期刊在线咨询服务,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

期刊咨询 杂志订阅 购物车(0)

电源技术论文模板(10篇)

时间:2023-03-17 18:10:36

电源技术论文

电源技术论文例1

1.1整流器时代

大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

1.2逆变器时代

七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

1.3变频器时代

进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。

2.现代电力电子的应用领域

2.1计算机高效率绿色电源

高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进人了电子、电器设备领域。

计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星"计划规定,桌上型个人电脑或相关的设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。

2.2通信用高频开关电源

通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。

因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。

2.3直流-直流(DC/DC)变换器

DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源),同时还能起到有效地抑制电网侧谐波电流噪声的作用。

通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。

2.4不间断电源(UPS)

不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。

现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。

目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有0.5kVA、lkVA、2kVA、3kVA等多种规格的产品。

2.5变频器电源

变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。变频器电源主电路均采用交流-直流-交流方案。工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器,将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。

国际上400kVA以下的变频器电源系列产品已经问世。八十年代初期,日本东芝公司最先将交流变频调速技术应用于空调器中。至1997年,其占有率已达到日本家用空调的70%以上。变频空调具有舒适、节能等优点。国内于90年代初期开始研究变频空调,96年引进生产线生产变频空调器,逐渐形成变频空调开发生产热点。预计到2000年左右将形成高潮。变频空调除了变频电源外,还要求有适合于变频调速的压缩机电机。优化控制策略,精选功能组件,是空调变频电源研制的进一步发展方向。

2.6高频逆变式整流焊机电源

高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。

逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC)变换的方法。50Hz交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz的高频矩形波,经高频变压器耦合,整流滤波后成为稳定的直流,供电弧使用。

由于焊机电源的工作条件恶劣,频繁的处于短路、燃弧、开路交替变化之中,因此高频逆变式整流焊机电源的工作可靠性问题成为最关键的问题,也是用户最关心的问题。采用微处理器做为脉冲宽度调制(PWM)的相关控制器,通过对多参数、多信息的提取与分析,达到预知系统各种工作状态的目的,进而提前对系统做出调整和处理,解决了目前大功率IGBT逆变电源可靠性。

国外逆变焊机已可做到额定焊接电流300A,负载持续率60%,全载电压60~75V,电流调节范围5~300A,重量29kg。

2.7大功率开关型高压直流电源

大功率开关型高压直流电源广泛应用于静电除尘、水质改良、医用X光机和CT机等大型设备。电压高达50~l59kV,电流达到0.5A以上,功率可达100kW。

自从70年代开始,日本的一些公司开始采用逆变技术,将市电整流后逆变为3kHz左右的中频,然后升压。进入80年代,高频开关电源技术迅速发展。德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kHz以上。并将干式变压器技术成功的应用于高频高压电源,取消了高压变压器油箱,使变压器系统的体积进一步减小。

国内对静电除尘高压直流电源进行了研制,市电经整流变为直流,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压。在电阻负载条件下,输出直流电压达到55kV,电流达到15mA,工作频率为25.6kHz。

2.8电力有源滤波器

传统的交流-直流(AC-DC)变换器在投运时,将向电网注入大量的谐波电流,引起谐波损耗和干扰,同时还出现装置网侧功率因数恶化的现象,即所谓“电力公害”,例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有0.5~0.6。

电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置,能克服传统LC滤波器的不足,是一种很有发展前途的谐波抑制手段。滤波器由桥式开关功率变换器和具体控制电路构成。与传统开关电源的区别是:(l)不仅反馈输出电压,还反馈输入平均电流;(2)电流环基准信号为电压环误差信号与全波整流电压取样信号之乘积。

2.9分布式开关电源供电系统

分布式电源供电系统采用小功率模块和大规模控制集成电路作基本部件,利用最新理论和技术成果,组成积木式、智能化的大功率供电电源,从而使强电与弱电紧密结合,降低大功率元器件、大功率装置(集中式)的研制压力,提高生产效率。

八十年代初期,对分布式高频开关电源系统的研究基本集中在变换器并联技术的研究上。八十年代中后期,随着高频功率变换技术的迅述发展,各种变换器拓扑结构相继出现,结合大规模集成电路和功率元器件技术,使中小功率装置的集成成为可能,从而迅速地推动了分布式高频开关电源系统研究的展开。自八十年代后期开始,这一方向已成为国际电力电子学界的研究热点,论文数量逐年增加,应用领域不断扩大。

分布供电方式具有节能、可靠、高效、经济和维护方便等优点。已被大型计算机、通信设备、航空航天、工业控制等系统逐渐采纳,也是超高速型集成电路的低电压电源(3.3V)的最为理想的供电方式。在大功率场合,如电镀、电解电源、电力机车牵引电源、中频感应加热电源、电动机驱动电源等领域也有广阔的应用前景。

3.高频开关电源的发展趋势

在电力电子技术的应用及各种电源系统中,开关电源技术均处于核心地位。对于大型电解电镀电源,传统的电路非常庞大而笨重,如果采用高顿开关电源技术,其体积和重量都会大幅度下降,而且可极大提高电源利用效率、节省材料、降低成本。在电动汽车和变频传动中,更是离不开开关电源技术,通过开关电源改变用电频率,从而达到近于理想的负载匹配和驱动控制。高频开关电源技术,更是各种大功率开关电源(逆变焊机、通讯电源、高频加热电源、激光器电源、电力操作电源等)的核心技术。

3.1高频化

理论分析和实践经验表明,电气产品的变压器、电感和电容的体积重量与供电频率的平方根成反比。所以当我们把频率从工频50Hz提高到20kHz,提高400倍的话,用电设备的体积重量大体下降至工频设计的5~l0%。无论是逆变式整流焊机,还是通讯电源用的开关式整流器,都是基于这一原理。同样,传统“整流行业”的电镀、电解、电加工、充电、浮充电、电力合闸用等各种直流电源也可以根据这一原理进行改造,成为“开关变换类电源”,其主要材料可以节约90%或更高,还可节电30%或更多。由于功率电子器件工作频率上限的逐步提高,促使许多原来采用电子管的传统高频设备固态化,带来显著节能、节水、节约材料的经济效益,更可体现技术含量的价值。

3.2模块化

模块化有两方面的含义,其一是指功率器件的模块化,其二是指电源单元的模块化。我们常见的器件模块,含有一单元、两单元、六单元直至七单元,包括开关器件和与之反并联的续流二极管,实质上都属于“标准”功率模块(SPM)。近年,有些公司把开关器件的驱动保护电路也装到功率模块中去,构成了“智能化”功率模块(IPM),不但缩小了整机的体积,更方便了整机的设计制造。实际上,由于频率的不断提高,致使引线寄生电感、寄生电容的影响愈加严重,对器件造成更大的电应力(表现为过电压、过电流毛刺)。为了提高系统的可靠性,有些制造商开发了“用户专用”功率模块(ASPM),它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,使元器件之间不再有传统的引线连接,这样的模块经过严格、合理的热、电、机械方面的设计,达到优化完美的境地。它类似于微电子中的用户专用集成电路(ASIC)。只要把控制软件写入该模块中的微处理器芯片,再把整个模块固定在相应的散热器上,就构成一台新型的开关电源装置。由此可见,模块化的目的不仅在于使用方便,缩小整机体积,更重要的是取消传统连线,把寄生参数降到最小,从而把器件承受的电应力降至最低,提高系统的可靠性。另外,大功率的开关电源,由于器件容量的限制和增加冗余提高可靠性方面的考虑,一般采用多个独立的模块单元并联工作,采用均流技术,所有模块共同分担负载电流,一旦其中某个模块失效,其它模块再平均分担负载电流。这样,不但提高了功率容量,在有限的器件容量的情况下满足了大电流输出的要求,而且通过增加相对整个系统来说功率很小的冗余电源模块,极大的提高系统可靠性,即使万一出现单模块故障,也不会影响系统的正常工作,而且为修复提供充分的时间。

3.3数字化

在传统功率电子技术中,控制部分是按模拟信号来设计和工作的。在六、七十年代,电力电子技术完全是建立在模拟电路基础上的。但是,现在数字式信号、数字电路显得越来越重要,数字信号处理技术日趋完善成熟,显示出越来越多的优点:便于计算机处理控制、避免模拟信号的畸变失真、减小杂散信号的干扰(提高抗干扰能力)、便于软件包调试和遥感遥测遥调,也便于自诊断、容错等技术的植入。所以,在八、九十年代,对于各类电路和系统的设计来说,模拟技术还是有用的,特别是:诸如印制版的布图、电磁兼容(EMC)问题以及功率因数修正(PFC)等问题的解决,离不开模拟技术的知识,但是对于智能化的开关电源,需要用计算机控制时,数字化技术就离不开了。

3.4绿色化

电源系统的绿色化有两层含义:首先是显著节电,这意味着发电容量的节约,而发电是造成环境污染的重要原因,所以节电就可以减少对环境的污染;其次这些电源不能(或少)对电网产生污染,国际电工委员会(IEC)对此制定了一系列标准,如IEC555、IEC917、IECl000等。事实上,许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合许多毛刺尖峰,甚至出现缺角和畸变。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种修正功率因数的方法。这些为2l世纪批量生产各种绿色开关电源产品奠定了基础。

现代电力电子技术是开关电源技术发展的基础。随着新型电力电子器件和适于更高开关频率的电路拓扑的不断出现,现代电源技术将在实际需要的推动下快速发展。在传统的应用技术下,由于功率器件性能的限制而使开关电源的性能受到影响。为了极大发挥各种功率器件的特性,使器件性能对开关电源性能的影响减至最小,新型的电源电路拓扑和新型的控制技术,可使功率开关工作在零电压或零电流状态,从而可大大的提高工作频率,提高开关电源工作效率,设计出性能优良的开关电源。

总而言之,电力电子及开关电源技术因应用需求不断向前发展,新技术的出现又会使许多应用产品更新换代,还会开拓更多更新的应用领域。开关电源高频化、模块化、数字化、绿色化等的实现,将标志着这些技术的成熟,实现高效率用电和高品质用电相结合。这几年,随着通信行业的发展,以开关电源技术为核心的通信用开关电源,仅国内有20多亿人民币的市场需求,吸引了国内外一大批科技人员对其进行开发研究。开关电源代替线性电源和相控电源是大势所趋,因此,同样具有几十亿产值需求的电力操作电源系统的国内市场正在启动,并将很快发展起来。还有其它许多以开关电源技术为核心的专用电源、工业电源正在等待着人们去开发。

参考文献

(l)林渭勋:浅谈半导体高频电力电子技术,电力电子技术选编,浙江大学,384-390,1992

(2)季幼章:迎接知识经济时代,发展电源技术应用,电源技术应用,N0.2,l998

(3)叶治正,叶靖国:开关稳压电源。高等教育出版社,1998

电源技术论文例2

摘要:电能高效洁净地生产、传输、储存、分配和使用的技术将成为电力技术的重点领域。论文关键词:电力技术;电源 “电力技术是通向可持续发展的桥梁”,这个论断已经逐渐成为人们的共识。研究表明,为了实现可持续发展,应尽可能把一次能源转换为电能使用,提高电力在终端能源中的比例。因为,在保证相同的能源服务水平的前提下, 使用电力这种优质能源最清洁、方便,易于控制、效率最高。如果能将大量分散燃用的化石燃料都高效洁净地转换为电力使用,人们赖以生存的环境和生活质量就会大大改善。因此,电能高效洁净地生产、传输、储存、分配和使用的技术将成为电力技术的重点领域。以下将对若干电力前沿技术的现状和未来发展前景进行简单评述。 1. 分布式电源 当今的分布式电源主要是指用液体或气体燃料的内燃机(IC)、微型燃气轮机(Microtur_bines)和各种工程用的燃料电池(Fuel Cell)。因其具有良好的环保性能,分布式电源与“小机组”已不是同一概念。 1.1 微型燃气轮机 微型燃气轮机(Micro Turbine),是功率为几千瓦至几十千瓦,转速为96 000 r/min,以天然气、甲烷、汽油、柴油为燃料的超小型燃气轮机,工作温度500 ℃,其发电效率可达30%。目前国外已进入示范阶段。其技术关键是高速轴承、高温材料、部件加工等。可见,电工技术的突破常常取决于材料科学的进步。 1.2 燃料电池 燃料电池是直接把燃料的化学能转换为电能的装置。它是一种很有发展前途的洁净和高效的发电方式,被称为21世纪的分布式电源。 1.2.1 燃料电池的工作原理 燃料电池的工作原理颇似电解水的逆过程。氢基燃料送入燃料电池的阳极(电源的负极)转变为氢离子,空气中的氧气送入燃料电池的阴极(电源的正极),负氧离子通过2极间离子导电的电解质到达阳极与氢离子结合成水,外电路则形成电流。 通常,完整的燃料电池发电系统由电池堆、燃料供给系统、空气供给系统、冷却系统、电力电子换流器、保护与控制及仪表系统组成。其中,电池堆是核心。低温燃料电池还应配备燃料改质器(又称为燃料重整器)。高温燃料电池具有内重整功能,无须配备重整器。磷酸型燃料电池(PAFC)是目前技术成熟、已商业化的燃料电池。现在已能生产大容量加压型11 MW的设备及便携式250 kW等各种设备。第2代燃料电池的溶融碳酸盐电池(MCFC),工作在高温(600~700 ℃)下,重整反应可以在内部进行,可用于规模发电,现在正在进行兆瓦级的验证试验。固体电解质燃料电池(SOFC)被称为第3代燃料电池。由于电解质是氧化锆等固体电解质,未来可用于煤基燃料发电。质子交换膜燃料电池是最有希望的电动车电源。 1.2.2 性能和特点 燃料电池有以下优点:(1)有很高的效率,以氢为燃料的燃料电池,理论发电效率可达100%。熔融碳酸盐燃料电池,实际效率可达58.4%。通过热电联产或联合循环综合利用热能,燃料电池的综合热效率可望达到80%以上。燃料电池发电效率与规模基本无关,小型设备也能得到高效率。(2)处于热备用状态,燃料电池跟随负荷变化的能力非常强,可以在1 s内跟随50%的负荷变化。(3)噪音低;可以实现实际上的零排放;省水。(4)安装周期短,安装位置灵活,可省去新建输配电系统 目前燃料电池大规模应用的障碍是造价高,在经济性上要与常规发电方式竞争尚需时日。 1.2.3 技术关键和研究课题 燃料电池的技术关键涉及电池性能、寿命、大型化、价格等与商业化有关的项目,主要涉及新的电解质材料和催化剂。熔融碳酸盐电池(MCFC)在高温条件下液体电解质的损失和腐蚀渗漏降低了电池的寿命,使MCFC的大型化及实用化受到限制。需要解决电池构成材料的腐蚀;电极细孔构造变化使电池性能下降等问题。固体氧化物燃料电池(SOFC)使用固体电解质且工作温度很高,对构成材料及其加工有特殊要求。为了得到高温下化学性稳定和致密性(不通过气体)的电解质,在氧化锆中加入Y2O3生成钇稳定氧化锆。为了降低工作温度,应尽可能减少电解质薄膜厚度。

电源技术论文例3

(1)以国家或区域为单位的战略合作保存体系发展迅速

(2)网络信息资源存储项目研究的内容和深度得到极大的扩展

(3)国际机构与会议更加关注网络信息资源存储

(4)网络信息资源存储系统越来越受到重视,其发展和应用也越来越广泛

2000年年美国国会图书馆提出了“国家数字信息基础设施及保存计划”,其中包括立即收集和保存可能瞬间即逝的Web数字信息。2001年挪威国家图书馆开始实施Paradigma项目,英国国家图书馆启动试验性项目DomainUK。2002年第68届IFLA理事会对以往国家层面网络信息资源采集(如NWA)的经验予以总结,探讨网络信息资源保存的法律问题。2003年六月,由来自多个国家的12个成员机构组成的国家网络保存联盟正式成立。自2005年以后,网络信息资源存储技术进入了长远发展阶段。在网络信息资源存储相关项目的实验研究、应用部署发展的基础上,相关的组织机构相关的组织机构、项目对如何更好的将Web资源呈现给用户,提供检索服务,并进行相应的数据挖掘以用于学术研究、追踪动态等网络信息资源存储长远发展问题更为关注。

二、网络信息资源存储发展现状

(一)网络信息资源存储国际现状

越来越多的国家和人力参与并投入到网络信息资源存储的活动中来。关于网络信息资源存储的项目也越来越多,项目数量呈稳定增长趋势。国际互联网保存联盟(IIPC)的机构成员在2003年成立的时候只有12个,到2009年3月已经发展到38个,它们主要分布在欧洲、北美洲、亚洲。2008年IIPC对其成员进行问卷调查显示:该组织的成员50%是国家图书馆,10%是高校图书馆,8%是其他类型图书馆,3%是国家档案馆,3%是内容提供商,26%是研究机构、政府组织等。由此可见,图书馆特别是国家图书馆已经成为WA活动参与的主力,并担任了重要的角色。网络信息资源存储仍然以实验和项目形式为主。在其发展初期,项目都是以小规模的Web资源采集的探索性实验为主,在积累了一定的经验后开始进行实际的可行的部署和应用,而目前很多国家和区域已经建立战略合成关系投资网络信息资源保存体系。IIPC对38家成员馆2008年的网络信息资源存储研究状态分析显示:以项目形式开展研究的有6家(15%)、以实验形式开展研究的有7家(18%)、可运作但仍处于实验阶段的有11家(29%)、完全投入应用的有5家(15%)、商业应用的有4家(10%)、其他形式的有5家(13%)。网络信息资源的采集方式和策略呈多样化发展,采集的内容也越来越广泛。现有的Web资源的采集方式已经有了很大的改变,已经摆脱了曾经的单一Web资源一次采集。现在的主要采集方式有Web资源二次采集、数据库采集(深层网采集)和事务型采集等多种方式。采集策略也有了很大程度的丰富,现在的采集策略主要有混合策略、复杂域、大规模采集。采集内容也覆盖了人类社会的方方面面,例如政治、经济、健康、艺术、人文等方面。网络信息资源存储的系统技术和标准框架已日趋成熟。

网络信息资源存储的系统技术中包括了摄取(Ingest)、存储(Storage)、访问(Access)和索引与检索(Index&Search)四大部分,并IIPC也围绕其核心功能为其开发了一套完整的工具。IIPC技术委员会下设的四个子委员会负责对WA的摄取、保存、访问、索引与检索进行深入的研究和实践工作。除了技术以外,对WA其相关的标准规范也投入了许多的研究。目前所涉及的标准规范主要有:获取阶段的存档资源标识、统一资源命名等数据唯一标识,多任务并发管理协议(HIP)、蜘蛛协议(Robertprotocol);存储阶段的存档文件格式、Web存档文件格式,保存元数据实施策略、元数据编码与传输标准(简称METS)等。此外WA领域中对于协作共享也非常的注重,WA在系统开发的初始阶段就十分关注系统的互操作,通过建立一个开放的模块化系统框架和进行功能模块化开发,实现系统的开放性、协作性、互操作性。IIPC提出了WA系统体系框架并开发了一系列的开源软件。WA系统和工具得到不断的开发与更新。且目前WA领域的大多数软件都是开源的,可以免费下载使用。现在在使用的工具主要有:PANDAS,澳大利亚PANDORA项目开发的基于采集的数字化存档系统,为国内参与合作的各个州立图书馆构建了合作者分布式使用的功能;WAS,美国WebAtRisk项目构建的基于Web的分布式仓储构建、存储和管理工具;Heritrix、Nutch2WAX、WERA,是有IIPC资助开发的系列软件;Wayback是目前WA领域使用率最高的访问工具;WCT是一种由NWA与IIPC合作开发的应用率较高的保存工具。此外还有其他的一些比较著名的工具。WA领域的工具、系统有趋同的发展趋势。几家具有较强技术实力的机构开始合作开发和完善现有的软件和工具。

目前,IIPC与合作机构正在研发新一代智能爬虫(SmartCrawler)以提高爬虫自动采集的效率。WA相关法律体制得到加强和完善。虽然目前有许多国家队图书等出版物制定了相关的法律法规,有的国家也对相关的电子出版物有了明确的法律规定,但是都没有明确的将Web信息资源纳入到呈缴法。目前许多没有制定Web资源呈缴法律的国家,也采取了各种方式积极的完善与WA相关的法律,例如版权声明,这时目前使用较多的方式之一。此外还有采集前征求出版者许可、允许出版者提出剔除请求和混合型的解决方案。由于WA项目的投资数额巨大,相关的成本分析与风险管理已经越来越受到重视。WA对存储设备、技术等软硬件的要求都很高,同时其花费的时间周期也十分的长。因此需要投入的资金也越来越多,且有逐年上升的趋势。例如荷兰国家图书馆2005年的资金投入接近于2004年的3倍,2006-2009的预算也明显增加。为了使WA项目能够获得稳定的资金,许多国家已经将WA项目的资金纳入了国家图书馆的业务开支。为了能够使WA的研究项目能够顺利的进行,已经开设对其费用成本及风险管理进行研究。目前主要的是采用NASA用于研究太空、地球数据保存的费用估计工具CET,但还没有建立其特有的成本费用模型。合作范围越来越广,合作机制也逐步得到加强。WA项目是一个综合性的、庞大的项目,单靠某一个组织的力量是无法完成的。目前国际上的主要的WA项目都是由多个机构合作完成的,合作已成为WA发展的趋势。合作范围也从国家内部、组织间的合作发展到了地区合作,再到国际合作。从其合作机制来看主要分为:高度集中机制、责任平等机制、高度分散机制和独立工作机制。

(二)国内发展现状

我国WA的研究始于20世纪末。对于WA比较系统的理论研究主要集中在中国科学院国家科学图书馆和少数其他单位。国家科学图书馆一直以来关注数字资源长期保存的宏观支撑机制和问题框架的研究,目前正在进行的国家社会科学基金项目“网络信息资源保存的理论与方法研究”,对WA的理论、技术予以探索研究。国家图书馆和高校的一些研究人员对元数据方案、服务模式、WA面临的问题进行了探讨。国家图书馆“网络信息采集与保存”试验项目(WICP)采集保存了自2003年以来“.cn”域名下的网站和所有中文(编码)网站,积累Web数据达150G;对政府网站、电子报刊、国学的Web资源进行镜像存档;选择了2008北京奥运、中国载人航天工程等专题进行专题存档,并对专题存档的数据进行质量控制、数据挖掘。国家图书馆已经成为IIPC的成员,并积极推动和促进Web资源呈缴法的起草,以解决WA长远发展过程中的法律障碍。我国研究人员还积极参与国际交流,国家科技图书文献中心(NSTL)与国家科学图书馆于2004年、2007年两次承办“数字资源长期保存国际会议”(iPRESS),为国内保存领域的研究人员参与国际长期保存合作,促进长期保存的可持续高水平发展提供了良好的机会

电源技术论文例4

论文摘要:本文对智能电网关键技术进行了具体阐述,主要是量测、通信、信息管理、调度、电力电子和分布式能源接入等方面。最后借助美国智能电网研究应用情况,对智能电网技术实现的功能进行了归纳和评述。 1 智能电网的技术概况 智能电网是为了实现能源替代和兼容利用,它需要在创建开放的系统和建立共享的信息模式的基础上,整合系统中的数据,优化电网的运行和管理。它主要是通过终端传感器将用户之间、用户和电网公司之间形成即时连接的网络互动,从而实现数据读取的实时(real-time)、高速(high-speed)、双向(two-way)的效果,整体性地提高电网的综合效率。它可以利用传感器对发电、输电、配电、供电等关键设备的运行状况进行实时监控和数据整合,遇到电力供应的高峰期之时,能够在不同区域间进行及时调度,平衡电力供应缺口,从而达到对整个电力系统运行的优化管理;同时,智能电表也可以作为互联网路由器,推动电力部门以其终端用户为基础,进行通信、运行宽带业务或传播电视信号。 2009年6月27~28日,第一届智能电网研究论坛在天津大学召开。论坛共安排了十四个学术报告,从智能电网的基本理念、技术组成、设备需求等多个角度对我国智能电网的建设和发展进行了探讨。天津大学余贻鑫院士的报告为“智能电网的原动力、技术组成和实施路线”。报告中提出,系统安全稳定运行、需求侧管理、分布式电源等是推进智能电网建设的原动力。智能电网是综合应用通讯、高级传感器、分布式计算等技术,提高输配电网络的安全性、可靠性和效率。 华中科技大学程时杰院士在“储能技术及其在智能电网中的应用”的报告中指出,在可再生能源发电所占比例较大的电力系统中,储能技术的应用是解决如何保证系统正常运行这个难题的一条可行的途径。并提出了智能电网对储能系统的基本要求,即足够大的储能容量、足够快的功率响应速度、足够大的交换功率、足够高的储能效率、足够小的放电周期、足够长的使用寿命、足够小的运行费用。 天津大学电气与自动化工程学院院长王成山教授作了“分布式电源、微网、智能配电系统”的报告,分别对分布式电源、微网和智能配电系统的关键技术、应用以及存在的问题进行了介绍,并分析了三者之间的关系。山东理工大学徐丙垠教授的“智能配电网中的配电自动化技术”、加拿大卑诗省水电公司栾文鹏的“高级量测系统”、国家电网需求侧管理中心陈江华的“我国需求侧管理实践成效与展望”、ABB公司刘前进的“智能电网—远景,技术与应用”等,都从不同角度分析和探讨了智能电网的技术特点、实现方式和发展前景。 2 智能电网的关键技术 我国数字化电网建设涵盖了发电、调度、输变电、配电和用户各个环节,包括:信息化平台、调度自动化系统、稳定控制系统、柔性交流输电,变电站自动化系统、微机继电保护、配网自动化系统、用电管理采集系统等。实际上,目前我国数字化电网建设可以算是智能电网的雏形。 2.1 参考量测技术 参数量测技术是智能电网基本的组成部件,先进的参数量测技术获得数据并将其转换成数据信息,以供智能电网的各个方面使用。它们评估电网设备的健康状况和电网的完整性,进行表计的读取、消除电费估计以及防止窃电、缓减电网阻塞以及与用户的沟通。 未来的智能电网将取消所有的电磁表计及其读取系统,取而代之的是可以使电力公司与用户进行双向通信的智能固态表计。基于微处理器的智能表计将有更多的功能,除了可以计量每天不同时段电力的使用和电费外,还有储存电力公司下达的高峰电力价格信号及电费费率,并通知用户实施什么样的费率政策。更高级的功能有用户自行根据费率政策,编制时间表,自动控制用户内部电力使用的策略。 对于电力公司来说,参数量测技术给电力系统运行人员和规划人员提供更多的数据支持,包括功率因数、电能质量、相位关系(WAMS)、设备健康状况和能力、表计的损坏、故障定位、变压器和线路负荷、关键元件的温度、停电确认、电能消费和预测等数据。新的软件系统将收集、储存、分析和处理这些数据,为电力公司的其他业务所用。 未来的数字保护将嵌入计算机程序,极大地提高可靠性。计算机程序是一个自治和交互的自适应的软件模块。广域监测系统、保护和控制方案将集成数字保护、先进的通信技术以及计算机程序。在这样一个集成的分布式的

电源技术论文例5

2.脉冲电源的组成及结构

脉冲电源是适用于电除尘器的电源,目前在世界各地的电厂、钢铁厂及水泥厂的环保除尘机械设备中得到了广泛应用,除尘效果显着。它主要由控制柜和高压输出变压器两部分组成,分别放置于控制室和电除尘器顶部。脉冲电源系统一般由基础电压产生部分、脉冲电压产生部分、控制部分及通讯部分组成。其原理图如图2所示。1)基础电压Vdc产生部分三相交流电源输入至三相升压变压器,经三相整流桥和滤波电路后,产生一个高压直流电压,再经扼流电感L2和耦合电感L4送至电除尘器中,供应电除尘器ESP所需的基础电压。2)脉冲电压产生部分三相交流AC380V输入至三相升压变压器,经整流桥、滤波电路后,得到一个高压直流电压,经扼流电感L1给储能电容Cs充电。当高压IGBT(SW1)导通时,储能电容Cs、扼流电感L3、耦合电感L4、电除尘器ESP等效电容形成谐振回路,储能电容Cs内的电量在该回路内谐振,在电除尘器ESP两端形成一个脉冲电压。该脉冲电压与基础电压叠加,产生最终所需的加至电除尘器ESP上的电压波形,如图3所示。谐振后半部分,电量回充给储能电容Cs,节约电能。当高压IGBT关断时,谐振回路断开,电源继续给储能电容充电至原电压,等待下次脉冲的产生,如此循环。3)控制部分通过一个核心控制器(嵌入式系统),控制基础电压、脉冲电压的产生,并接收脉冲电源的反馈信号、监控关键位置的运行状况,调整脉冲电源的运行状态,使脉冲电源适应各种复杂工况的要求,产生最大的收尘效率及节能目标。同时采用快速、智能的火花响应、处理机制,保证火花状态下设备的安全、稳定运行。4)通讯部分通过以太网控制器,在通讯协议,比如Modbus的基础上搭建整个通讯系统,在上位机界面上监控各个脉冲电源的运行情况,并统一控制、调配,便于运行和管理,提高工作效率。

3.脉冲电源除尘的特点和优势

电源技术论文例6

在确定供电系统之前,首先要根据供电要求进行负荷分级,一般分为一级负荷、二级负荷和三级负荷。还要为电源提供应急电源,以防不时之需。同的场合用的配电系统也是不同的,所以在配电时要关注配电场合以确保用电安全性。就事故处理而言,对事故发生的原因、漏洞进行分析,防止以后类似事故的发生,要做到绝对不能在一个地方跌倒两次,一定要写事故分析报告,对事故发生的细节、过程、起因都进行详细的记录,引起事故的相关人员一定要做好检讨工作,为以后不再发生类似的事故而努力。对于供配电管理这项重要的工作,工作人员的专业性是很重要的,所以工作人员要对每天的值班人员、时间、交接班时间、维修检查时间、人员都做好相关的记录,例如:交接班日志、工作票、工作票登记簿、低压配电室巡检记录表、低压配电室运行月度分析报表、高压配电室巡检记录表、高压配电室巡检记录表、高压配电室运行月度分析报表等等,同时相关人员也要做好自己的本职工作,发生意外的话谁都担负不起。

1.2设备维护技术

就供配电设备的维护技术而言,在当今科技快速发展的时代,导入生命周期成本概念,执行资产管理的维护管理作业,应从设计、施工阶段开始,即审慎周详地考量营运后的维修问题及成本,将设计、施工、检查、检测及维修补强等阶段视为不可分割的一贯作业,以达成提高(或维持)结构机能、延长使用寿命及降低维护管理成本的目的。换而言之,维护管理应有新思维,维护管理已不仅是管理者的责任,设计者与施工者均有责任。就检测新技术而言,应用非破坏性检测仪器对电力建安企业设施进行安全检测,不仅可不破坏电力工程企业设施原有的结构安全,更可迅速施作,将营运冲击减至最低。从现行的安全维护管理流程来看,电力工程企业供配电设施维护管理的实施步骤,一般应从简易的检查开始依序实施(遭遇紧急状况时除外),分为检查、安全检测、维修等三阶段进行。

2电力工程技术展望

一是电力工程竣工商转后,如发生运转问题或异常需停机检修,必将导致严重的发电损失,因此电力工程的工程设计极为着重安全性及可靠性,尤其是水力发电厂位在山区承受诸多不确定风险,工程设计上难免趋向保守,但为避免设计过度保守的批评,未来的规划设计应朝向精确设计努力并持续改善及吸收新进技术以提升品质。此外,设计仍应加重考虑环境生态、水土保持及景观美化。

二是电力工程建厂的发包方式近年来虽已有火力电厂整厂及变电站采用统包模式,但一般仍以组件(ComponentBasis)分标方式发包最为普遍,也即所谓的传统设备标发包方式,因此产生土木、机电及仪控的互相配合与界面整合的需求,例如设计、采购及施工作业时程配合、各标承包范围及内容的划分、完整性、功能及品质要求一致性等,常成为计划能否如期如质完工的关键所在。发包方也常倾向由设计顾问负总责,因此除专案管理技术外,编拟技术规范及招标文件也极为重要。此外,依现行区域计划及土地法、水利法、建筑法、环保法、安全卫生法、采购法及行政程序等法规、品质查核制度的规定及要求下,电力工程设计及监造工作受到多方面的约束,可以说工程设计也要兼有这种、非工程面的技术,才能顺利办理工程设计及建造。

电源技术论文例7

作者:张亚婷 丑修建 郭涛 熊继军 单位:中北大学

近年来,为了探索新型的使用寿命长、能量密度高的微能源,国内外学者开始收集人体、声音、道路、高层建筑等周围环境中的振动,以实现微纳机电系统的自我供能,这将有望解决能源微型化过程中电池体积大、一次性使用寿命短、能量密度小等问题。静电式微能源目前,T.Sterken等人[5]提出的静电式发电机采用静电梳齿结构和MEMS工艺,在150V的激励下、振动频率为1020Hz的环境中,获得1μW功率输出;在3750Hz下得到16μW功率。美国Berkeley大学S.Roundy等人[6]研制出的静电式发电机采集120Hz的低频振动(图略),采用变间距式改变电容,仿真和实验结果证实变间距式的结构更有优势,当在120Hz,2.25m/s2的加速度振动下,输出功率密度达116μW/cm2。(图略)为变面积式结构。Y.Chiu等人[7]提出了一种静电式微能源,利用钨球调节装置的固有频率,整合机械开关被安放在换能器内,实现同步能量转换。东京大学T.Tsutsumino等人[8]提出了一种静电式发电机,其利用高性能的有机膜全氟树脂(CYTOP)作为驻极体材料来提供电荷,加载20Hz振动,振动幅度的峰峰值为1mm,最大输出功率达6.4μW。电磁式微能源目前在电磁能量转换研究方面工作较突出的是英国Southampton大学,从2004年开始采用硅微加工技术制作了微型电磁式振动能量采集器,在1.615kHz的振动频率下,输入加速度为0.4g时,其产生的最大输出功率为104nW[9];此外还提出了一种发电机在9.5kHz,1.92m/s2加速度振动驱动下,获得21nW的电能[10]。D.Spreemann等人[11]设计了一个双自由度电磁式能量采集器,中心转子带动磁铁运动,使磁通量产生变化,产生感应电动势,克服了单自由度能量采集器固有频率的限制,适用于实际环境中的振动。在低频环境中30~80Hz,可得到3mW的功率。H.Kulah等人[12]提出了一种铁圈同振型发电机,通过一个电磁式频率放大器将低频振动转换成高频振动,而输出功率与振动频率的三次方成正比,从而提高了能量转换效率。P.H.Wang等人[13]提出了一种铜平面弹簧式结构,为了获得更低的固有频率,测试结果显示在121.25Hz频率和1.5g的加速度下,开路电压为60mV。以上研究初步达到了电磁发电单独供能的目的,但在提高电源的能量密度和转换效率,以及输出能量收集与控制方面仍需要进行大量的研究工作。

压电式微能源为了在低频低强度的普通环境中提高转换效率,大多数研究对微能源的结构进行了改进。S.Roundy等人[14]制作的矩形单悬臂梁结构的压电发电机在120Hz、加速度为2.5m/s2下,产生25μW/cm2的能量。D.Shen等人[15]研制的低频(183.8Hz)能量采集器,采用单矩形悬臂梁-质量块结构,体积仅为0.769cm3,输出平均能量为0.32μW,能量密度为41.625μW/cm2。E.K.Reilly等人[16]研究了矩形、梯形、螺旋形等不同结构的压电悬臂梁。研究表明,螺旋形结构承受的应力最大,可产生较大的形变,输出较高的电能,梯形结构次之。但是由于矩形结构加工简单,故被广泛应用。2010年,G.Zhu等人[17]收集说话声音,采用竖直结构的ZnO纳米线阵列代替常用的PZT压电材料制成了纳米发生器,通过实验证实了在-100dB强度的声波振动下,输出峰值为50mV的交流电压。近年来国内吉林大学、上海交通大学、大连理工大学等[18-20]也开展了关于压电振子发电的微能源研究工作,并在压电微能源应用研制方面取得了一定的研究成果。通常环境下振动分布在一个较宽的频率范围内,如果微能源带宽过窄,则不能满足实际需求。目前的频带扩展方法主要有阵列式[21-22]、多梁-多质量块系统[23]以及频率可调式[24-25]。阵列式是通过具有不同固有频率的单悬臂梁-单质量块结构来实现频带扩展,即使振动频率改变,某些频率的悬臂梁也会处于工作状态;多梁-多质量块系统是通过使结构某两阶频率接近来实现频带扩展;频率可调式分为主动调频和被动调频。主动调频需要调频器,而调频器耗能大于产生的能量,故不可行;被动调频需要激励和传感器,这提高了复杂性和成本。2006年,M.Ferrari等人[26]提出了一种多频能量转换器,覆盖100~300Hz波段;2007年A.IbrahimSari等人[27]采用不同长度悬臂梁阵列式结构扩大了微型发电机的带宽,在4.2~5kHz的振动频率下,产生4μW的能量,覆盖800Hz的波段。上海交通大学的马华安等人[28]采用永磁铁代替传统的质量块,并且在质量块的上方和下方也放置了不同极性的永磁铁,通过吸引力和排斥力来调整压电悬臂梁的固有频率,固有频率范围拓宽为80~100Hz。电能采集、存储电路微小能量的采集、存储也是微能源系统的关键技术,否则振动产生的微电压并无实用价值。能量采集存储电路主要包括整流电路、升压电路和存储电路。对于此部分的研究已经较为成熟,但大部分都是基于经典的分立器件所搭建而成,具有静态电流高、采集存储效率低的特点。LINEAR公司[29]新推出了一款专门面向能量收集的集成芯片LTC3588,它内部集成了AC/DC、电荷泵以及电源管理模块,可以直接采集微小交流电压信号,持续输出100mA的电流信号,且其静态电流只需950nA。TI公司[30]在2011年底推出的BQ25504芯片,也同样集成了采集存储电路的几个模块,其静态电流仅为330nA,可以将能量存储在锂电池、薄膜电池以及超级电容中,同时其良好的电源管理实现了充放电保护的功能,极大地提高了系统的集成度。它们都具有操作简单、能量采集存储效率高、性能稳定、价格低廉的特点,可以广泛地应用于由振动驱动的微能源系统。电能存储的介质选择也是研究的一项重要内容。沈辉[31]对超级电容、镍氢电池和锂电池的储存电荷能力进行了比较,发现电容器的充放电速度较快,可以迅速地回收产生的电能,同时其充电效率最高可达95%,并且充电次数理论上也可达无穷次;与之相反,电池的充电速度慢,不能立即使用回收的电能,同时其充电效率仅为92%(锂电池)、69%(镍氢电池),使用寿命为500~1000次,但其具有放电时间长、输出电压比较稳定的特点。经过一个月的自放电测试,超级电容自放电效率最高,剩余电量仅为65%,镍氢电池为70%,锂离子电池为95%。但是对于需要经常充放电的场合,自放电可以忽略,超级电容凭借其可以无限次重复使用的特点,受到了科研人员的青睐。三种不同类型的微能源相比较,压电式微能源有结构简单、易于集成和微型化的独特优点,已经应用到生活中。日本的研究员在东京火车站的地面上铺上了四块包含压电发电装置的地板,其可以显示产生的能量,可为自动检票门提供能量[4]。以色列Innowattech公司[32]建立了第一条发电公路,用预制块和环氧树脂作保护,防止压电晶体破损。英飞凌公司[33]推出了MEMS传感器、MCU、RF、MEMS自供电电源四合一的新型TMPS。

电磁式微能源的设计仅在理论指导下进行,对器件进行仿真分析较少[34],所以,难以得到最优的结构模型;压电微能源的大部分研究都通过改变几何结构来降低共振频率、优化电路以提高能量转换效率,而对于研究新型的压电材料来提高系统性能的研究相对较少;由于MEMS的微加工、微装配与封装技术处于发展阶段,使得振动式微能源不能按照设计要求达到精确制作与装配,从而难以得到理想结果。振动驱动微能源技术存在以下应用方面的问题:实际生活环境中振动频率范围比较宽,从十几赫兹到几百赫兹,至今没有提出有效调节频率的方法。因此,有人提出使用非线性振动模型来研究微能源[35],但目前,这方面的研究还很少。储存电能的介质需要做进一步研究,特别是超级电容,其放电速度快、输出电压不是很稳定的特性需要改进。理论上微能源具有寿命较长的优点,但是实际应用环境中振动加速度和频率对微能源寿命有很大的影响。振动驱动微能源已成为各国科学家研究的热点。目前,电磁式、压电式微能源的研究相对较多,但是为了提高其性能指标,从而更快应用到实际中,振动式微能源的结构还在不断得到改进、优化,并且提出新的结构模型。而静电式微能源由于需要外部电源,限制了其应用,因而研究相对较少。振动驱动微能源技术向低频、多频、宽频、非线性振动模型、复合微能源发展[36-37]。同时,将几种不同转换形式的微能源集成在同一芯片上,可以综合不同原理微能源的优点,提高能量密度,这些都是微型化和实用化的关键。振动驱动微能源有望为野外和置入结构的微系统提供高可靠、长时间的电能,为无线传感网络节点和便携式微电子产品提供充足的电源,所以研究振动式微能源有重要的实用意义。

电源技术论文例8

2双电源车的工作原理

电动自卸卡车采用双电源供电技术时,需要安装架空线。对于露天开采来说,减少发动机损耗,减少废气排放本身就是节能降耗的有效措施。

1)动力接线:

以该露天矿最早进口的UCLED-190型大卡车为例,属于柴油机电传动卡车,其基本方式为:柴油机寅同步发电机寅整流系统寅直流电动机。在此状态下可用两个方案:淤切断原来的电源输出端G,将同样电压的单相交流电压通过滑板和受电弓在此输入。于在直流电动机输入端切断,持同样的支流电源从滑板受电弓在此输入。如果采用第二方案,需在电动机接入大容量的起制动电阻,要占很大体积,现有大卡车不易容许;所以最好采用第一方案,此时整流系统采用可控硅(SCR)代替硅二极管,就可实现输出电压的大范围调整。

2)接触网与受电弓:

电能源大卡车虽应使用双柑式受电弓,但是现在的工矿用自卸式车(自翻车)的后斗在卸载时要向上抬起,故受电弓不宜采用双柑式受电弓。工矿用电力机车有E弓子和旁弓子两种受电器:E弓采用检E接触网上,旁弓子用于翻车线及稿线的旁架线上。现在用的工矿自卸车上没有铁道,必须有两根架线,同时要安装两个互相绝缘的受电弓。这也是不可能的:淤因为架线不可能在车斗的正上方。于两个并排放置的E受电弓也是可能的。所以最有可能的是采用工矿电力机车两台旁受电弓。在不同的高度稍错开点位置安放。

3)材料的使用:

淤架空线可采用钢芯铝绞线。于受电弓上的接触滑板可采用电化石墨,这样就省去了经常换铜滑板和铜导线的麻烦。采用这种材料是经北京铁道科学院(1976年)的磨合实验的。

4)操作步骤:

电源技术论文例9

1引言2计算机电源发展历程

在计算机各部件中最令人注意的就是CPU的频率、内存的大小、硬盘容量,显卡的性能等等。而对于电脑中的一个重要部件电源.却往往总会受到忽略。而事实上,电脑的许多奇怪症状都是由电源引起的。假如我们把计算机比作一个人的话,CPU作为计算机的核心部件起着运算和控制的作用,它相当于我们人类的大脑;而电源作为计算机的动力提供者,完全等价于我们人类的心脏,其重要之处由此可见。所以有必要了解电源内部结构,熟悉电源的工作原理,才能更好地维护好计算机电源,才能从根本上保障公司各部门计算机设备长时间稳定工作。

2计算机电源发展历程

PC/XT_IBM最先推出个人PC/XT机时制定的标准;AT_也是由IBM早期推出PC/AT机时所提出的标准,当时能够提供192W的电力供应;ATX—Intel公司于1995年提出的工业标准。与AT比较主要变化为:

1、取消了AT电源上必备的电源开关而交由主板进行电源开关的控制,增加了一个待机电路为电源主电路和主板提供电压来实现电源唤醒等功能:

2、ATX电源首次引进了+3.3V的电压输出端,与主板的连接接口上也有了明显的改进:ATX12V——支持P4的ATX标准,是目前的主流标准:ATX12V一1.1:在ATX的基础之上增加了4pin的+12V辅助供电线(PIO)为P4处理器供电,改变了各路输出功率分配方式,增强+12V负载能力;ATX12V一1.3:提高了电源效率,增加了对SATA的支持。去掉了一5V输出,增加了+12V的输出能力;ATX12V一2.0:尚未有产品实施的最新规范;电源连接器由20针改为24针,以支持75W的PCIExpress总线.同时取消辅助电源接口;提供另一路+12V输出,直接为4Pin接口供电;WTX—ATX电源的加强版本:尺寸上比ATX电源大。供电能力也比比ATX电源强,常用于服务器和大型电脑;BTX一现有架构的终结者,电源输出要求、接口等支持ATX12V。

3计算机开关电源的工作原理

电源是一种能量转换的设备,它能将220V的交流电转变为计算机需要的低电压强电流的直流电。首先将高电压交流电(220V)通过全桥二极管整流以后成为高电压的脉冲直流电,再经过电容滤波以后成为高压直流电。此时,控制电路控制大功率开关三极管将高压直流电按照一定的高频频率分批送到高频变压器的初级。接着,把从次级线圈输出的降压后的高频低压交流电通过整流滤波转换为能使电脑工作的低电压强电流的直流电。其中,控制电路也是必不可少的部分。它能有效的监控输出端的电压值,并向控制功率开关三极管发出信号控制电压上下调整的幅度。目前的常见产品主要采用脉冲变压器耦合型开关稳压电源,它分为交流抗干扰电路、功率因数校正电路、高压整流滤波电路、开关电路、低压整流滤波电路5个主要部分。

4交流抗干扰电路

为避免电网中的各种干扰信号影响高频率、高精度的计算机系统.防止电源开关电路形成高频扰窜,影响电网中的其他电器等;各种电磁、安规认证都要求开关电源配有抗干扰电路。主要结构为兀型共模、差模滤波电路.由差模扼流电感、差模滤波电容、共模扼流电感、共模滤波电容组成:

5功率因数校正电路

开关电源传统的桥式整流、电容滤波电路令整体负载表现为容性,且使交流输入电流产生严重的波形畸变,向电网注人大量的高次谐波,功率因数仅有0.6左右,对电网和其他电气设备造成严重的谐波污染与干扰。因此,我国在2003年开始实施的CCC中明确要求计算机电源产品带有功率因数校正器(PowerFactorCorrector,即PFC),功率因数达到0.7以上。PFC电路分为主动式(有源)与被动式(无源)两种:主动式PFC本身就相当于一个开关电源.通过控制芯片驱动开关管对输入电流进行”调制”,令其与电压尽量同步,功率因数接近于1;同时.主动式PFC控制芯片还能够提供辅助供电,驱动电源内部其他芯片以及负担+5VSB输出。主动式PFC功率因数高、+5VSB输出纹波频率高、幅度小,但结构复杂,成本高,仅在一些高端电源中使用。目前采用主动式PFC的计算机电源一般采用升压转换器式设计,电路原理图如下:被动式PFC结构简单,只是针对电源的整体负载特性表现,在交流输人端.抗干扰电路之后串接了一个大电感,强制平衡电源的整体负载特性。被动式PFC采用的电感只需适应50~60Hz的市电频率,带有工频变压器常用的硅钢片铁芯,而非高频率开关变压器所采用的铁氧体磁芯,从外观上非常容易分辨。被动式PFC效果较主动式PFC有一定差距,功率因数一般为0.8左右;但成本低廉,且无需对原有产品设计进行大幅度修改就可以符合CCC要求,是目前主流电源通常采取的方式。

6高压整流滤波电路

目前的各种开关电源高压整流基本都采用全桥式二极管整流,将输人的正弦交流电反向电压翻转,输出连续波峰的“类直流”。再经过电容的滤波,就得到了约300V的“高压直流”。

开关电路

开关电源的核心部分.主要由精密电压比较芯片、PWM芯片、开关管、驱动变压器、主开关变压器组成。精密电压比较芯片将直流输出部分的反馈电压与基准电压进行比较.PWM芯片根据比较结果通过驱动变压器调整开关管的占空比,进而控制主开关变压器输出给直流部分的能量,实现“稳压”输出。PWM(PulesWidthModulation)即脉宽调制电路,其功能是检测输出直流电压,与基准电压比较,进行放大,控制振荡器的脉冲宽度,从而控制推挽开关电路以保持输出电压的稳定,主要由1CTL494及周围元件组成。使用驱动变压器的目的是为了隔离高压(300V)区与低压区(最高12V),避免开关管击穿后高压电可能对低压设备造成的危害,也令PWM芯片无需接触高压信号,降低了对元件规格的要求。

冲变压器耦合型开关稳压电源主要的直流(高压到低压)转换方式有5种,其中适合作为计算机电源使用的主要为推挽式与半桥式,而推挽式多用于小型机、UPS等,我们常见的电源产品则基本都采用半桥式变换。

8低压整流滤波电路

经过调制的高压直流成为了低压高频交流,需要经过再次整流滤波才能得到希望的稳定低压直流输出。整流手段与高压整流类似,仍是利用二极管的单向导通性质,将反向波形翻转。为了保证滤波后波形的完整性,要求互相配合实现360。的导通,因此一般采用快速恢复二极管(主要用于+12V整流)或肖特基二极管(主要用于+5V、+3.3V整流)。滤波仍是采用典型的扼流电感配合滤波电容,不过此处的电感不仅为了扼制突变电流,更为重要的作用是像高压滤波部分的电容一样作为储能元件,为输出端提供连续的能量供应。实际产品中高压整流滤波电路、开关电路、低压整流滤波电路是一个整体,虽然原理与前述基本相同,但元件个数、分布方式会有很大变化。例如采用半桥式电压变换的电源就有两个高压滤波电容,每一路直流输出对应两个整流管,各负责半个周期的输出;而采用单端正激式电压变换的电源则只有一个高压滤波电容,每一路直流输出对应两个整流管,工作时间按照开关管占空比分配。其他较为重要的部分还有辅助供电电路与保护电路:辅助供电电路一个小功率的开关电源,交流输入接通后即开始工作。300V直流电被辅助供电开关管调制成为脉冲电流,通过辅助供电变压器输出二路交流电压。一路经整流、三端稳压器稳压,输出为+5VSB,供主板待机所用;另一路经整流滤波,输出辅助+12V电源,供给电源内部的PWM等片工作。主动式PFC具有辅助供电的功能,可以提供+5VSB及电源内部芯片所需电压;故采用主动式PFC的电源可以省略掉辅助供电部分,只使用两个开关变压器。

9保护电路

电源主要的保护措施有7种:

1、输入端过压保护:通过耐压值为270V的压敏电阻实现:

2、输入端过流保护:通过保险丝:

3、输出端过流保护:通过导线反馈,驱动变压器就会相应动作,关断电源的输出;

4、输出端过压保护:当比较器检测到的输出电压与稳压管两端的基准电压偏差较大时,就会对电压进行调整:

5、输出端过载保护:过载保护的机理与过流保护一样,也是通过控制电路和驱动变压器进行的:

6、输出端短路保护:输出端短路时,比较器会侦测到电流的变化,并通过驱动变压器、关断开关管的输出:

7、温度控制:通过温度探头检测电源内部温度,并智能调整风扇转速,对电源内部温度进行控制;

10电源的好坏对其他部件的影响

CPU对电压就非常敏感,电压稍微高一点就可能烧毁CPU,电压过低则无法启动;而硬盘在电压不足时就无法正常工作,在电压波动大时甚至会划伤盘片,造成无法挽救的物理损害;诸如此类,不一而足。在很多情况下,主机内的配件损坏了,用户只是认为是配件本身的质量问题.而很少考虑可能是电源输出的低压直流电电压不稳所造成的。所以,输出电压的波动范围就是考查电源质量的重要指标之一。目前,一般的电源产品在空载和轻载时的表现都较好(假冒伪劣产品除外),而重载测验才是烈火试真金的真正考验。

电源技术论文例10

通信电源是通信行业的动力,在电信网络中发挥着不可替代的作用,具有无可比拟的重要基础地位。通信电源又是通信设备系统的心脏,即使是瞬间的中断也是不允许的,因为通信电源系统发生直流供电中断故障是灾难性的,往往会造成整个通信局(站)和通信网络的全部中断和瘫痪。通信电源是电信网络中不可缺少的重要组成部分,是一个完整、规模日趋庞大和复杂的交换、传输、数据、信息、业务、智能等通信网的基石和后台保障,因此通信电源直接关系到整个网络的稳定、可靠和畅通,而开关电源因效率高、体积小、重量轻等优点被大量运用在通信设备供电中。

一、开关电源占据通信电源的主导地位

通信直流稳压电源按照其实现直流稳压方法的不同,可分为:线性电源、相控电源和开关电源三种。

1.1线性电源是通过串联调整管来连续控制,其功率调整管总是工作在放大区。由于调整管上功率损耗很大,造成电源效率较低,只有20~40%,发热损耗严重,安装有体积很大的散热器,因而功率体积系数只有20~30W/dm3。因此线性电源主要用于小功率、对稳压精度要求很高的场合,如通信设备内部电路的辅助电源等。

1.2相控电源是将市电直接经整流滤波后提供直流,通过改变晶闸管的导通相位来控制直流电压。由于相控电源的工作频率低,工频变压器的体积和噪声大,造成对电网干扰和负载变化的响应慢,设备笨重,且危害维护人员的身体健康。另外,其功率因数较低,只有0.6~0.7,严重污染电力电网,效率较低,只有60~80%,造成能源的极大浪费。因此传统的相控电源已逐渐被淘汰。

1.3开关电源的功率调整管工作在开关状态,主要的优点在"高频"上。其工作频率高,大都在40kHz以上,无烦人的噪声。体积小,重量轻,适用于分散供电,可与通信设备放在同一机房。效率高,大于90%,在当前能源比较紧张的情况下,能够在节能上做出很大的贡献。功率因数高,大于0.92,当采用有效的功率因数校正电路时,功率因数可接近于1,且对公共电网基本上无污染。模块化的设计,可实行N+1配置,可靠性高。维护方便,可在运行中更换模块,而不影响系统供电,扩容方便、分段投资,可在初建时,预留终期模块的机架,随时扩容。调试方便,内设模拟测试电路,无需另配假负载。具有监控功能,并配有标准通信接口,可实现集中监控,无人值守。

二、开关电源的关键技术

开关电源中具有技术突破主要有体现在以下四个方面:

2.1均流技术

大功率电源系统需要用若干台开关电源并联,以满足负载功率的要求,另外通信电源必须通过并联技术来实现模块备份,以提高电源系统的可靠性。因此并联技术在供电系统中必不可少,而并联运行的整流模块间需要采用均流措施,它是实现大功率电源系统的关键,用以保证模块间电流应力和热应力的均匀分配,防止一台或多台模块运行在限流或满载状态,同时延长电源系统的寿命和平均无故障时间。

2.2软开关技术

DC-DC变换器是开关电源的主要组成部分,因此功率变换技术一直受到全世界电力电子学科和行业研究的关注。而如何降低开关损耗,提高开关电源的频率和开关电源的系统效率,代表了开关电源的发展趋势。在经过了硬开关PWM(或PFM)技术和硬开关加吸收网络技术后,软开关技术得到了广泛应用。这样能够极大地降低开关损耗,减小功率器件电和热应力,改善器件工作环境,降低电磁干扰,提高功率密度等,为开关电源实现高效、节能、体积小、重量轻和高可靠性的要求做出了贡献。软开关技术有:谐振技术、准谐振技术、PWM和准谐振相结合的技术。

2.3功率因数校正技术

功率因数校正技术有:采用三相三线制整流,即无中线整流方式,可使谐波含量大大降低,功率因数可达0.86以上;采用无源功率因数校正技术,即在三相三线整流方式下加入一定的电感,可使功率因数达0.93以上,谐波含量降到10%以下;采用有源功率因数校正技术,即在输入整流部分加入一级功率处理电路,使无功功率几乎为0,功率因数可达0.99以上,谐波含量降到5%以下。

2.4智能化监控技术

开关电源大量应用控制技术、计算机技术,进行各种异常保护、信号检测、电池自动管理等,实时监视通信电源设备运行状态,记录和处理有关数据,及时发现故障,以先进的、集中的、自动化的维护管理方式来管理通信电源设备,从而提高供电系统的可靠性。智能化监控技术的应用,使得维护人员面对的不再是复杂的器件和电路,而是一个人机表达和交流的信息,大大改进了维护管理方式。

三、开关电源的发展

开关电源在发展,今后仍要不断提高开关电源和供电系统的高新技术含量,以支撑高速发展的现代化通信网络的建设和运行维护管理为主导方向,以高可靠性、高稳定性和可维护性为最终目的。具体有以下几个方面:

3.1小型化

随着通信设备日益集成化、小型化和分散化的发展,以及势在必行的分散供电的广泛应用,要求开关电源也相应小型化,而开关电源工作频率高频化和控制电路集成化,使开关电源的小型化成为可能。特别是随着小型化开关电源的市场迅速扩大,如接入网、数据产品、移动基站、无线市话等,一些小功率模块插件形式的开关电源将应运而生,大有蓬勃发展之势。如中兴通讯的ZXDU45嵌入式电源,在结构上采用标准的19英寸插框设计,高度为4U,功能齐全,使用起来极为安全方便。

3.2高智能化

随着开关电源在通信领域多方面的广泛使用,而维护人员又不是专业电源维护人员,只有借助其智能化,对电源设备的运行状态自动检测,对电源故障及时发现、诊断和处理。这就要求智能化在原有监控功能的基础上,增加诊断功能,即故障诊断专家系统,以指导维护人员处理问题,加快故障诊断和检修过程。

3.3电池管理