航天、军事、通信、材料、医疗卫生、计算机及其它方面的3000多项应用技术成果,并推动了从医药到材料加工等几十种行业的发展,航天工业如今已成为美国在世界上最具领先地位的产业之一。更重要的是,“阿波罗”计划还引领了科技进步,推动产业繁荣的浪潮,也为此后美国鼓励高校科研社会化和产业化法案的出台奠定基础。

同样,从“神一”飞船到“神九”飞船,中国航天技术的应用成果已经逐渐开始辐射到新材料、新能源、计算机、生物技术和精密制造等诸多领域。

“神九”飞船与“天宫一号”对接成功,整个中国大地一片欢腾,载人航天工程与老百姓的生活息息相关。

俄国航天理论先驱齐奥尔科夫斯基曾说过(1903年):“地球是人类的摇篮,但人类不能总在摇篮里生活。”著名的英国天文学家去年在多伦多大学的讲演中说(2010年):“地球在近两百年里,难免有毁灭灾难,人类要想世世代代的生存下去,必须移民到其它星球上去,所以我支持发展载人航天。”根据近百年天文学理论,地球的资源和太阳的能量总有一天要耗尽的,人类要可持续地发展,必须飞出地球或太阳系;由此可见,载人航天工程是造福子孙后代的事业,需要我们人类祖祖辈辈的不懈努力。

航空航天的技术领域例6

“嫦娥三号”相关技术,将对我国空间科技和航天产业具有直接而广泛的推动作用,包括运载技术、卫星技术、地面遥测系统和深空测控网等一系列基础建设。另外,据专家说,“嫦娥三号”技术的二次开发带来的作用,包括对航天器本身、航天技术本身的促进,以及对于人工技能、机器人、遥控作业、办公自动化、超音速飞行、光通讯、数据处理,超高强度、超高温材料,电能微波传送,无污染飞行器,空间生命研究等高科技产业都将发挥溢出效应。如:用于“嫦娥三号”月球车的一些关键技术将可望实现“民”,被应用于商业领域,推动国内机器人产业的发展。中国航天科技集团公司第八研究院承担了“嫦娥三号”月球车四个半分系统的研制,该院正计划将用于月球车的移动系统和机械臂等机器人技术向民用领域拓展,用于服务和工业机器人,实现“民”。

事实上,航天技术推广是需要一个过程的。如美国“阿波罗”计划实施后,过了约30年时间,大量航天军用技术才被普及。从目前国内政策看,政府正鼓励相关技术的“民”,在不远的将来这些技术肯定会向民用转化。

探月工程同时也是一项全社会广泛参与的高科技工程,在“嫦娥三号”任务各系统研制过程中,一大批民营配套单位积极参与、无私奉献、发挥自身优势,为“嫦娥三号”任务作出了重要贡献。如华力创通很早就进入军品领域,目前公司的仿真业务属于军工核心领域。该公司研制的半实物仿真系统HRT-1000应用于中国“神舟”系列飞船研制、国产先进战机“歼十”的研制和自主产权的支线客机ARJ-21的航电测试系统中。华力创通的案例仍是数量稀少的个案,大批非航空航天系统的企业仍被阻挡在行业门外。

对于民营企业参与军工建设来说,有机会也有壁垒。由于军工涉及到国家的安全,具有保密性,因此其竞争并非是完全市场化的。同时,国内非航空航天系统的企业并不了解我国航空航天等军工领域的运作模式,很多民企更是抱着“赚一把”就走的目的硬闯这个领域。因而,民营企业为了更好地服务军工领域,需要做足工课。

按照加大自主创新、发展高新技术、推进产业化、提升产业规模的要求,民营企业应当研究开发科技含量高、市场前景好的航天军民两用高新技术产品,参与航空航天等军民结合高新技术产业的发展,参与航空航天科研生产任务的竞争和项目合作。民营企业可承担航空航天分系统和配套产品研制生产任务,具体承担任务的范围按照国防科技工业主管部门的武器装备科研生产许可目录及有关管理办法执行。

为了进一步推动军民结合,有关部门需要加强内部各单位之间在技术链、产业链之间的协同与配合,促进资源整合与能力的形成,同时积极推动与有关大企业集团的战略合作。打破军工集团“自成体系、部门封闭、企业全能、产研分离”的状态,通过吸收更多优势资源向武器装备科研生产领域集聚,形成开放竞争的国防科技工业发展格局。大力发展军民两用技术,提高军民通用资源和重大设施的共享程度。

航空航天的技术领域例7

中图分类号:V211 文献标识码:A 文章编号:1671-2064(2017)12-0252-02

1 力学在航空航天领域的支柱地位

作为与材料科学、能源科学并肩的航空航天领域三大基础学科之一,力学在航空航天领域拥有无可辩驳的支柱地位。航空航天技术的发展与力学学科的发展有着举足轻重的关系。同样,力学学科的发展也推动了航空航天技术的发展。从航空航天的历史开端,力学便扮演着开天辟地的角色:莱特兄弟发明飞机前的时代,人类的航空器长期停留在热气球与飞艇的水平,人们普遍认为任何总密度比空气重的航空器是无法上天的;而随着流体力学的发展,越来越多总密度大于空气的航空器被发明出来进行试验,而莱特兄弟的飞机即为第一个成功的尝试,莱特兄弟的L洞也成为一个经典(图1)。从此,航空器的发展步入了快车道,各种结构的飞机翱翔于蓝天,从不到一吨的轻型飞机到上百吨的运输机,直至今天我们对机已经习以为常。

时至今日,航空航天的总体设计已由庞大的力学各分支支撑起来,从最基本的方面分类,可包括:飞行器整体气动外形归属于空气动力学;整体支承结构归属于结构力学以及材料力学;复合材料归属于复合材料力学;材料疲劳性能归属于疲劳分析;结构动力特性归属于振动力学;缺陷结构分析归属于损伤力学以及断裂力学。而对于具体的问题细分,则还有如:针对超高速飞行器的高超空气动力学;针对紊流等大气不稳定情况的非定常空气动力学;针对流固耦合问题的气动弹性力学;以及针对非金属材料的粘弹性力学等。此外,还有众多与力学相关的技术被发展起来,如有限元技术(FEM)等。

展望未来,力学发展的源动力在于航空航天综合多学科的交叉与技术。被誉为“工业之花”的航空航天工业,其研发生产涵盖了目前已知的所有工科门类,如此多的学科交叉下,力学的发展势必会与其他学科进行技术交流,这会带来问题的进一步复杂化,同时也丰富了力学的研究内容。

2 航空航天领域力学发展新挑战

航空航天的发展,给力学带来了新的挑战。结构的日趋复杂,给力学计算带来困难;繁琐的理论公式,需根据工程需要进行必须的简化;新材料的应用在航空航天领域最为敏感,在为飞行器降低结构重量的同时,也带来诸多的不利因素如耐热性能差、环境敏感度高等;而在某些关键部件的多物理场耦合问题也将成为重要的研究方向。

2.1 程序化

航空航天器和大型空间柔性结构的分析规模往往高达数万个结点、近十万个自由度的计算量级,这些问题包括但不限于:飞行器的高速碰撞间题,如飞机的鸟撞, 坠撞,包容发动机的叶片与机匣设计,装甲的设计与分析,载人飞船在着陆或溅落时的撞击等。为了解决这种计算量庞大的问题,上世纪50年代初,力学便发展出一门崭新的分支学科――计算力学。伴随着电子计算机以及有限元技术的发展,计算力学取得辉煌的成绩,这也说明了其本身发展潜力巨大。

力学分析技术的发展,特别是对于各种非线性问题(几何非线性、材料非线性、接触问题等)分析能力,是长期存在的。然而在很长一段时间内,受到计算机能力的制约,以及模型建立本身的局限性,力学分析求解停留在解析方法和小规模数值算法中。这对于工程人员的设计工作是一个极大的限制,对于航空航天领域而言则尤甚如此。计算力学的发展,带来的效益是巨大的。首先其可以用计算机数值模拟一些常规的验证性试验和小部分研究型试验,这可以节省很大一笔试验费用。其次,其可以求解某些逆问题,逆问题的理论解往往无法通过非数值的手段得到。最后,从工程管理角度考虑,数值模拟方法大大节省了产品研发的周期,由此单位时间内产生了更多的经济收益。有限无技术分析机翼见图2。

上述计算力学给工程设计方面带来的种种好处,都基于一个很重要的前提。那就是力学问题程序化。如何将力学问题转化为一个计算机可以求解的程序,一直是计算力学研究的重点,比如有限元技术就是其中一个典型代表。目前,有限元技术已经涵盖了大部分力学问题,包括:静力学求解,动力学求解,各种非线性问题,以及多物理场耦合等。但值得注意的是,除了静力学以及相对简单的问题外,其余问题所用的算法目前精度仍然有限,相较于工程运用而言仍存在诸多壁垒。对于这些问题算法的更新,是力学问题程序化必须面对的挑战,仍需研究人员不断探索。

2.2 工程化

力学工程化依然是基于计算力学而讨论的。所不同的是,程序化是针对一项力学问题能不能解决,工程化关注的问题是如何使得力学问题的解决过程更符合工程需求。

21世纪的航空航天,已经越来越趋向于商业化,美国已有数家私有航天企业成立,我国的航天科技集团也在进行着一些商业卫星发射。而商业化的工程问题,所追求的目标永远是效益。因此,力学工程化发展也应基于这一要求。航空航天工程的研发工作,一直给人周期长的印象,动辄10年以上的研究周期,对于目前商业化的运营是不适用的。如何快速的给出解决方案,是今后力学工程化的重要考量。随着软件技术的发展,越来越多的数值计算可以通过可视化、图表化等快捷的交互式设计方法呈现出结果,这可以直观地给予工程师设计反馈,从而达到加快设计进程的目的。同时,直观的结果反馈,也能避免数据分析过程出现人为失误,起到规避风险的作用。

2.3 非均质化

新材料往往首先出现在航空航天领域,其中典型代表便是先进复合材料。先进复合材料具有高比强度、高比模量、耐腐蚀、耐疲劳、阻尼减震性好、破损安全性好以及性能可设计等优点。由于上述优点,先进复合材料继铝、钢、钛之后,迅速发展成四大结构材料之一,其用量成为航空航天结构的先进性标志之一。

复合材料的运用给力学提出了新要求,相比于传统各向同性的金属材料,其各向异性的力学特性使得非均质力学应运而生,代表便是复合材料力学的诞生。非均质化力学需要将材料的承力主方向设计为结构中的主承力方向,而非主承力方向则需要保证一定强度,不至于破坏,这是其主要的设计特点。相比各向同性材料,其理论模型更为复杂,相应的数值求解方法也没有那么完善。同时,实际中复合材料的性能分散性和环境依赖性相当复杂, 设计准则和结构设计值的确定还很保守,导致最终设计结果并没有理论中那么完美,很大程度上制约了工程领域大规模使用复合材料。对于国内而言,复合材料研究工作相比国外则更为落后,无论是设计经验还是试验数据积累都有不小差距。

建立完备的非均质化力学模型,积累足够的原始参数,大胆尝试提高复合材料的设计水平以及用量是今后力学非均质化的主要任务,需要研究人员付出更多的努力。

2.4 多物理场耦合

2.4.1 电磁与力学耦合

新时代下的航空航天材料,已不仅仅局限于提供简单的支承作用,功能化是航空航天器新材料发展的重点和热点,其最终目的是为了未来航空航天器发展智能化目标。

目前,越来越多的具有电-力耦合功能的新型材料正成为航空航天器结构材料的选择。因为在对飞行器的自我检测技术方面,具有电-力耦合功能的材料的受力状态与电磁性能存在特定的函数关系,由此系统能通过检测电磁性能达到检测受力状态的效果,这大大方便了对飞行器的健康监测,也有效保证了飞行器的安全。这其中耦合函数的准确性便成为关键,电-力耦合的发展能促进这些技术的健全,具有十分积极意义。

2.4.2 温度与力学耦合

温度场与力场的耦合主要体现在发动机上,对于发动机内部涵道的设计最优化一直是热力学着力解决的问题。

目前大部分飞机均采用喷气式发动机,包括:涡喷发动机、涡扇发动机以及涡桨发动机。上世纪40年代末,涡喷发动机出现,飞机飞行速度第一次能超过音速,带来了一场飞机发动机的技术革命。由此,包括进气道以及发动机涵道的设计成为发动机研发的一个关键点,早期的涡喷发动机,由于涵道上的设计缺陷,导致燃料燃烧产生热能转化为推进力的转化比很低,同时伴随着燃烧不充分,因此发动机耗油量很高且推力较小。经过几十年的发展,目前无论军用还是民用飞机发动机,大部分均采用涡扇发动机,通过优化得到的涵道形状最大化了单位燃油所提供的推力。图3为民用客机发动机涵道。

我国的飞机发动机工业水平距离世界领先水平仍有较大距离,特别是在大涵道比的商用发动机研发上。发展热力学,对热-力耦合问题进行更深入的研究,是发展我国飞机发动机事业的奠基石。

2.4.3 流固耦合

流固耦合是飞行器研制最基本的问题之一。几十年的发展历程中,基于流固耦合研究的飞机外形设计取得了诸多进展,包括整体机身外形的优化,翼梢小翼的出现等。随着飞机飞行速度的不断提高,特别是军用飞机机动性的要求,出现了许许多多新的流固耦合问题。比如针对飞机在大攻角飞行时(一般出现在军机上),传统小攻角气动表示法、稳定理论等均不再适用。因此,解决大攻角非定常问题,需要从飞行器运动以及流动方程同时出发,建立多自由度分析和数值模拟模型。这是典型的流固耦合问题。

同时,以往旧的流固耦合理论,在先进复合材料大量运用的今天,显然已经不再使用。对旧有理论进行必要的修正,也将成为流固耦合问题亟需完成的工作。

3 结语

当前,国家大力发展航空航天事业,作为高精尖产业,其所运用的理论与技术绝不能落后。力学作为一门古老而又应用广泛的学科,其对航空航天事业的发展起着举足轻重的作用。为符合未来航空航天领域发展,航空航天领域的力学应着力向着程序化、工程化、非均质化、以及多物理场耦合化综合发展。

参考文献

[1]杜善义.先进复合材料与航空航天[J].复合材料学报,2007(2):1-11.

航空航天的技术领域例8

在航天器上,有效载荷系统是直接实现飞行器功能、满足用户需求的所有产品的统称。在51年的征程中,研究院逐步成长为我国卫星有效载荷研制的最核心单位,在卫星通信、卫星导航、雷达遥感与探测、高速数传、激光通信、星间链路、卫星测控、空间天线等技术领域创造了我国多个“第一”。

卫星通信技术领域,研究院代表着我国卫星通信技术发展的最高水平。从1984年我国发射第一颗通信卫星至今,西安分院研制的各频段卫星有效载荷分别应用在东方红系列、鑫诺系列、中星系列以及其他各类通信卫星上,并随整星出口至亚非拉地区多个国家。是我国通信卫星有效载荷系统研制的主力军,推动了我国通信卫星三代载荷技术的发展,为国防现代化和国民经济发展作出了突出贡献。

卫星导航技术领域,研究院是我国北斗导航事业的奠基者和开拓者。为我国北斗一号系统、北斗导航区域系统20多颗导航卫星提供了全部有效载荷,正着力于建设我国全球导航定位系统。20多年来,研究院推动了我国北斗导航从无到有、从有源到无源、从区域到全球的三次跨越。

卫星数据传输与处理技术领域,研究院是我国空间数据传输与处理领域的开创者。为我国已发射卫星提供50余套数传分系统。从上世纪80年代起,研究院的数传产品广泛应用于各类航天器上,形成了系列化、型谱化、标准化的数传系统,使我国卫星数据传输与处理技术领域跻身世界先进行列,研究院研制的数传设备曾传回我国第一幅月面图像。

在雷达遥感与探测领域,研究院是我国雷达遥感与探测领域的领跑者。为我国高分辨率对地观测卫星、新一代气象卫星和海洋探测卫星提供了有效载荷。近年来,研究院研制的遥感器得到广泛的在轨应用,其中风云三号微波温度计是我国首个正式纳入欧洲天气预报系统的遥感器,星载sar将在未来的空间信息系统中大显身手,探测雷达成功助力嫦娥三号着陆器实现完美落月。

在激光通信领域,研究院是我国激光通信技术领域的研制主力军。成功研制了我国第一套相干激光终端,性能达到国内领先水平。突破了激光远场环境模拟及高精度测试等关键技术,为中继卫星演示验证奠定了基础。具备支持激光链路组网能力,具备向更高速率、更远距离和更新体制升级的可持续发展能力。

在星间链路技术领域,研究院开创了我国星间链路技术领域应用的先河。首创、缔造了我国多种星间链路的应用模式。一是全球中继卫星及与用户星船的链路网络,二是三星编队飞行的链路,三是全球导航系统混合体制链路。

航空航天的技术领域例9

面对航天产业这个大蛋糕,眼看着国有或军工企业淘金,民营企业也跃跃欲试。

中国航天搭载物品巡展组委会副秘书长曾维佳说,民营企业进入到航天产业是一个趋势,但由于民营企业规模小、资金不足,以及政策制约,民营企业真正深入介入航天产业还有不少困难。

千亿大金矿

“航天产业是个大金矿!”曾维佳这样告诉记者,他的语气里充满着兴奋。

发射“神六”投入的9亿开支中,全部是国家政府的投入,尚没有民间资本介入。这个数字仅仅是指载人飞船的制造和发射费用。

如果考虑到前期的市场推广和设备供应,“9亿元”仅仅是与“神六”有关经费的“冰山一角”。统计表明,“神舟”系列载人航天工程总花费为180亿元。

据了解,在航天领域每投入1元,将对社会产生8至14元的带动效应。

新上任的国防科工委主任张庆伟介绍说,美国将空间技术转化为产业,创造了2万亿美元的巨额利润。资料显示,在英国,2000至2001年度,航天工业总收入约46亿美元;法国在航天产业方面的收入每年将近200亿欧元;俄罗斯航天发射年收入近9亿美元。而我国航天产业对国民经济的贡献目前还不到1%。

另外据业内一些专家分析,我国的航天产业有很大的上升空间。我国国防科工委曾对7项军用技术的经济开发效益进行跟踪调查,结果表明,技术转让费与技术应用后利润之比为1:9。长期以来,我国重大科技成果中,国防科技成果占全国科技成果的五分之一。

中国航天科技集团公司的目标是,集团公司总收入在2010年以前达到1000亿元。

面对如此广阔的航天市场,民营企业也欲分羹。

记者了解到,就在“嫦娥一号”探月卫星发射前夕,本月18日国防科工委对外了我国《航天发展“十一五”规划》,此前我国已“十一五”空间科学发展规划,这两大规划中均提到了“鼓励多渠道、多部门筹资”的发展目标。尤其是《航天发展“十一五”规划》,其中就特别提到:完善航天投融资体制机制推进投资主体多元化,鼓励社会资金进入航天科研、生产、商贸领域。

事实上,航天领域并不是一个行政垄断的行业。在法律上,国家对民企进入航天领域没有任何限制。中国航天科技集团公司旗下就有几家境内外上市公司,很多民营企业在与国防系统签署了保密协定的情况下,也可以参股。

民营资本试水

“现在已经有越来越多的企业投入到这个领域中来了。”宁波星箭航天机械厂办公室张主任在接受记者采访时表示,他们非常看好航天产业。

宁波星箭航天机械厂是一家高科技民营企业,在“嫦娥一号”这项浩大的探月工程中,该公司承建了西昌卫星发射中心发射塔架供气系统。

目前,我国航天产业大部分是由政府投资的,但航天产业不仅仅只有卫星、运载火箭等,还有地面设施、运营服务、二次开放等领域。

据张主任介绍,宁波星箭多年来,相继为 “神舟”号系列飞船发射塔架提供加注供配气系统配气台等配套产品。西昌卫星发射中心于2006年对三号发射塔架进行全面改造,在改造工程9个子系统公开招标中,宁波星箭航天机械厂参加投标 “加注供配气系统设备制造、系统安装”子系统,以最高分中标。

张主任告诉记者,应西昌卫星发射中心的邀请,宁波星箭航天机械厂厂长严国元前往发射现场观摩 “嫦娥一号”升空盛况。由此可见,相关部门对民营企业的重视程度可见一斑。

在直接投入载人航天的核心工程以外,民企的身影并不孤单。浙江有很多企业参与了神州六号的产品开发工程,其中包括民营企业德力西集团,2003年4月该集团与酒泉卫星发射中心建立合作关系,并签订长达5年的低压电器及成套设备定点采购协议。

虽然航天产业前景很广阔但是要想进入到这一领域民营企业还面临不少的困难。

中国一航旗下中国航空工业发展研究中心研究员王柏学在接受记者采访时一语道破:“航天产业和航空不同,航空领域很早就有民营企业进入了,而航天的产业化和市场化还比较低。”

航空航天的技术领域例10

【关键词】

航空;流量;技术;管理

民航有关于“航空流量技术”的架构和模式是有专门的管理研究部门和流量管理系统的,对于航空的各个时段的实时航空流量信息都要通过控制中心来管理核对。在主要航道上却往往因为各种外界因素造成的原因让某一时段的航空流量处于饱和点,这样就会对航空流量的控制造成许多困难和阻塞。目前民航的应对方式是限制航班的变动和增减还有改变航道的策略来调控航空流量的技术管理,这样的做法是缺少巨大的实践性的,调整的不恰当和没有预见性可能会让民航损失更多的经济利益。民航在航空流量技术管理系统的运行环境和系统需求上都要做更多的研讨和探索,以适应近年来的流量值大幅度上升的现象,建立其成熟的航空流量技术管理系统。

1 航空流量的技术管理系统所具有的内涵价值

根据整个航空的飞行计划和空中领域资源合理的调整利用还有对天气等各种因素的信息整合为依据来构建合理的航空流量管技术管理系统,这样对于整个航空流量的顺利流通和民航的发展前景是有巨大的帮助的。航空流量的技术管理系统是有许多技术要素包含在其中的,简要的以主体次要和知识三个方面来划分其要素内容。航空流量技术管理系统在主体方面的主要因素是对于系统中的技术设计专家、流量管理系统的信息技术开发专家、对于航空流量技术管理系统的设计开发组织生产等的发明创造者、航空流量技术的管理部门人员、机场当局等方面而言的。航空流量技术管理的次要方面可以从两个方向来解释,一种是信息技术和系统所需要的硬件设施的搭配处理,流量监控方面关于监控和控制单位的问题、还有流量显示的实时信息等。另一种方向是对于航空流量技术管理的组织搭配,在组织中的各个团体软件配置,如团体的培新实训中心,训练模拟场地等。还有就是航空流量技术管理系统的知识要素,知识要素在内容和实质上属于软件的配置,比如航空流量技术管理系统需要的技术软件和通讯设备传输设备的各种系统活动。这三者之间要协调搭配达到和谐共融的效果才能让航空流量技术管理系统完整的运行。航空流量技术管理系统不是简单的系统,而是各个板块之间的相互协调相互制约相互助力的复杂系统,在各个板块的共同限制和规划下设计出的航空流量技术管理系统才会有具体的成绩。

2 航空流量技术管理系统的功能研究分析

航空流量技术管理的主要任务就是对空中流量的控制和协调,对空中的交通产生良好的制约和调整作用,尽可能保证航空流量的最佳协调状态,提高民航对于机场和航班的有效利用率。因此在航空流量技术管理中要更多的做好准备工作以面对各种突发状况,在面对各种紧急情况时需要有详尽可靠的解决办法,对航空流量和质量有一个高价值的保障,对航空流量的实时管理提供有效的基础服务。首先是对于航路航班的优化问题需要进行具有策略性的改善优化,缓解各个高峰期的空中交通拥挤现象,减少空中的紧急情况发生概率,同时也在另一方面降低了工作人员因为职责繁重而可能出现过失的现象。航空流量管理的优化板块主要的功能可以从两个方面来分析:一是预测和估算出对于航班中可能出现的高峰和紧急拥挤状况然后寻找适当的解决方法,二是计算高峰期的流量值和可用航路的控制,找出合理的备用方案,调整航空路线降低风险。关于航空流量的管理策略需要在执行的同时考虑预备方案的准备工作,以便应对突发状况,减少因意外事故而出现的负担。还有对于航空流量技术管理系统的基本数据的管理,这个管理的模块是对航空的日常进行维护和管理。航空流量技术的管理系统中有容量的评估,容量评估模块的内容主要是对于航空流量优化管理的策略性提供一些依据。航空流量技术管理的航班时刻也需要优化,协调民航各个公司之间的飞行计划,有完整良好的航班规划,对于航班的启动时间和运行时间做出优化。航空流量技术管理系统中还有对策略实施的评估问题,这一内容主要是对不同的策略内容进行分析汇报,然后通过航空中心确定然后施行。

3 航空流量技术管理系统在我国的构架设计

在国家关于航空事业的框架之中,构架起完整的飞行流量技术管理系统,其主要内容包含以下这么几点:

1)建立与航空流量相对应的数据管理系统,对于航空公司的飞行安排和航线规划航班容量等信息进行协调搭配。

2)构建起对于各种问题的预测预报功能,预测各个机场和航班之间的高峰期和事故状况发生的高频期,对于航空流量应该具有较强的预测功能和监控功能,统计完整的流量数据通知各个流量管理部门。

3)构建对航空流量的完整监控模式和对于航线的正确搭配,对于容量的检测验证也需要做到细致。

4)协调不同航班之间对于空中领域的分布状况,控制好的流量峰值时的航空问题,将准确的流量管理模式方案通知到相关部门。

5)向各个航空公司的参与者进行及时的汇报和信息综合概括,对空中领域的交通状况有及时准确的了解把握。

6)应该建立起稳定的预备策略设定系统,处理对于空中领域出现的各种突发状况和问题。

4 总结

通过对于航空流量技术管理系统的分析研究和对于航空流量技术管理系统内涵的研究可以深刻探索出航空流量技术管理的本质,它不仅仅是对于空中领域的交通流量的管理系统,还是对于航空安全的技术保障系统。航空流量技术管理系统在其组织架构中仍旧有许多不足和可变规律,需要在长久的研究中逐渐改善。对于我国航空流量技术管理系统尚且存在的各种问题,我国的技术人员和部门需要从系统设计的初始开始就构建起正确的技术组织,对我国的航空流量管理技术系统做出正确的策略基础提供,让航空流量技术管理系统的真正价值体现出来,让航空流量技术管理系统更完整更有效。

【参考文献】

[1]荀海波,徐肖豪,陈绪华.机场终端区着陆次序的排序规划算法[J].南京航空航天大学学报. 1999(02)

[2]葛柏君.短期区域飞行流量预测问题研究[D].南京航空航天大学 2008