期刊在线咨询服务,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

期刊咨询 杂志订阅 购物车(0)

水电站设计论文模板(10篇)

时间:2023-03-24 15:23:31

水电站设计论文

水电站设计论文例1

1.1编制说明

为了使中小河流水能开发规划满足国家和地方对开发、利用水能资源以及国土治理的要求,统一规定编制规划的原则、工作内容和技术要求,由水利部水电及农村电气化司主持,以水利部农村电气化研究所为主编单位制定了《中小河流水能开发规划导则》(SL221—98)。本导则分为10章,分别为总则、基本资料收集与分析、水能蕴藏量计算、地区社会经济发展预测、水能开发、多目标开发、环境影响评价、流域管理、经济评价与综合分析、规划实施意见等。本导则为中小河流水能开发规划报告提供了编制依据,同时也成为中小河流水能开发规划设计定额的制定依据和规划设计质量的检验标准。

1.2定额标准

中小河流水能规划设计定额内容见表1-2-1。

表1-2-1中小河流水能规划设计定额

章节

名称

工作内容

比例

备注

1

前言

流域概况、编制条件、编制依据、开发方案、工程特性表

5%

2

基本资料收集与分析

气象水文、地形、地质、资源、电力系统现状、社会经济发展现状、其它等7个方面

7%

其中气象水文3%、地质2%

3

水能蕴藏量计算

理论蕴藏量和可开发量

8%

附河长-高程、流量、出力、电能图

4

地区社会经济发展预测

国民经济现状与发展、电力系统现状与发展、水利现状与发展、电网规划及投资估算

9%

其中电网规划6%

5

水能开发

开发原则、开发方案与方案比较、控制性工程概况、非控制性工程概况

35%

附开发方案图。开发原则、开发方案与方案比较15%、工程概况20%

6

多目标开发

防洪、灌溉、供水、航运、其它等

5%

7

环境影响评价

社会环境、自然环境、水质水量、移民和淹没损失、跨流域引水、其它

7%

其中水质水量即水资源论证2%

8

流域管理

管理原则、管理模式、管理设施、管理制度

2%

9

经济评价与综合分析

工程估算、效益计算、经济评价、综合评价

12%

含单项工程估算和经济评价

10

规划实施意见

近期开发项目、前期工作安排、其它

2%

宜由项目经理(总工)完成

文字修改与校对(每遍2%,各部分修改由相关责任人负责,宜2遍以上)、图纸修改与校对(2%),文字编辑2%

8%

宜由项目经理(总工)和其它相关人员完成

1.3定额说明

(1)比例系指每章节工作内容(应得工资)所占整个规划设计内容(应得工资)的比例。项目经理和项目总工津贴(工资)另外按规定比例(分别为合同额的1%)计提.项目经理可兼任项目总工。

(2)规划设计质量按《中小河流水能开发规划导则》(SL221-98)和其它相关标准执行。

(3)文字排版与编辑依据《量和单位》(GB3100~3102-86)、《水利技术标准编写规定》(SL1-2002)、《水利水电工程技术术语标准》(SL26-92)。文字录入、排版与编辑工作量已计入各章节。

(4)制图依据《水利水电工程制图标准》(SL73-95)和《水力发电工程CAD制图技术规定》(DL/T5127-2001)。CAD制图、晒图与打印工作量已计入各章节。

(5)各章节可根据工程实际进行增减、合并,其工作量作适当调整。

2小型水电站初步设计定额

2.1编制说明

为了统一小型水电站初步设计报告的编制标准,提高编制质量,由水利部水电及农村电气化司主持,以福建省水利水电勘测设计研究院为主编单位制定了《小型水电站初步设计报告编制规程》(SL/T179—96),要求小型水电站初步设计报告分为15章,分别为综合说明、水文、工程地质、工程任务和规模、工程布置及建筑物、水力机械、电气工程、金属结构、消防、施工组织设计、水库淹没处理及工程永久占地、环境保护设计、工程管理、概算、经济评价等。本规程为小型水电站初步设计报告提供了编制依据,同时也成为小型水电站初步设计定额的制定依据和初步设计质量的检验标准。

2.2定额标准

小型水电站根据其调节性能,可分为径流式水电站和蓄水式水电站。其设计内容的区别主要在于取水枢纽设计的繁简。为此,将小型水电站初步设计定额分为径流式和蓄水式两大类别,其定额内容分别见表2-2-1、2-2-2。

表2-2-1小型水电站初步设计定额(径流式)

章节

名称

工作内容

比例

备注

1

综合说明

文字13节、附图2类、附表3类

2%

根据各章节内容编写

2

水文

文字7节、附图8类、附表7类

5%

3

工程地质

文字10节

1%

根据《勘察报告》编写

4

工程任务和规模

文字11节、附图11类、附表按需要附列

5%

5.1~5.3

设计依据;工程选址;坝型、坝线及工程总布置

文字3节、附图4类、附表按需要附列

3%

宜由项目经理(总工)编写

5.4~5.5

取水枢纽

文字2节、附图8类、附表按需要附列

11%

包括挡水建筑物、泄水建筑物等

5.6

引水建筑物

文字1节、附图2类、附表按需要附列

18%

其中:压力管道12%

5.7

厂房及升压站

文字1节、附图4类、附表按需要附列

12%

5.8

综合利用及其它

文字1节、附图1类、附表按需要附列

1%

6

水力机械

文字4节、附图4类、附表2类

4%

7

电气工程

文字11节、附图12类、附表4类

8%

8

金属结构

文字6节、附图3类、附表2类

2%

9

消防

文字2节、附图3类、附表2类

1%

10

施工组织设计

文字8节、附图2类、附表2类

6%

11

工程永久占地

文字1节、附图3类、附表2类

1%

12

环境保护设计

文字4节、附图2类、附表按需要附列

2%

13

工程管理、劳动安全与工业卫生

文字3节、附图2类、附表按需要附列

2%

14

概算

文字5节、附表33类

6%

含概算书

15

经济评价

文字5节、附表8类

文字修改与校对(每遍1.5%,各部分修改由相关责任人负责,宜2遍以上)、图纸修改与校对(每遍1.5%,宜2遍以上),文字编辑2%

8%

宜由项目经理(总工)和其它相关人员进行

表2-2-2小型水电站初步设计定额(蓄水式)

章节

名称

工作内容

比例

备注

1

综合说明

文字13节、附图2类、附表3类

2%

根据各章节内容编写

2

水文

文字7节、附图8类、附表7类

5%

3

工程地质

文字10节

1%

根据《勘察报告》编写

4

工程任务和规模

文字11节、附图11类、附表按需要附列

5%

5.1~5.3

设计依据;工程选址;坝型、坝线及工程总布置

文字3节、附图4类、附表按需要附列

3%

宜由项目经理(总工)编写

5.4

挡水建筑物

文字1节、附图5类、附表按需要附列

24%

3个比较方案各7%,推荐方案加3%(提供5种坝高的工程量)

5.5

泄水建筑物

文字1节、附图3类、附表按需要附列

6%

5.6

引水建筑物

文字1节、附图2类、附表按需要附列

10%

含压力管道

5.7

厂房及升压站

文字1节、附图4类、附表按需要附列

6%

5.8

工程观测、综合利用及其它

文字1节、附图1类、附表按需要附列

1%

6

水力机械

文字4节、附图4类、附表2类

3%

7

电气工程

文字11节、附图12类、附表4类

6%

8

金属结构

文字6节、附图3类、附表2类

1%

9

消防

文字2节、附图3类、附表2类

1%

10

施工组织设计

文字8节、附图2类、附表2类

5%

11

水库淹没处理及工程永久占地

文字1节、附图3类、附表2类

3%

12

环境保护设计

文字4节、附图2类、附表按需要附列

1%

含水保方案概述

13

工程管理、劳动安全与工业卫生

文字3节、附图2类、附表按需要附列

1%

14

概算

文字5节、附表33类

6%

含概算书

15

经济评价

文字5节、附表8类

文字修改与校对(每遍1.5%,各部分修改由相关责任人负责,宜2遍以上)、图纸修改与校对(每遍1.5%,宜2遍以上),文字编辑2%

8%

宜由项目经理(总工)和其它相关人员进行

2.3定额说明

(1)比例系指每章节工作内容(应得工资)所占整个设计内容(应得工资)的比例。项目经理和项目总工津贴(工资)另外按规定比例(分别为合同额的1%)计提.项目经理可兼任项目总工。

(2)设计质量按《小型水电站初步设计报告编制规程》(SL/T179-96)、《小型水力发电站设计规范》(GB50071-2002)和其它相关标准执行。

设计过程中须进行多方案技术经济比较,力争推荐方案科学、安全、经济、实用。

(3)文字排版与编辑依据《量和单位》(GB3100~3102-86)、《水利技术标准编写规定》(SL1-2002)、《水利水电工程技术术语标准》(SL26-92)。文字录入、排版与编辑工作量已计入各章节。

(4)制图依据《水利水电工程制图标准》(SL73-95)和《水力发电工程CAD制图技术规定》(DL/T5127-2001)。CAD制图、晒图与打印工作量已计入各章节。

(5)各章节可根据工程实际进行增减、合并,其工作量作适当调整。

(6)本定额中厂房及升压站按卧式机组厂房考虑,立式机组厂房和贯流式机组厂房所占比例可根据实际情况在本定额基础上调增50-100%。

(7)小型水电站可行性研究报告编制可参照本定额执行。

3小型水电站施工图设计定额

3.1编制说明

小型水电站施工图设计主要根据初步设计审查意见和相关规范进行。施工图设计内容繁琐,本定额仅作参考,有待于进一步研究。

3.2定额标准

根据径流式水电站和蓄水式水电站各部分设计的繁简,将小型水电站施工图设计定额分为径流式和蓄水式两大类别,其定额内容分别见表3-2-1、3-2-2。

表3-2-1小型水电站施工图设计定额(径流式)

部分

单位工程名称

工作内容

比例

备注

建筑工程

1

取水枢纽

1.设计、制图、交底、服务2.校核、审查

18%

包括挡水建筑物、泄水建筑物、导流建筑物等

2

引水工程

1.设计、制图、交底、服务2.校核、审查

22%

含压力管道12%

3

发电厂工程

1.设计、制图、交底、服务2.校核、审查

18%

4

升压变电站工程

1.设计、制图、交底、服务2.校核、审查

2%

5

其它工程

1.设计、制图、交底、服务2.校核、审查

10%

机电设备

1

水力机械

1.设计、制图、交底、服务2.校核、审查

5%

2

电气工程

1.设计、制图、交底、服务2.校核、审查

10%

金属结构

1.设计、制图、交底、服务2.校核、审查

5%

工程预算

预算及标底

5%

表3-2-2小型水电站施工图设计定额(蓄水式)

部分

单位工程名称

工作内容

比例

备注

建筑工程

1

挡水建筑物

1.设计、制图、交底、服务2.校核、审查

25%

包括导流建筑物等

2

泄水建筑物

1.设计、制图、交底、服务2.校核、审查

14%

3

引水工程

1.设计、制图、交底、服务2.校核、审查

8%

仅含压力管道,增加有压隧洞和调压室为18%

4

发电厂工程

1.设计、制图、交底、服务2.校核、审查

15%

5

升压变电站工程

1.设计、制图、交底、服务2.校核、审查

1%

6

其它工程

1.设计、制图、交底、服务2.校核、审查

10%

机电设备

1

水力机械

1.设计、制图、交底、服务2.校核、审查

3%

2

电气工程

1.设计、制图、交底、服务2.校核、审查

6%

金属结构

1.设计、制图、交底、服务2.校核、审查

5%

工程预算

预算、标底

3%

3.3定额说明

(1)比例系指部分工作内容(应得工资)所占整个设计内容(应得工资)的比例。项目经理和项目总工津贴(工资)另外按规定比例(分别为合同额的1%)计提.项目经理可兼任项目总工。

(2)设计质量按《小型水力发电站设计规范》(GB50071-2002)和其它相关标准执行。设计过程中须进一步进行技术经济比较,力争设计成果安全、实用、经济、美观。

(3)各部分设计应附详细的计算说明书,存档备查。排版与编辑依据《量和单位》(GB3100~3102-86)、《水利技术标准编写规定》(SL1-2002)、《水利水电工程技术术语标准》(SL26-92)。文字录入、排版与编辑工作量已计入各章节。

(4)制图依据《水利水电工程制图标准》(SL73-95)和《水力发电工程CAD制图技术规定》(DL/T5127-2001)。CAD制图、晒图与打印工作量已计入各章节。

(5)本定额中厂房及升压站按卧式机组厂房考虑,立式机组厂房和贯流式机组厂房所占比例可根据实际情况在本定额基础上调增50-100%。

(6)校核、审查工作占单项工作的20%。

水电站设计论文例2

电气设备的选择与布置

1995年以前的中小型水电站,由于受当时技术水平和建设资金的限制,电气设备存在性能较差、安全性不符合现要求、维护工作量大以及备品备件难以购买等问题。例如,低压开关柜多为GGD型或更老的BSL型等,开关和保护设备为DW系列或DZ10系列,而更多的是采用熔断器保护;10kV设备采用GG-1A开关柜配SN10少油断路器,或早期的真空断路器;35kV设备采用DW6、DW8等系列的多油断路器,或GBC户内型高压开关柜;110kV设备采用SW3、SW6及SW7少油型断路器;变压器采用SLJ1或SF7型等。这些设备是目前国家已明令禁止使用的产品,开断电流小,损耗大,不环保,由于诸多原因长期带病运行,严重影响电站和电网的安全,因此对这些电气设备进行更新换代是十分必要的。电气设备的选择应按照安全可靠、技术先进、维护简单方便和经济合理的原则进行,并应适应农村水电站的特点。对电气设备应根据增效扩容后的参数和短路电流计算结果来选取,而不应延用旧设备的参数来确定新设备的参数,这样可保证更换的电气设备能适应目前和将来系统发展的要求。由于设备基础、支架、房间的尺寸和开关站的位置均保持不变,因此在选择电气设备型式时还应考虑这些因素,尽可能多地利用已有基础或仅做小改动。

接地系统的检查与修复

水电站设计论文例3

1水轮机的选择

水轮机是水电站一个十分重要的设备,水流的动能和势能转换成机械能就是通过水轮机来实现的。水轮机选择合理与否,直接影响到机组的效率和运行的安全性、经济性。

1.1机组台数的选择

农村小水电站机组台数与电站的投资、运行维护费用、发电效益以及运行人员的组织管理等有着密切的关系。通过多年设计和运行经验表明:农村小水电站机组台数一般为1~4台,且型号应尽量相同,以利于零部件通用和维修管理方便,其中每座电站2台机组居多。

1.2水轮机型号的选择

水轮机型号的选择合理与否,直接影响到水轮机的运行效率、汽蚀和振动等。选择型号时,既要考虑水轮机生产厂家的技术水平和运输的方便程度,又要确保水轮机常处于较优的运行工况,即尽量处于水轮机运转特性曲线图的高效区。尤其是机组运行时,水头的变化不要超过水轮机性能表的水头范围,否则会加剧水轮机汽蚀和振动,降低水轮机效率。

1.3机组安装高程的确定

水轮机的安装高程不能超过水轮机允许的最大吸出高度,否则会引起水轮机转轮的汽蚀、振动等不良现象,因而缩短机组的运行寿命。

(1)卧式机组:安=Z下+hs-/900-D/2

(2)立式机组:安=Z下+hs-/900

式中Z下——尾水渠最低水位(m);

hs——水轮机理论吸出高度(m),查水轮机应用

范围图及hs=f(H)曲线;

D——水轮机转轮直径(m);

——水电站厂房所在地的海拔高程(m)。

为了消除或减轻水轮机汽蚀,可将计算出的安降低0.2~0.3m确定安装高程。

2电气主接线的拟定

小水电站的电气主接线是运行人员进行各种操作和事故处理的重要依据之一。农村小水电站装机容量往往有限,一般装机台数不超过4台,相应电站的电压等级和回路数以及主变的台数都应较少。考虑到小水电站(尤其是单机100kW以下的微型电站)的机电设备供应比较困难,运行和管理人员的文化、业务素质普遍较差,从进站到熟练掌握操作、检修、处理故障及优化运行等也有一个过程。因此,农村小水电站的电气主接线在满足基本要求的前提下,应力求采用简单、清晰而又符合实际需要的接线形式。

对于1台机组,宜采用发电机—变压器组单元接线;对于2~3台机组,宜采用单母线不分段接线,共用1台主变;对于4台机组,宜采用2台主变用隔离开关进行单母线分段,以提高运行的灵活性。

3电气测量及同期装置

并入电网运行的小水电站电气测量应包括:三相交流电流、三相交流电压(使用换相断路器和1只电压表测量三相电压)、有功功率、功率因数、频率、有功电能、无功电能、励磁电流和励磁电压等的监视和测量。发电机的测量、监视表计、断路器、互感器及保护装置等装在控制屏上(发电机控制屏);电网的表计、断路器、同期装置等装在同期屏上(总屏)。

4保护装置

农村小水电站主保护装置的配置应在满足继电保护基本要求的前提下,力求简单可行、维护检修方便、造价低及运行人员容易掌握等。

4.1过电流保护

单机750kW以下的机组,可以采用自动空气断路器的过电流脱扣器作为过流及短路保护,其动作整定值可以通过调整衔铁弹簧拉力来整定,整定值一般为发电机额定电流的1.35~1.7倍。为了提高保护的可靠性,还可采用过流继电器配合空气断路器欠压脱扣器作过流及短路保护,继电器线圈电源取自发电机中性点的1组(3只)电流互感器,继电器动作值亦按发电机额定电流的1.35~1.7倍整定。

原理:当发电机出现短路故障时,通过过流继电器线圈的电流超过其动作值,过流继电器常闭接点断开,空气断路器失压线圈失电而释放,跳开空气断路器主触头,切除故障元件——发电机。

4.2欠压保护

当电网停电时,由于线路上的用电负荷大于发电机容量,此时电压大幅度降低,空气断路器欠压线圈欠压而释放,跳开空气断路器,以防电网来电造成非同期并列。

4.3水阻保护

当发电机因某种原因(如短路、长期过载、电网停电等)突然甩负荷后,机组转速会迅速升高,这种现象叫飞逸。如果不及时关闭调速器和励磁,可能造成事故。一般未采用电动调速的农村小水电站可利用三相水阻器作为该保护的负荷。

水阻器容量按被保护机组额定功率的70%~80%左右考虑。如果水阻容量过大,机组甩负荷瞬间,将对机组产生较大的冲击电流和制动力,影响机组的稳定,严重时可能造成机组基础松动。反之,如果水阻容量过小,达不到抑制机组飞逸转速的目的。水阻器采用角钢或钢板制成三相星型、三角型均可。

对于单机125kW及以下的电站,水阻池内空,以长为机组台数×(0.7~1)m,宽为(0.7~1)m,深为0.6~0.8m为宜,同时考虑机组容量大小,应在短时间内(如3~5min)不致于将池中的水煮沸。

在调试水阻负荷大小时,应在水中逐渐施加水阻剂,调试水阻负荷,直到达到要求为止。

4.4变压器过载、短路保护

变压器高压侧采用跌落式熔断器(或SN10-10型少油断路器)作过载、短路保护。运行经验表明,额定电压为6~10kV的跌落式熔断器只能用在560kVA及以下的变压器,额定电压为10kV的跌落式熔断器只能用在750kVA及以下的变压器。当变压器容量超过750kVA时,应采用油断路器。跌落式熔断器熔丝按下列公式选择:

水电站设计论文例4

1.1.1取水口拦污栅及启闭设备

1)优化选型布置设计。发电引水隧洞喇叭口底槛678.50mm处设置1孔拦污栅,单孔孔口尺寸为7.5m×10.0m,检修平台高程717.00m,设计水头4.0m,最大引用流量为42.58m3/s,平均过栅流速为0.811m/s,拦污栅重量为26.0t,栅槽埋件重17.0t,型式为平面滑动式拦污栅。选用1台QPG2×250kN-38m高扬程卷扬式启闭机,安装高程726.20m,操作运行条件为静水启闭。2)蓄水安全复核计算。拦污栅主支承是增强四氟NL150CHI型滑块,最大线荷载为25kN/cm,反向支承是钢滑块。栅条间距50mm,栅体主材为Q235B,内力分析计算[2]成果为:主梁最大压应力为105.35N/mm2,发生在跨中处;最大剪力为21.01N/mm2,发生在支座处;最大挠度为9.5mm,发生在跨中处;栅条弯应力为53.1N/mm2,发生在跨中处。拦污栅重量为247kN,提栅清污时考虑污物重量为100kN,拦污栅启闭力为450.1kN,启闭机容量为2×250kN。

1.1.2取水口事故闸门及启闭设备

1)优化选型布置设计。在拦污栅的下游设置1扇事故闸门,孔口尺寸为4.5m×4.8m,底槛高程680.00m,检修平台高程717.00m,设计水头37.0m,闸门型式为平面定轮钢闸门。选用1台安装高程为726.20m上的QPG2×800kN-38m高扬程卷扬机控制闸门,操作运行条件为动闭静启。2)蓄水安全复核计算。闸门由门叶结构、水封装置、4个简支轮主支承(同时兼做反向支承)、4个侧向限位装置和充水阀装置等组成。受力计算采用假设平面体系,按照实际可能发生的最不利荷载组合情况,进行强度、刚度和稳定性验算。闸门在设计水头下动水操作会受到不同程度的动力荷载,动力系数取1.1。门体材料为Q235B,内力分析计算结果为:闸门承受的静水压力为7713.7kN,动水压力为8485.1kN;面板折算应力为157.03N/mm2;主梁最大压应力为128.1N/mm2,位于跨中处。最大剪力为49.2,位于支座处。最大挠度为2.71mm,位于跨中处;主轮与轨道的接触应力为844.06N/mm2;主轨颈部局部承压应力为173.36N/mm2;闸门闭门力为-659.1kN,启门力为479.6kN,持住力为1394.4kN;启闭机容量为2×800kN。

1.2泄水系统闸门及启闭设备

1.2.1溢洪道弧形工作闸门

1)优化选型布置设计。该闸门设置在溢洪道上,底槛设置在堰顶下游侧704.80m处,堰顶高程为717.00m,共设置3孔闸门,启闭机安装高程为719.50m。闸门运行方式为动水启闭,主要承担水库的泄洪任务。闸门的孔口尺寸为12.0m×8.5m(宽×高),设计水头为8.2m。型式为露顶式弧形闸门,其面板曲率半径为10.0m,支铰高度为5.5m,其结构布置见图1。2)蓄水安全复核计算。闸门由门叶结构(焊接件)、水封装置、支臂、支铰和侧轮等所组成,支承为斜支臂。受力计算采用假设平面体系,并按照实际可能发生的最不利荷载组合情况,对闸门的设计条件和校核条件进行强度、刚度和稳定性验算。闸门在动水操作条件下各部件尚需承受的不同程度的动力荷载,故将设计水头作用在闸门部件上的静水压力乘以动力系数,考虑为最不利的荷载组合,动力系数取1.1。门体材料为Q235B,内力分析计算结果表明:闸门承受的静水压力为4218.0kN,动水压力为4639.8kN;面板折算应力为181.8N/mm2;主梁最大压应力为106.3N/mm2,位于跨中处。最大剪力为69.2,位于支座处。最大挠度为4.36mm,位于跨中处;支臂平面内应力为76.2N/mm2;主支臂平面外应力为66.3N/mm2;闸门启门力为441.7kN,闭门力为246.3kN;启闭机容量为2×250kN。

1.2.2放空底孔进口事故闸门

1)优化选型布置设计。在放空底孔进口设置一道事故闸门,孔口尺寸为2.5m×2.6m(宽×高),设计水头52.0m。底槛高程为665.00m,检修平台高程为717.00m,启闭机安装平台高程为723.50m。闸门运行方式为动闭静启,由1套QPG800kN-53m高扬程卷扬机控制。当水库需要放空时小开度提门充水平压,待前后水压差小于4m时,再开启事故闸门。2)蓄水安全复核计算。闸门由门叶结构(焊接件)、水封装置、4个悬臂轮主支承(同时兼做反向支承)、4个侧向限位装置等所组成。受力计算采用假设平面体系,按照实际可能发生的最不利荷载组合情况,进行强度、刚度和稳定性验算。闸门在设计水头下动水操作会受到不同程度的动力荷载,动力系数取1.1。门体主材为Q235B,内力分析计算结果表明:闸门承受的静水压力为3491.5kN,淤沙压力为619.6kN,总压力为4111.1kN;面板折算应力为187.9N/mm2;主梁最大压应力为101.27N/mm2,位于跨中处。最大剪力为65.4,位于支座处。最大挠度为0.76mm,位于跨中处;主轮与轨道的接触应力为663.1N/mm2;闸门启门力为769.1kN,闭门力为-22.0kN,持住力为206.3kN;启闭机容量为800kN。

1.2.3放空底孔出口弧形工作闸门

1)优化选型布置设计。在放空底孔出口设置一道弧形工作闸门,孔口尺寸为2.5m×2.2m(宽×高),承压水头为52.0m,型式为潜孔式弧形钢闸门,底槛高程为665.00m,检修平台高程为668.70m,启闭机安装平台高程为674.60m。闸门运行方式为动水启闭,选用1套QH-SY-500/150kN-4.0m弧门潜孔液压启闭机控制闸门,闸门长期处于闭门挡水状态。当水库需要放空时,动水开启该闸门锁定于检修平台上,待放空完毕,放下工作闸门封闭孔口蓄水。2)蓄水安全复核计算。闸门由门叶结构(焊接件)、水封装置、2个支铰支承和4个侧向限位装置等所组成。受力计算采用假设平面体系,按照实际可能发生的最不利荷载组合情况,进行强度、刚度和稳定性验算。闸门在实际操作中会受到不同程度的动力荷载,动力系数取1.1。门体主材为Q235B,内力分析计算结果为:闸门承受的静水压力为3329.7kN,动水压力为3662.7kN;面板折算应力为183.9N/mm2;主梁最大压应力为33.2N/mm2,位于跨中处。最大剪力为24.4,位于支座处。最大挠度为0.12mm,位于跨中处;支臂平面内应力为98.4N/mm2;闸门启门力为248.8kN,闭门力为122.7kN;启闭机容量为500/150kN。

1.2.4导流隧洞封堵闸门

1)优化选型布置设计。导流隧洞进口设置封堵工作闸门一扇,孔口尺寸为5.0m×6.5m(宽×高),承压水头为44.3m,闭门水头:20m,型式为潜孔式平面钢闸门,底槛高程为647.70m,检修平台高程为659.00m,启闭机安装平台高程为667.50m。闸门运行方式为动水启闭,选用1套QPQ630kN-13m卷扬式启闭机控制闸门,闸门仅用于导流隧洞封堵时使用,导流隧洞在枯水季节封堵下闸门。因受启闭机平台高程的限制(启闭机平台高程为667.50m),闭门时最不利水头工况为启闭高程,即水头为20m,因此整个闸门启闭按最不利的情况下水头20m计算。2)蓄水安全复核计算。闸门由门叶结构(焊接件)、水封装置、12个主滑块和8个反向滑块装置等所组成。受力计算采用假设平面体系,按照实际可能发生的最不利荷载组合情况,进行强度、刚度和稳定性验算。门体主材为Q235B,内力分析计算结果为:闸门承受的静水压力为13501.9kN,发生在设计水头44.3m处;材料容许应力(抗拉、抗压和抗弯)为142.5kN,容许应力(抗剪)为85.5kN;面板折算应力为138N/mm2;主梁最大压应力为84.6N/mm2,位于跨中处。最大剪力为71.92,位于支座处。最大挠度为3.78mm,位于跨中处;闸门闭门力为145kN;水柱压力为898.60kN;启闭机容量为630kN。

水电站设计论文例5

一、初拟压力钢管内径

已知Q设=1.4m3/s,取V经为3.5m/s

即:D==0.713m

按《水利发电》中介绍的经验公式:

D=7√(1.03Qmax/H)=0.816m

式中:Qmax设计正常引用流量

H毛水头

为计算方便,取D=800mm作为试算内径。

板桥电站压力钢管纵断面图

二、水损计算

1)进口水头损失

h1=Σ·=0.024m

式中:Σ取0.05

V===3.11m/s

2)拦污栅水头损失

h2=ζ·=0.066m

式中:ζ=KIβ·()1.33+β2()1.33Isin2=1.94

V===0.816

3)管道水损

管中流速:V==Q设/=2.78m/s

流速水头:=0.394m

2#镇墩弯管末端至前池钢管起点:

=90L1=130.974m

C=R1/6=()1/6=68.83m12/s

入==0.0165

hf1=入··=1.064m

hj1=(ζ1+ζ2+ζ3+ζ4)=0.276m

式中:ζΣ11#弯管水损系数为0.1

ζ22#弯管水损系数为0.1

ζ3平板门槽水损系数为0.4

ζ4前池弯管水损系数0.1

即:hw1=hf1+hj2=1.34m

2#镇墩弯管末端至岔管轴线交点段:

L2=69.747m入=0.0165

hf2=入··=0.567m

hj2=(ζ1+ζ2)=0.335m

式中:ζ1岔管局部水损系数为0.75

ζ23#弯管局部水损系数为0.1

Hw2=hf2+hj2=0.902m

岔管轴线交点中心O点至支管渐变段

L3=1.5mD=800入=0.0165

V==1.39m/s

=0.0975

hf3=入··=0.003m

支管渐变段(D800—D500)

Ď=650mmŪ=2.48m/s

D1=800mmD2=500mmV1=1.39m/s

V2==3.57m/sC2=()1/6=63.63m1/2/s

入==0.0193Q取50L4=1.715m

hf4=入··=0.04m

hj4=ζ.=0.004m

式中ζ=0.025/(8sim)=0.072

hw4=hf4+hj4=0.044m

渐变段末端至闸阀末端段

L5=4.675mD=500mmV2=3.57m/s入=0.0193

hf5=入··=0.117m

hj5=(ζΣ1+ζ2)=0.32m

式中:Σ1为1350弯管水损系数

(ζ1=I0.131+0.1632()7/2I())1/2=0.0936

取p=1.96/mR=2.0mQ=450)

水损系数ζ2=0.4

hw5=hf5+hj5=0.437m

即前池进口至2#镇墩湾管末端

H净1=1346.45-1.34-1261.53=83.58m

岔管轴线交点O处

H净2=1346.45-1.34-0.902-1229.985=114.263m

支管闸门未端

H净3=1346.45-1.34-0.902-0.003-0.044-0.437-1229.842

=113.922m

工作净水头

H净=123.922—1.5=112.422m

三、水击压力计算

1管壁厚度拟定

水电站(8-5)式;δ=γHD/2φ[σ]

H=123.922m

φ=0.85

[σ]=127.5*103*0.75KPa

取8mm计算厚度,再考虑锈蚀等原因,各管段壁厚取值如下:

Ⅰ#δ=10mmD=0.8mV=2.78m/s

L1=130.974m

Ⅱ#δ=12mmD=0.8mV=2.78m/s

L2=69.747m

Ⅲ#δ=12mmD=0.8mV=1.39m/s

L3=1.5m

Ⅳ#δ=12mmD=0.65mV=2.48m/s

L4=1.715m

Ⅴ#δ=12mmD=0.5mV=3.57m/s

L5=4.675m

1)判别水击类型

取Ts=5sα0取1435m/s

a1==1070m/s

a2==1111m/s

a3==1111m/s

a4==1156m/s

a5==1206m/s

②ā=

=1087.12m/s

V最大==2.785m/s

ρ==1.247

Q==0.0956

水击波的相tΥ==0.383

TΥ<Ts=5s故发生间接水击

导叶由全开到全关时

I始=1pI始=1.247σ=0.0956

查图表知,将产生末项正水击

I始=0.5pI始=1.345×0.5=0.6725

即查表知,发生第一相水击

3正水击压力升高值

Z间末==0.101

闸阀未端水击压力升高值

Δh1闸末=Z间末H0=0.101×123.922=12.516m

H01=123.922+12.516=136.438m

按直线分布规律:

岔管轴线交点O处

Δh岔0=×Δh闸末=20.732m

H02=114.263+12.042=126.305m

2#镇墩弯管轴线交点处

Δh2#=×Δh闸末=7.83m

H03=83.58+7.85=91.411m

末跨1-1断面

Δh1-1=×Δh闸末=11.69m

H1-1=111.705+11.69=123.395m

末跨2-2断面

Δh2-2=×Δh闸末=11.514m

H2-2=110.305+11.514=121.819m

本计算只对钢管作结构计算,在进行压力钢管、线路布置时已满足规范规定管线高于最低压力线的要求,故不需作负水击值计算。

四、明钢管(光滑管)结构稳定分析

1、钢管稳定校核

f=0.01-0.012m>==0.0062

故钢管稳定,不需设置刚性环。

末跨钢管布置图

2、钢管未跨跨中断面受力分析(1—1)断面

1)1—1断面环向力计算

P=rH=9.8×123.395=1209.271(Kpa)

式中:r—水容重9.8KN/m3

H—包括水击升高值在内的净水头。

2)1—1断面法向力计算

管身米重:g管=πDδγОγ=3.14×0.8×0.012×7.85×103×9.8

=2.31(kN/m)

每米长水重:g水=πD2γ=4.92(kN/m)

支墩承受的法向力η=(g管+g水)LcoS2

=(2.31+4.92)×6×coS28.001700

=38.3(kN)

3)轴向力计算

A1=gLSina=2.31×60.885×Sm28.0017=66.03(kN)

式中L为未段钢管长度

温度升高时,9个支墩对管壁的磨擦力为:

A3=(g管+g水)*L*9*fО*coSa

=(2.31+4.92)×6×9×0.5×coS28.00170

=172.357(kN)

伸缩节接头管壁受的车向水压力为:

A7=πDδ¹γH=3.14×0.8×0.012×9.8×93.101=27.503(kN)

式中δ¹—伸缩节处管壁厚度0.012m

H—伸缩节处水头93.101m

温度升高时,伸缩节接头填料对管壁的磨擦力为:

A8=πDb1fγ¹H¹=3.14×0.8×0.1×0.3×9.8×93.101

=68.757(kN)

3、未跨中1—1断面应力校核

1)径向内水压力在管壁中产生的环向应力:

σz1=γR/f(H-Rcos2cosφ)(Kpa)

式中:γ—水容重9.8KN/m3

R—钢管内半径0.4m

H—1-1断面中心水头123.395m

φ—管壁某计算点半径与垂直线的夹角

在管顶(φ=0)处

σz1=(123.395-0.4cos28.00170cos00)

=40193(Kpa)

在管水平轴线(φ=1800)处

σz1=(123.395-0.4cos28.00170cos1800)

=40424(Kpa)

2)法向力在管壁中产生的抽向力σX1

σX1=-cosφ=

=-

=-3811(Kpa)

=3811(Kpa)

式中:M—1-1断面弯矩

W—钢管横断面条数

3)轴向力在横断面上产生的轴向应力σX2

∑А=А1+А3+А7+А8=66.03+172.357+27.503+68.757

σX2=-=-=-11101(Kpa)

4)内水压力在管壁产生的径向压应力为

σY=-p=-rcA-rcosφ1=-9.8[123.395-0.4cos28.00170cos]

=(Kpa)

5)跨中断面1-1的剪应力ZX2

Q=0即ΤX2=0

6)跨中断面1-1的复合应力校核

总轴向应力

σX=σX1+σX2=-11101=(Kpa)

总环向应力

σZ=(Kpa)

总径向应力

σX=(Kpa)

各向剪应力均为零

根据规范要求,采用第四强度理论进行强度校核。

σ=

≤φIQI=0.85×127.5×103=108375(Kpa)

φ=00处

σ=

=49690Kpa<108375Kpa符合规范要求

φ=1800处

σ=

=44984Kpa<108375Kpa符合规范要求

4、未跨支座附近2-2断面应力校核:

1)2-2断面径向内水压力生产的环向应力为:

σz1=(H-rcosacosφ)

式中:H—2-2断面中心水头129.995m。其余符号同前。

在管顶(φ=00)处:

σz1=(129.995-0.4cos28.00170cos00)=42349(Kpa)

在管水平轴线(φ=900)处:

σz1=(129.995-0)=42465(Kpa)

在管底(φ=1800)处:

σz1=(129.995-0.4×cos28.00170cos1800)

=42580(Kpa)

2)轴向力在横断面上产生的轴向应力(同跨中断面):

σx2=-11101(Kpa)

3)法向力在管壁中产生的抽向力

σX1=-cosφ=0(Kpa)(φ=900)

4)内水压力在管壁产生的径向压应力为:

σY=-p=-9.8(129.96-0.4cos28.00170cosφ)=-1274(Kpa)(φ=900)

5)断面2-2的剪应力:

剪力

Q=(g管+g水)Icosa=19.15

剪应力

Tx2=sinф=sinф=1270(Kpa)

6)支座断面2-2的复合应力校核:只需校核ф=900处的应力即可,因ф=00、1800处应力以跨中断面(1-1断面)控制。

总轴向应力σX=σX1+σX2=-11101Kpa(ф=900)

总环向应力

σz=42465Kpa(ф=900)

总径向应力

σY=-1274Kpa(ф=900)

剪应力

Tx2=1270Kpa

TxY=0

Txz=0

根据第四强度理论,校核2-2断面复合应力(ф=900)

σ=

=49391(Kpa)<φ[σ]=108375(Kpa)

符合规范要求。

五、结论

通过计算分析,电站明钢管结构是符合稳定要求的。结合其它已建工程的设计工作,笔者主要有以下几点体会:

1.对于无压引水式高水头小型水电站,工作水头大于150米的明钢管,导叶由全开到全关时发生第一相水击;工作水头大于150米的明钢管,导叶由全开到全关时将产生末相正水击。

水电站设计论文例6

2二级水电站存在的问题

(1)电站自建成投运以来,引水渠道长4.56km,基本沿山坡布置,临外坡为悬空状态,采用填方渠道,其中2.5km渠道渗漏严重,每年都要大、小维修多次,维护费用较大,发电效率低。(2)电站压力钢管为覆土埋设,内径1.2m,长186m,受当时技术、工艺水平的制约,防腐处理措施不够,锈蚀严重,经现场实测局部厚度仅为8mm,比原设计12mm锈蚀3~5mm。由于年久失修,在20世纪90年代,3、4号机组压力管道曾出现过爆管现象,给电站的安全运行带来了一定的隐患。(3)尾水渠采用T型,长度为300m。由于多年疏于维护,尾水渠产生了淤积,致使电站运行尾水位抬高,降低了有效使用水头,影响了机组出力。(4)原水轮机型号为HL220—WJ—50,套用定型产品,不能满足电站水工设计要求,存在机型老化、运行工况严重偏离、制造工艺落后等(机组实际出力700kW)一系列问题,造成水轮机气蚀严重、效率低下、振动噪音大、出力不足。(5)由于地域关系,河道泥沙含量较大,水轮机蜗壳、导叶、顶盖、底环等过流部件磨损严重,经测量蜗壳局部厚度仅8~9mm,比原设计少4~5mm。密封结构未考虑多泥沙河流运行的实际情况,漏水量大,无法正常使用。(6)机组制动方式为老式单侧人工手动操作,无法满足安全运行的需求。(7)原电机设计、工艺水平落后,机组绝缘等级为B级,电机绝缘等部件已接近使用年限,存在较大的安全隐患。

3二级水电站技术方案设计的选择

根据水工建筑目前现状和河道来水量水文资料以及上、下游流量变化情况,经复核计算,确定对水轮机、发电机等部件进行系统改造,使原机组单机容量从700kW提高到900kW,发电量提高29%左右。

3.1机组参数的选

根据电站实测参数,阿勒泰二级电站毛水头为52.4m。考虑到本次改造水工部分的改进,水头与流量均有一定的富余,新机组设计水头按51m、引用流量按2.5m3/s进行设计计算。改造时充分考虑了电站吸出高度、引用流量、结构尺寸、布置形式、水力参数等各项技术指标的匹配性(见表1)。

3.2水轮机改造

根据电站现有水力参数,适合本次电站改造用的转轮有D74、A551、D41、A616等。通过对比,A616机组具有效率高、气蚀性能好、超发能力强、运行范围大等特点,故推荐采用A616转轮。(1)电站水工建筑前期改造升级完后,水头及流量均比以前有所增加,本次新转轮制造在满足现有结构尺寸空间的前提下,通过选用性能优良的模型转轮达到了增容增效的目的;新转轮在选型上留有较大的余量,没有过于追求水轮机效率,采用效率修正-2%,可保证增容出力要求。(2)针对电站泥沙含量较大的问题,转轮叶片及下环采用性能优良的0Cr13Ni5Mo不锈钢材料制作,并在转轮上冠处开设减压孔以减小推力轴承所承担的水推力。(3)机组尾水部分采用无尾水接管结构,通过变径尾水弯管直接与尾水锥管进行连接,减少了电站的改造费用。(4)蜗壳、导水机构、密封等部件重新进行制作。顶盖、底环及导叶配合部位加设不锈钢抗磨板,提高其抗磨蚀能力。导叶轴承套采用新型高分子材料制作,该轴承使用温度为-50~110℃之间,老化寿命大于50a,最大静载荷可达70MPa,具有耐磨程度高、承载能力大、拆装方便等特点。(5)由于电站泥沙含量较大,密封磨损严重,本次改造密封采用间隙、迷宫加盘根的多密封结构,有效地控制了机组漏水量(见图1)图1密封改造示意(6)刹车装置采用油刹方式,通过制动器与调速器之间的管路连接,实现对机组的制动。

3.3发电机改造

(1)更换定、转子线圈。线圈按F级制作,原B级允许温升80K,F级为105K。另外,通过更换绝缘材料,提高发电机绝缘耐热温度,达到增容改造的目的。(2)定子线圈双层叠绕组结构,F级绝缘,导线采用单丝双膜优质薄膜自粘性铜扁线(原机组采用玻璃丝线),对地绝缘为环氧云母带连续绝缘,并经热模压成型,再经防电晕工艺处理;整体机械强度好,绝缘性能优良,增加了定子线圈匝间可靠性,满足了电站的使用要求。(3)原发电机型号为SFW118/44—6,通过计算定子线规可放大8%,转子线规可放大9%,如此一来,可有效降低电机温度,以达到增加容量的目的。(4)转子线圈重新制作时,采用F级绝缘材料,线圈用扁铜带绕制而成,匝间用环氧坯布绝缘,首末匝用云母带及无碱带加强绝缘,然后与上下绝缘板热压成一个整体。(5)通过更换电机定、转子线圈后,发电机可在原出力基础上增加10%~15%左右。

水电站设计论文例7

1地下厂房位置选择

在选择地下厂房位置时,考虑了下面几个因素。

(1)厂房上游侧靠近水库处有F1断层,与厂房轴线基本平行。厂房应尽量远离F1,以确保厂房围岩稳定和减少渗水量。

(2)厂房靠山体侧的F3断层沿冲沟发育,F3影响范围内的不透水层埋藏很深,透水量较大。因此厂房应尽可能远离F3影响带。

(3)通过厂房的F7、F28、F29断层,与厂房轴线有较大的夹角,对厂房围岩稳定影响不大。而F12、F2断层与厂房轴线基本平行,F2断层靠河床侧正与厂房顶拱相切,对厂房围岩稳定不利,厂房应尽可能地避开。

综合以上因素,同时考虑主变室、尾水调压室及输水系统的布置,确定了主厂房位置。根据实际开挖揭露的地质情况来看,地下厂房位置选择是合理的。

2厂房纵轴线方向确定

2.1确定原则

(1)厂房纵轴线应尽可能垂直于岩体主要节理裂隙的走向或与其成较大的夹角,避免上下游边墙承受较大的侧向压力,以利于围岩稳定。

(2)轴线尽可能平行于初始地应力的最大主应力方向或与其成较小夹角。

2.2轴线方向确定

根据厂区节理玫瑰图及实测的三维地应力成果,在满足洞室稳定和输水发电系统总布置要求的前提下,厂房轴线方向确定为N40°E。理由如下。

(1)根据厂区节理玫瑰图分析,主要节理组方向为N15~30°W,次要节理组方向为N70~85°E。厂房纵轴线与主要节理组方向夹角为55~70°,与次要节理组方向夹角为30~45°。

(2)从实测的三维地应力成果看,最大主应力方向为N68.9°E,与厂房纵轴线方向夹角为28.9°,虽然夹角稍偏大,但其应力值为6.80MPa,属中低应力区,对厂房纵轴线方向选择影响不大。

3地下洞室群布置

除了开关站出线场和控制楼布置于地面外,主厂房、主变室、尾水调压室及其他洞室均布置于地下,形成了一个错综复杂的地下洞室群。

厂区枢纽布置采用主厂房、主变室、尾水调压室三大洞室平行布置的形式,因此,三大洞室的纵轴线方向与主要节理的夹角方向均较大,对顶拱和边墙稳定有利。主厂房与主变室间净距22m(1倍大洞室跨度),主变室与尾水调压室间净距19.6m。主变室靠近主厂房布置,母线长度较短,可降低造价,提高运行的可靠性。

主厂房与主变室间布置有4条母线洞,每台机组母线通过各自的母线洞至主变室。主变室中布置有电缆电梯竖井,与高程180m的地面开关站和控制楼相连接,由于主变室与主厂房安装场高程相同,故布置了一条进厂交通洞,担负主厂房和主变室的交通运输。在主厂房和主变室四周设上下两层排水廊道,排水廊道内设D76@3m排水孔形成排水帷幕,组成厂区排水系统,以减少主厂房和主变室的渗水量。

地下厂房安全通道除靠山体侧的进厂交通洞和电缆电梯竖井直接与地面相通外,靠河床侧还利用下层排水廊道经过2号排风竖井和调压室运输洞与左岸厂坝公路相接。

4厂房内部布置

主厂房洞室开挖尺寸为129.50m×21.90m×52.08m(长×宽×高),布置有4台单机容量150MW的竖轴水轮发电机组,机组间距21m。水轮机安装高程为65.60m。廊道层、水轮机层、发电机层及厂房洞顶高程分别为59.00、69.80、76.60、100.58m,尾水管底板高程50.00m。廊道层布置有盘形阀、滤水设备等;水轮机层上游侧布置调速器、油压装置等水力机械设备及管路,下游侧布置母线出线、电缆等电器设备。发电机层下游侧布置有励磁盘、机旁盘等设备。每一个机组段设楼梯一部,作为连接发电机层和廊道层的垂直交通道。安装场布置在靠山体一侧,长39m,按1台机组大修时主要部件堆放的实际需要,同时考虑施工期的安装及卸车等要求确定。检修集水井和渗漏集水井布置于主厂房靠河床侧,为避免机组检修时下游水位倒灌,检修集水井顶部高程为76.60m,与发电机层高程相同。由于山体内渗透水量难以准确计算,为保证厂房安全运行,厂房内渗漏集水井仅考虑厂房围岩及机组渗漏水量;排水廊道内的山体渗水量流入排水廊道单独设置的集水井内。在主厂房两端各布置1个空调机室。

主厂房吊车梁采用岩壁吊车梁,省去了钢筋混凝土吊车柱,缩小了厂房跨度,同时厂房桥机可以提前安装运行,方便施工。主厂房顶部采用轻钢屋架,上设轻质防水屋面,下设轻质吊顶,中间布置通风管道等。

为了改善地下厂房的运行条件,副厂房采用分散布置方式,将中控室和电气辅助生产用房及办公用房布置于主变室顶部高程180m的地面控制楼内,其余房间分别布置于主厂房和主变室内。

主变室开挖尺寸为97.35m×16.00m×14.80m(长×宽×高),内设两台220kV三相360MV·A双卷主变压器,底高程76.60m,与发电机层相同,主变压器可经进厂交通洞入安装场进行检修。主变室下部为高压电缆道和事故油池。主变室靠近进厂交通洞布置,电缆电梯竖井通向高程180m地面开关站和控制楼。在主变室两端各布置1个空调机室。

母线洞与主厂房纵轴线相垂直,开挖断面为8.00m×8.40m(宽×高),底板高程69.80m,与主厂房水轮机层高程相同。母线洞内布置有电压互感器柜、发电机断路器、励磁变压器、电气制动柜等设备。地下厂房横剖面见图1。

5地下厂房支护设计

5.1支护设计原则

(1)根据厂房部位的地质条件,主厂房、主变室、母线洞、尾水调压室和进厂交通洞等均采用喷锚支护作为永久支护形式,对尾水管、输水隧洞及局部洞室交岔口采用钢筋混凝土衬砌作为永久支护。

(2)喷锚支护设计按招标设计阶段地勘报告提供的岩体参数进行,即按维持Ⅱ类围岩稳定所需的支护强度设计。

(3)喷锚支护设计按照新奥法原理,采用“设计施工监测修正设计”的方法,在施工中加强监测和观察,根据实际情况随时调整支护参数。

5.2系统喷锚支护设计

初期喷锚支护参数的选择主要采用围岩分类法、工程类比法、理论验算法,并辅以有限单元法计算成果进行验证。

围岩分类法采用N·Barton,Q系统分类法、Bieniawski地质力学分类法(RMR)、《GBJ86-85锚杆喷射混凝土支护技术规范》和《SD335-89水电站厂房设计规范》等;工程类比法采用国内外已建地下厂房的实例进行类比;理论验算法采用喷、锚、网联合支护的设计方法验算支护效果;有限单元法采用平面有限元和三维有限元法对地下洞室群的围岩稳定性、初选支护参数的合理性、地质参数的敏感性等进行分析、论证,选择了较为合理的支护参数。

6主厂房结构设计

主厂房主要结构有尾水管、蜗壳、机墩、风罩、发电机层楼板和岩壁吊车梁等。

6.1尾水管

尾水管为单孔钢筋混凝土结构,出口为8m×8m的方形断面,轴线与机组纵轴线垂直。尾水管结构由锥管段、弯管段和扩散段三部分组成。由于锥管段和弯管上段四周为大体积混凝土,并设有钢衬,所以设计中只对弯管下段和扩散段进行了结构计算,锥管段及弯管上段参照已建电站经验配置构造钢筋。

弯管下段结构计算中,在垂直水流方向切取一代表性剖面,按弹性地基上的箱形结构进行内力计算,由于尾水管杆件截面尺寸较大,跨高比小,故计算中考虑剪切变形和刚性节点影响。扩散段结构计算中,在垂直水流方向切取两个代表性剖面,按钢筋混凝土衬砌结构采用边值法进行结构分析、配筋,按有限元法进行校核。

6.2蜗壳

蜗壳采用金属蜗壳,进口直径为5.40m,顶板最小厚度1.50m。蜗壳上半部与钢筋混凝土之间铺设弹性垫层隔开,使蜗壳混凝土不承受内水压力作用。弹性垫层材料采用聚苯乙烯泡沫板,厚度为3cm。蜗壳钢筋混凝土结构为一空间整体结构,计算中简化为平面问题考虑,即沿蜗壳中心线0°、90°、180°径向切取3个计算断面,形成一变截面Γ形框架,不考虑各Γ形框架之间的约束作用。采用结构力学和平面有限元方法进行内力分析。考虑到弹性垫层材料具有一定的弹模,正常运行时蜗壳内水压力有可能部分传至混凝土结构,为安全计,结构计算中对上述情况进行了校核。

6.3机墩、风罩

机墩是水轮发电机组的支承结构,承受着巨大的动荷载和静荷载。本电站机墩形式为圆筒式,内径5.93m,下部最大壁厚4.035m,高3.145m,它具有刚度大、抗扭和抗振性能好的特点。机墩结构计算包括动力计算和静力计算两部分。动力计算中忽略机墩自重,用一个作用于圆筒顶的集中质量代替原有圆筒的质量,使在此集中质量作用下的单自由度体系的振动频率与原来的多自由度体系的最小频率接近;机墩的振动作为单自由度体系计算,在计算动力系数及自振频率中不计阻尼影响;机墩的振动为弹性限幅内的微幅振动,力和变位之间的关系服从虎克定律;结构振动时的弹性曲线与在静质量荷载作用下的弹性曲线形式相似,从而可用“动静法”进行动力计算。在静力计算中假定荷载沿圆周均匀分布,正应力取单宽直条按矩形截面偏心受压构件计算;扭矩产生的剪应力假定按两端自由的圆筒受扭公式计算;有人孔部位的扭矩剪应力假定按开口圆筒受扭公式计算;孔边应力集中(正应力)按圆筒展开后的无限大平板开孔公式计算。计算结果除进人孔部位因主拉应力超过混凝土允许拉应力需按计算配筋外,其余部位按构造配筋。

发电机风罩为一钢筋混凝土薄壁圆筒结构,内径13m,壁厚0.50m,高3.655m,其底部固结于机墩上,顶部与发电机层楼板整体连接。风罩内力按薄壁圆筒公式进行计算,计算时考虑温度应力的影响,外壁温度取20℃(冬天)、30℃(夏天);内壁温度取40℃;混凝土浇筑温度根据当地的气温资料取12℃。计算结果表明,混凝土浇筑温度对风罩内力影响很大,因此在施工中要求严格控制混凝土的浇筑温度。

6.4楼板

发电机层楼板采用薄板、次梁、主梁和柱组成的常规板、梁、柱结构系统。设计活荷载发电机层为50kN/m2,安装场为160kN/m2。

6.5岩壁吊车梁

岩壁吊车梁是通过长锚杆将钢筋混凝土吊车梁固定在岩壁上的结构,吊车的全部荷载通过锚杆和钢筋混凝土吊车梁与岩石接触面上的摩擦力传到岩体上。岩壁吊车梁计算取纵向单米宽度,按刚体极限平衡计算,不考虑吊车梁纵向的影响。桥机设计最大轮压450kN,计算中对岩壁吊车梁的断面尺寸、岩壁壁座角和上排锚杆倾角进行了多种组合,最终确定的岩壁吊车梁岩壁壁座角α=20°,上排受拉锚杆(A、B锚杆)倾角分别为βA=25°、βB=20°,锚杆直径和间距均为φ36@0.75m,锚杆计算安全系数K=2.24(设计),K′=2.11(校核)。

水电站设计论文例8

2黄龙沟水电站工程概况

2.1总体布置黄龙沟水电站为无调节能力的径流式引水电站,由挡水建筑物、引水建筑物、发电厂区三大部分构成.其中挡水建筑物主要由大坝、冲沙闸组成.黄龙沟电站共有2座拦水坝,大坝坝址分别位于黄龙沟叉湾和深子沟兴隆寨处,拦蓄黄龙沟、深子沟沟谷来水;引水建筑物主要包括黄龙沟大坝和深子沟大坝至压力前池(位于白家乡茅坡)的引水暗渠,及从前池至发电厂房的压力管道;发电厂区位于白家乡大坪村(镇坪至安康公路右侧的南江河畔),距镇坪县城区25km,距镇坪县白家乡约6km.

2.2工程特性1)防洪标准.黄龙沟水电站无防洪及其他要求,对于正常高水位的确定主要是考虑坝址处河床高程及取水要求,且能充分利用水头,将其确定为1220.00m.2)设计发电能力.水电站设计引用流量为0.625m3/s,装机容量2500kW,多年平均年发电量为793万kW•h,年利用小时数3192h,为Ⅴ等小(2)型工程.3)运行调度.水库正常水位1220.00m.黄龙沟大坝校核洪水位为1221.48m;深子沟大坝校核洪水位为1221.432m,库容较小.库区校核洪水位以下为林地;引水渠道和压力管道永久占地为林地,压力前池永久占地为旱地,厂房永久占地为荒地.故该项目无库区淹没,不存在移民问题.

2.3流域水文黄龙沟、深子沟流域均为南江河一级支流.流域内雨量充沛,年际变化小,根据《水文手册》估算,黄龙沟、深子沟坝址处多年平均降雨量应为1010mm.黄龙沟坝址控制流域面积为6.09km2,深子沟坝址控制流域面积5.81km2.黄龙沟和深子沟流域平均比降较大,水能资源丰富,目前尚未进行水能资源开发.

3黄龙沟水电站来水量计算

3.1参证站的选取镇坪县南江河流域内设有银盘、镇坪、牛头店雨量站,无水文站.据此,宜用水文比拟法进行推求.水文比拟法就是将参证流域的水文资料移置到设计流域上来.移置的关键在于参证站的选择,不仅要求参证流域具有较长的、可靠的实测资料系列,而且须确保参证流域影响径流的各项因素与设计流域具有相似性,即其主要影响因素如气候、下垫面、人类活动等因素应与设计流域相近.经过对黄龙沟及深子沟流域参证站进行比选,邻近流域的岚河六口(佐龙沟)水文站最具优势.该站是国家基本水文站,拥有1959年至今的观测系列水文资料,水文测验规范,资料经过省级和流域机构的审查,资料系列长,成果可靠.同时,岚河流域与洪石河流域发源于同一山脉(大巴山北麓),处于同一气候区,其地形、地貌、植被和地质构造基本相似.因此,本项目论证选用六口水文站作为参证站.

3.2修正系数为确保设计流域与参证流域具有较高的相似性和所用实测资料的可靠性,计算设计流域径流量应按下式进行修正。

3.3黄龙沟水电站来水量及年内分配黄龙沟水电站采用多年平均径流量作为与设计保证率相对应的径流量。根据六口水文站不同频率的年径流量,按式(1)进行修正,得到不同频率黄龙沟水电站年径流量,取其平均值作为该水电站多年平均来水量,即833.99万m3.1)参证流域多年平均径流量年内分配.邻近流域岚河六口水文站为本项目参证站,其多年平均径流年内分配计算结果见表1.2)黄龙沟多年平均径流量年内分配.多年平均径流的年内分配根据六口站径流年内分配系数(表1)进行计算.多年平均径流量的年内分配见表2.

4其他取水需求

4.1生产生活用水需求生产生活用水一般包括城乡居民生活用水、工矿企业用水、农业用水等.建设项目水资源论证主要分析工程实施对水资源和水环境的影响,水电站的评价影响范围主要为大坝库尾以下.据调查统计,黄龙沟与深子沟库尾至其坝址,乃至坝址以下的南江河以及两坝至厂房区间内无人居住,沿河两岸耕地极少,亦无牲畜养殖场,基本没有生产生活用水需要.

水电站设计论文例9

中图分类号:T V213 文献标识码:A

水资源论证是指依据江河流域或者区域综合规划以及水资源专项规划,对新建、改建、扩建的建设项目的取水、用水、退水的合理性以及对水环境和他人合法权益的影响进行综合分析论证的专业活动。山区小型水电站工程水资源论证有其特有的特点,与平原地区相比,对建设项目取水地点、取水量、用水环节、取水和退水可能给区域水环境带来的影响等方面有着不同的特点。

1 工程背景

2 建设项目所在区域水资源状况及其开发利用分析

2.1 水文

干峡河以上无水文测站。由于本次设计收集到巫溪站水文测站的基本资料,因此,选用巫溪站作为本工程水文计算的参证站。经计算,巫溪站径流深为1042mm。

2.2 水资源量

2.3 水质状况

根据《重庆市水功能区划报告》,干峡河流域水质较好,为Ⅰ-Ⅱ类。瓦淌河水库电站工程所在干峡河范围内,其水质满足电站工程取水水质要求。

2.4 水资源开发利用情况

巫溪县水力资源十分丰富,流域面积大于100km2的干支流共12条,水量充沛,落差集中,开发利用条件优越。全县水能资源理论蕴藏量46.2万kW,可开发量42.6万kW,己开发26.8kW,占可开发量的62.9‰。

3 取水水源论证

3.1 地表取水水源论证

根据巫溪县相关规划,瓦淌河水库电站工程规划装机规模5000kW。经计算,巫溪站径流深为1042mm。

3.2 用水量分析

3.2.1 设计保证率

重庆市巫溪县瓦淌河水库电站工程是分水河水能资源梯级开发规划的电站,具有调节能力。

3.2.2 发电水头的确定

水电站的装机容量与工程的发电引用流量、发电水头密切相关。由于瓦淌河水库电站工程属于高水头的混合式电站。经计算,本电站年加权平均水头为64.4m,根据相关规定,本电站额定水头取年加权平均水头的90%,即H净=58.00m。

3.2.3 装机容量的确定

根据本工程所处地区社会经济发展状况及用电负荷增长情况,本电站装机容量以装机年利用小数宜在3500h左右拟定。径流调节计算时,发电可用水量需扣除灌溉用水及居民生活用水,以及下游生态用水量。经计算,本电站装机规模确定为5000kW。

3.3 可供水量分析

3.4 水资源质量评价

工程地处为分水河左岸一级支流。根据《巫溪县水功能区划报告》,该河段现状水质为Ⅱ类,水质管理目标为Ⅱ类。取水水源水质是可靠的,加之水力发电对水质没有特殊要求,因此,取水水源水质能够满足拟建工程取水的要求。

3.5 取水口位置合理性分析

瓦淌河水库电站工程取水水源为分水河支流干峡河,其水量和水质均可满足工程设计取水要求。取水口位于干峡河河口上游约1.86km处,引水隧洞长约2.1km。根据以上分析,取水口位置布置合理。

3.6 取水口可靠性与可行性分析

重庆市巫溪县瓦淌河水库电站工程坝址上集雨面积234km?,流域区内植被较好,水土流失轻度。从电站大坝处的径流调节计算成果分析,电站坝址处设计引用流量为11.5m?/s,多年平均年径流总量2.438亿m3。电站按3500h的设计年运行,取水水源和水量可靠。该工程在干峡河下游设置取水口,设计取水流量11.5m3/s是可行的。

4 取水的影响分析

4.1 对区域水资源的影响

重庆市巫溪县瓦淌河水库电站工程筑坝引水,人为地改变了河道天然来水的时程分配。经分析,瓦淌河水库电站工程引水发电,对水量无损耗,不产生污染。因此,该项目取水对区域水资源量无影响。

4.2 对其他用户的影响

水电站设计论文例10

 

随着社会主义建设事业的发展,小水电建设发展很快,已经成为地方经济的支柱产业。但是,早期的小水电站由于资料不足,设计不合理,设备选型不当,弃水多,闲置容量多。通过技术挖潜增加效益的可能性很大。本文就小水电站现状进行分析,提出挖潜增效的技改措施。

一、小水电建设现状

新疆境内的阿尔泰山、天山、昆仑山脉中分布着许多条小河流,拥有极其丰富的水力资源。自治区水能理论蕴藏量为3355万kW。兵团的水力资源主要分布在各师(局)所属垦区的独立河流区域内,有的师与地方处在一个水系内。小水电蕴藏量约为234万kW,可开发量78万kW,已开发16.5万kW,占21%。兵团的小水电事业是从无到有逐步发展起来的。十一届三中全会以后,各农业师及农牧团场大办农田水利事业,水电事业有了较大的发展。从巴里坤草原到伊犁河谷,从阿尔泰山到昆仑山,兵团13个农业师有小水电的师就有10个,以小水电供电为主的师有5个,水电对各农牧团场生产的发展起到了促进作用,经济、社会效益十分显著。新疆的小水电在政府扶助下通过艰苦奋斗逐步发展起来的,对加速小水电建设步伐起到巨大作用。但也造成了重建轻管的思想,存在的问题没有引起足够重视,以至安全隐患逐步增加,机组出力不足,效益下降,水力资源浪费严重。

二、小水电存在问题

初期建造的电站,装机大多在200kW以下,水库电站一般都是2×40kW,主要是解决附近村庄的照明用电,据目前水能分析计算,装机可成倍增加。水头没有充分合理利用,电站选址位置不合理,如早期隧洞开凿困难,就近在坝址附近建站,没有利用河床坡度;水库涵管后采用明渠引水,没有利用大坝高度的势能,尤其是低水头电站更加明显。部分梯级开发电站上下级发电流量不配套,下一级电站由于位置优越提前开发,且按原设计标准年利用小时都在3000h以上,在上游电站逐步开发后,发现上游发电流量大,下级电站流量偏小,弃水增加,甚至有的电站发电量不增反降。早期机组性能差,效率低,出力不足,设备老化、效率低,运行不稳定,易发生气蚀,有些机组已淘汰,目前零配件购置困难,个别电站仍在使用高能耗变压器等等,这些电站安全问题突出,必须实行技改,对设备进行更新。个别电站管理落后,设备长期在超负荷或低负荷下运行,承包者追求短平快,业主监督不力,无维修保养制度,机组损坏严重,长期带病运行,积劳成疾。

三、小电站技改的举措

随着可开发资源的逐渐减少及老电站安全问题的日益突出,逐步对老电站进行了技改,通过几年的探索,取得了较好的经济效益和社会效益,符合社会经济发展规律。

1、增容改造

当前,对有能量潜力和运行时间较长的电站,均可进行机组增容和更新改造,这是一种投资少、见效快,既利国又利民的好途径。在目前水电建设资金紧缺的形势下,这要比开发新电源点具有明显的优势。需要改造的电站都是早期兴建,水力条件较好,开发简单、设备简陋的电站。对无调节性能的电站原则上不列项,不再新建。但挖潜改造要有合理的规划,对小水电站进行普查,把需要改造的电站,摸底排队,根据当地经济发展,制定科学的切实可行的改造计划。对花钱少、效益好的改造项目应优先考虑,要查出问题的所在,确定改造内容,分析改造的可行性,防止盲目改造和改造不改效的情况发生。

2、技术更新

对部分机组通过更换转轮和导水机构,可使出力提高一档,从而大大节约技改投资。免费论文。首先是技术进步。早期电力工程,电网建设相对简单,运行中出现的问题似乎更多。随着科学技术的进步,近年来,新技术,新设备的积极的运用于建设中。免费论文。利用虹吸取水方案,利于冰、沙的排除,运行,使用分层分布式计算机综合自动化设备; 35kV模式化变电所模式一直在兵团推广,博尔塔拉、阿克苏垦区、小海子、五家渠、伊犁、额敏、北屯、石河子垦区已建成35kV以上变电所30多座;这些先进的技术和设备,提高电气化水平。

3、进行优化设计

中小型水电站改造,应针对每个水电站的具体情况,因地制宜,优化设计。免费论文。要选择最好的,先进的,成熟的技术和配套性能先进的发电机和辅助设备,紧密结合、妥善处理水电站的不可更改的限制条一个有限的投资尽可能在增加发电量,提高水电站的经济效益;充分考虑才能更好地实现先进,合理和经济。委托有资质的单位进行技术咨询并做到优化设计,一个好的设计,可以出水平、效益。

4 、跨流域引水

跨流域调水系统是一项涉及面广、影响因素多、工程结构复杂、规模庞大的复杂系统工程,跨流域调水工程的决策本质上是一类不完全信息下的非结构化冲突性大系统多目标群决策问题,需要从战略高度上,对工程的社会、经济、工程技术和生态环境等方面进行统一规划、综合评价和科学管理,才能取得工程本身所含有的巨大经济、社会和生态环境效益,促进水利文化的进步。为了提高跨流域调水规划管理决策研究的有效性,使工程实现社会、经济、生态环境效益最大、不利影响最小的目标,需要根据跨流域调水对工程水量调出区、调入区和通过区可能存在的不同影响,进行问题的决策研究。

5、提高人员技术素质

确保电站的效率,安全,可靠运行。任何工作的好坏,是与人的素质密切相关。为了提高发电站的经济效率,历来高度重视农村电站工作的业务培训,每年举办1至2次小水电培训班,努力提高技术和业务素质。他们可以提高运行的操作,及时发现问题和解决问题的技能,以确保电厂能高效,可靠运行。小水电采用网络运营,和供电部门举办供电部门“进网电工操作证”培训班,要求持“双证”上岗。

我们要提高认识,克服畏难情绪,采取更加有力的措施,以饱满的工作精神状态,依法将水电站改造到位,消除安全隐患,确保水能资源开发利用和水电建设科学、有序、可持续发展。

参考文献

1 周益,刘顺,钱有锐,赵子伦;小水电站机组制动用气量的计算方法[J];水力发电;1980年05期

2 叶志强;岩溶地区水电站通流表面碳酸钙结垢的特点及成因[J];水力发电;1981年08期

3 陈崇仁;提高已建小水电站经济效果的若干措施[J];水力发电;1981年12期

4 张法思;国外小水电的经济效益分析方法[J];中国农村水利水电;1981年06期

5 胡斌武;;提高小水电站经济效益的一些措施[J];中国农村水利水电;1981年04期

6 陈崇仁;;国内外小水电站建设经验的述评[J];水利水电科技进展;1981年04期

7 陈柏垣;;广东垦区建成小水电站二百四十座[J];中国农垦;1981年05期

8 骆文光;提高小水电站防洪能力的措施[J];水利水电技术;1982年06期

9 罗清浩;严寒地区引水式小水电站冬季安全运行的措施[J];水力发电;1982年01期