期刊在线咨询服务,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

期刊咨询 杂志订阅 购物车(0)

铁道桥梁工程论文模板(10篇)

时间:2023-02-27 11:18:11

铁道桥梁工程论文

铁道桥梁工程论文例1

中图分类号:U231文献标识码: A

前言:伴随我国社会经济的不断进步,交通事业的发展可谓日新月异,而城市的进步也给交通发展提出了越来越严苛的要求,使得道路交通开始向着越来越多元化的方向发展。客运专线在近十年间就发生了翻天覆地的变化。无砟轨道高速铁路桥梁的线形控制就是这一发展过程中非常重要的一部分,它在我国高速铁路桥梁的建筑史上具有重要的意义,将高速铁路桥梁的发展推向了一个全新的高度。因此,本文针对无砟轨道桥梁的特点对无砟轨道高速铁路桥梁的施工控制方法及措施进行研究.

1、无砟轨道桥梁施工控制特点

对于一般的有砟轨道桥梁,桥梁施工控制仅给出箱梁底板立模高程即可,梁顶板立模高程根据箱梁底板立模高程和该段梁高确定,由于现有施工技术水平限制,一般有砟轨道桥梁混凝土浇筑后的梁面不平顺,高程起伏较大.但对于无砟轨道客运专线(高速铁路)桥梁,列车运行速度较快,轨道的平顺度要求较高,如京津城际客运专线采用Ⅱ型板式无砟轨道系统,Ⅱ型板式无砟轨道桥梁桥面系统主要构造为箱梁、底座板、轨道板,箱梁和底座板整体结构分离,为保证底座板在温度等因素的作用下可以自由伸缩,梁面的平整度精度要求较高.

另外,Ⅱ型板的铺设对于梁面高程及徐变上拱值要求也较高,为使梁顶高程满足浇筑底座板和铺设Ⅱ型无砟轨道板的需要,需要对梁顶面高程进行严格控制.由于无砟轨道桥梁对梁体的平顺度要求较高,这样对桥梁的施工控制提出了更高的要求,不仅合拢前合拢段两端的合拢误差不能过大,在桥面系施工完成后梁面的绝对标高也要满足要求。故在施工过程中需要准确估计后续工序对本阶段梁的位移影响.

2、无砟轨道桥梁顶面线形控制

在箱梁混凝土浇筑后,若顶板高程与设计高程有偏差,则需要在铺设底座板之前对梁面高程进行修整,若超出较多,不但修整的工作量很大,且会影响顶板钢筋的保护层厚度,对结构的耐久性等产生影响.为减小箱梁顶板混凝土面的后期修整量,提出了将箱梁顶面及底面高程同时控制的施工控制措施,另外还提出了箱梁顶面在混凝土浇筑即将完成时的梁面高程,如下所示:

式中: h1 为混凝土浇筑即将完成时的箱梁顶面高程;

htop为浇筑混凝土前的箱梁底面立模高程;

hlI为本段前端梁高;

fcon为浇筑本段混凝土时本段前端预测挠度;

fgl为预测本段挂篮变形.

根据式(1)计算的梁顶面立模高程,在混凝土即将浇筑完成时控制完成梁顶面的浇筑工作,可以消除本阶段预测挂篮变形及预测浇筑混凝土产生的梁端挠度误差对梁顶面高程的影响,减小后期梁面的修整工作,保证结构顶板钢筋的保护层厚度.

3、施工控制方法

为达到良好的线形控制效果,需要对后续工序对已浇筑混凝土梁段的挠度影响进行准确预测,在无砟轨道高速铁路大跨度桥的施工控制过程中引入灰色理论及自适应控制方法进行线形控制,并采用最小二乘法对参数进行调整[3_6].

3.1 灰色控制理论

灰色理论的特点是以现有信息为基础来进行数据加工和处理,建立灰模型来预测系统未来发展变化,灰色系统模型的主要模型是GM(1,N)模型.GM(1,N)模型适合于各变量动态关联分析,适合于为高阶系统建模提供基础,但不适合预测用.适合预测的模型只能是单变量模型即GM(1,1)模型[3_6].利用灰色理论建立的模型其形式为:

(2)

式中:a为发展系数;

B为灰作用量;

X(1)为原始数列

X(0)的一次累加生成数列.

解方程(2)可得:

式(3)也称为GM(1,1)的预测响应式,其还原值为

对于悬臂施工桥梁,一般将各阶段梁体的变形量和各阶段预拱度调整量作为灰色系统模型原始数据列.

3.2 自适应控制方法

对于预应力混凝土桥梁,施工中每个工况的受力状态达不到设计所确定的理想目标的重要原因是有限元计算模型中的计算参数取值,主要是混凝土的弹性模量、材料的比重、徐变系数等与施工中的实际情况有一定的差距.要得到比较准确的控制凋整量,必须根据施工中实测到的结构反应修正计算模型中的这些参数值,以使计算模型在与实际结构磨合一段时间后,自动适应结构的物理力学规律,图1为自适应控制的原理图(8).

对于悬臂浇筑的桥梁,主梁在墩顶附近的相对线刚度较大,变形较小,因此,在控制初期,参数不准确带来的误差对全桥线形的影响较小,这对于上述自适应控制思路的应用是非常有利的.经过几个节段的施工后,计算参数已得到修正,为跨中变形较大的节段的施工控制创造了良好的条件.

4、施工控制实例

4.1 工程概况

哈齐客运专线起自哈尔滨站止于齐齐哈尔站。本段为哈齐客专一标段(里木店特大桥部分),线路设计时速250km/m。(本桥桥面铺设无缝线路,钢轨为60kg/m,轨高0.176m)地处哈尔滨市与肇东市交界处,线路基本呈东南---西北走向,地势平坦。线路大致与既有滨州线并行。里程为DK36+161.99至DK41+197.92里木店特大桥(桥长5041m),共有155个墩含2个桥台。本桥桥梁为预制混凝土箱梁跨度为32.7米共154跨。

4.2 本桥特点

对于大跨度梁式桥,一般采用悬臂施工,不同的结构形式,不同的施工顺序(合拢顺序、预应力张拉顺序)对桥梁的累计位移和预拱度设置均有较大影响.为此本文以哈齐客运专线里木店特大桥部分比较无砟轨道桥梁的累积位移.跨四环桥与其他悬臂浇筑连续梁桥的不同在于该桥为不对称桥梁,梁体竖向刚度较小,中跨悬臂长度较大,且有张拉吊杆的横隔板,施工顺序为悬臂施工到14 块一边跨支架浇筑现浇段一拆除边跨现浇支架(边跨未安装支座,为悬臂结构)一中跨施工15#、16 块一合拢一拆除临时支撑,安装边跨支座一施工拱一张拉吊杆一桥面系施工.为说明本桥与一般连续梁结构的不同,以哈齐客运专线里木店特大桥部分作为对比,跨五环桥原设计方案为全部悬臂施工,悬臂4#块后改为支架施工,故列出五环桥的两种不同施工方法的计算结果.对于预应力混凝土连续梁桥,若已施工梁段上出现误差,除张拉预备预应力束外,基本没有调整的余地,且这一调整量也是非常有限的,而且对梁体受力不利.因此,一旦出现线形误差,误差将永远存在,对未施工梁段可以通过立模高程调整已施工梁段的残余误差,如果残余误差较大,则调整需经过几个梁段才能完成.对于无砟轨道高速铁路桥梁,若施工过程中梁体线形出现较大的施工误差,将给后续工序带来较大的困难,需在施工过程中严格控制梁体线形.

4.3 灰色理论与自适应控制方法的结合应用,

连续梁拱组合桥的施工过程随着时间的推移,其影响因素诸如温度、湿度和其它的一些因素是逐步变化的,且这种变化是一种随机的灰色过程.为计人这些影响因素的变化,确保所建立模型的有效性,必须进行反馈校正.在利用灰色理论施工控制时,对理论值与实测值建立误差序列,以此为原始序列,建立GM(1,1)模型,并及时采用新陈代谢模型进行模型的反馈校正,即每补充一个新值,便去掉一个最老的数据,以维持数据序列的维数,采用这种处理方法可使预测模型得到有效的修正,提高预测精度.对于跨四环桥,将各阶段梁体的变形量和各阶段预拱度调整量作为灰色系统模型原始数据列.在第i节段施工完成后,测得前 节段挠度变化、实际拱度实测值,考虑到温度对梁体挠度的影响,挠度观测均在日出前进行.理论挠度、拱度由桥梁专业软件BSAS建立模型求得.

对于悬臂施工桥梁,预拱度设置的准确与否主要在于结构各阶段的位移预测是否准确9,在无砟轨道高速铁路桥梁的施工控制中可以引入灰色理论和自适应控制方法两种预测方法进行预测结构的变形,从而确定结构的预拱度.在进行实测结果和理论结果的误差分析时,为消除测量误差带来的影响对实测结果进行了曲线拟合,采用拟合后的数据进行预测;自适应控制方法的关键在于参数估计,对于无砟轨道桥梁可采用最小二乘法进行参数估计6.

预测完成后对两种方法的预测挠度结果进行比较,确定下一阶段结构的预拱度.跨四环桥159#墩II#一14 块浇筑混凝土时的梁端部竖向挠度如表1所示.

两种方法预测的各阶段梁体挠度与实测挠度值较为接近,灰色理论预测的挠度相对与实测值较为接近,在位移较大的中跨侧,灰色理论预测的预拱度值较自适应控制方法稍大,但相差不大,两种方法均可用于大跨度无砟轨道高速铁路桥梁的施工监控,实际监控中可采用两种方法结合预测.

4.4 线形控制结果

以159 墩为例,14 块施工阶段梁体竖向挠度与理论挠度对比.16 块施工阶段梁体竖向挠度与理论挠度对比.由于灰色理论预测仅对梁端部竖向位移进行了预测,故仅列出自适应控制方法的理论位移结果10.

在本桥的施工监控工作中,相对于普通桥梁,在混凝土即将浇筑完成时增加了一次测量工序,应用式(1)控制梁顶面标高,跨四环桥成桥后梁体实际线形与理想线形的对比如图7所示,理想线形为倒退分析所得的理想状态计算结果.施工阶段实测位移与预测位移较为接近,说明在本桥监控中预测方法较为准确的反映了实际情况;成桥后梁体实际线形与理论线形较为接近,误差均在1 C1TI以内,四环后期桥面修整工作不大即可满足铺设桥面板的平整度要求,节省了工期时间,保证了铺设桥面板等工序的顺利进行.由哈齐客运专线里木店特大桥动态检测报文提出的梁面标商控制方法适合于无砟轨道高速铁桥的施工控制中,高程的测量需要精密测量仪器来测量.

结语:综上所述,在无砟轨道高速铁路桥梁的线形控制技术方面,我们还有很多值得探究之处,要在已有基础上进一步的完善无砟轨道交通的设计理论,不断地加强无砟轨道桥梁的技术标准与技术要求,以更好的为我国高速铁路事业推波助澜,将我国的高速铁路事业推向一个全新的阶段。

铁道桥梁工程论文例2

中图分类号:C35文献标识码: A

引言

近年来,随着我国经济的飞速发展,对道路交通的要求越来越高,从而迎来了我国交通事业不断进步。在这个科技带动生产的时代,对跨高铁桥梁建设的科学合理化设计以及施工有着非常重要的意义,是确保其工程质量,实现建造价值的具体表现。跨越高速铁路的桥梁修筑在这种欣欣向荣的大环境下,不论是数量还是质量都得到了提高和重视,与跨越一般铁路的桥梁相比,跨高铁桥梁在安全、舒适以及桥梁跨度的要求都比跨越一般铁路线的桥梁要严格,因此,有必要对跨高铁桥梁的设计和施工进行研究。

一、跨高铁桥梁建造的特点

跨高速铁路桥梁不同于跨普通铁路的桥梁,高速铁路相对于普通铁路速度有很大的提升,这对跨高速铁路桥梁的建造提出了新的要求。桥梁的纵向刚度是建造桥梁的一个重要问题,与跨高速公路桥梁不同,跨高速公路桥梁在建造时可以通过伸缩缝等实现桥梁的纵向拉伸不断裂,跨高速铁路桥梁要采用设置纵向弹性约束等来实现跨高速铁路的纵向刚度在合理的范围内。在传统的跨公路桥梁和跨普通铁路桥梁的建造中,桥梁的结构强度是建造桥梁成功与否的关键,在跨高速铁路桥梁的建造中,在考虑桥梁的结构强度时,应当充分考虑桥梁的动力作用以及桥梁的震动对于高铁运行的影响。

二、跨高铁桥梁的桥型选择

由于跨高铁桥梁施工空间的特殊,跨高铁桥梁在设计和施工上都有自己的独特之处。根据跨高铁桥梁的特殊性和我国桥梁建筑的多年经验,再结合实际施工的各种条件,可采用的桥型有连续梁、斜拉桥和拱等跨度大的桥型。具体采用哪一种桥型则根据实际施工的地质、地形条件、高速铁路的运营条件和投入资金的情况来因地制宜地选择。

其中,拱桥之所以成为跨高铁桥梁的供选择桥型之一拱桥承受轴向力的是其的主拱,在找到较合理的拱轴情况下,可以充分发挥出桥梁建筑中最为常用的材料混凝土的抗压性能强的优点,而且拱桥桥型比较经济,所需要投入的资金较适中。斜拉桥则是主要的桥结构体都在斜拉索的作用下,主要桥结构跨度缩小,而斜拉索对拉扯的抵抗能力较强。连续梁则是由于墩顶负弯矩的存在,削减了跨中弯矩,其最大跨径可达300m。

通过以上对各种类型的桥梁的简单介绍,我们可以知道连续梁桥、混凝土拱桥、钢拱桥和斜拉桥都可以用来建造跨高铁桥梁,在实际施工中具体采用哪一种桥梁还要看施工的具置情况以及经费预算等情况才能确定。

三、工程概况

某高架桥位于市区中部, 是市规划快速路网的重要组成部分, 市高架桥工程1'―6' 联连续梁(K0+000~K0+838.727m,桥墩为0、1'~23'、24'、15#墩,其中0# 和15# 墩为既有墩)以及K 匝道连续梁(K0+000~K0+79.702m,桥墩为K0、K1'―K3'、4' 墩)。主线梁宽25~33 米,上部结构采用钢筋混凝土连续箱梁、预应力混凝土连续箱梁,下部结构中桥墩主要采用方形双柱式墩,基础采用钻孔灌注桩。

桥梁上部结构浇筑方式为:第1'、2'3'、6' 联及K 匝道采用满堂支架现浇法,第4' 联、第5' 联的19' 号墩采用挂篮悬臂法浇筑,第5' 的20' 号墩情况最为特殊,需要横跨铁路,采用满堂支架法逐节段浇筑后转体,该处转体T 构是整个雾凇高架桥工程(大街至四川路)全线的重点控制工程,具有安全风险大、科技含量高、施工难度大等特点。该桥靠自身重量平衡转体,跨度大,两侧悬臂长各37m,转体总重量约为72600KN,与铁路交角90 度,转体体系包括上转盘、下转盘、上球铰、下球铰、支撑腿、环道、限位架、反力座和牵引装置。

四、跨高铁桥梁的设计施工方案

跨高铁桥梁的设计施工方案主要有转体法、顶推法以及悬臂绕柱法三种施工方案,下面我们对三种施工方案进行详细的分析和介绍。

(一)、转体法施工方案

所谓转体法施工方案,顾名思义,是指在施工中跨高速铁路桥梁的下面部分固定,而上面部分是可以进行旋转的,其施工顺序为下转盘施工定位钢架预埋钢架调平固定钢架浇筑混凝土下球铰及环道安装下球铰及环道精调安装四氟板及涂抹黄油上球铰安装上转盘支撑腿安装上转盘安装。这样的方案设计有一个好处,那就是在桥梁进行建造时,在桥梁的一个桥墩固定的情况下,可以将桥身扭转到高速铁路相对于桥墩的反方向。这样的话,跨高速铁路桥的建造地点相对来说远离高速铁路轨道,不论是高速铁路对施工的影响,还是施工对高速铁路的影响都很大程度的降低了。在反方向建造好桥身后,再将其旋转过来,使之停留在桥梁设计的位置,再经过一些后续的处理和调整建造转体法施工就完成了。转体法施工相对前两种施工方案来说,高速铁路与施工两者之间的影响大大的减小,但是转体法施工方案需要很高的技术水平,不论是在设计上还是操作上都有很大的难度,施工经费也相应的较大。

(二)、顶推法

顶推法是指预先在高速铁路两端修筑临时桥墩,在一端的后方开辟预先制造场地,将修筑好的桥体放置在不锈钢等材料特制的滑动装置上,利用千斤顶等设施将桥梁主体推进,落架在另一段的桥墩上。替换正式的桥墩完成施工。

(三)、悬臂绕柱法施工方案

所谓悬臂绕柱法,是指在跨高铁桥梁时施工,首先修建铁路两旁的桥梁部分,并且是两边同时开工,以对称的形式进行施工,然后再进行高速铁路上方桥梁部分的施工。正如我们前面所说,在高速铁路上方施工时,要十分注意施工安全,禁止任何施工材料从施工现场坠落到高速铁路轨道,影响高速铁路的正常运行。所以,在高速铁路上方进行施工时,要设置防护性以及安全性很高的防护设施。此外,要注意高度铁路在有列车运行通过施工场地时对施工场地的施工器材、建筑以及施工人员的影响,在进行施工设计时,要充分地考虑到这些情况。

五、施工方法

1)为了保证桥梁能够直接跨越铁路、不影响列车正常运行,雾凇高架桥第5' 联20’墩采用转体法跨越铁路,下部结构为钻孔灌注桩,上部结构为支架法现浇梁,桥梁转体时所使用的施工总轴直径近两米, 转体部分桥梁将通过这个T 形结构的施工总轴,逆时针旋转90 度,旋转后的两端分别与建好的部分相接。2)整个桥墩安放在一个磨盘状的混凝土底座上,在钢筋水泥结构的“磨盘”内还“藏”有钢结构的钢球绞,通过它来实现桥梁的旋转;在直径7 米多的20 号桥墩根部东西侧面,各有两大束钢绞线, 每束都有19 根, 这19 根钢绞线连接400 吨的液压千斤顶,两侧的千斤顶连接着数根管子。3)在浇筑上转盘时先预埋P 型锚具,其中牵引索锚固端埋入转盘4.0m 以上, 并圆顺地缠绕在转盘上, 牵引索采用19-7-φs15.2-1860 的钢绞线,通过牵引油缸对转体进行牵引,转体时,牵引油缸固定在牵引反力座上加载。4)在桥梁正式转体之前的两天,进行了试转体施工,以取得了转体控制参数,随后系统再按照试转的参数设定转体各项数值,通过试转采集计算的数据与参数为正式转体的顺利实施提供了可靠的技术保障。

六、施工工艺

转体施工工艺框图如图1所示。

图1 转体施工工艺框图

(一)、施工准备

1、现场清理

对现浇箱梁下的满堂支架进行拆除, 现浇箱梁下支架分区分片按设计要求拆除。拆除前对整个转体桥面体系进行全面检查,包括预应力张拉与压浆情况、梁砼强度与龄期等,确保其满足体系转换条件。拆除和与转体有冲突的栏杆、防护网等。对环道清理干净,结构平转范围内障碍物的清除。

2、称重

理论上箱梁两端是平衡的,由于施工的原因(如混凝土浇筑不对称、胀模等)或其它原因会产生不平衡弯矩,为了消除在施工进程中由于引起不平衡弯矩,确保整个T 构的平衡和箱梁转体成功,在施工现场清理结束后, 通过监控单位预先在承台及梁体内埋设的应力、应变感应设备测试一下应力,对结构重量进行称量,称量出转动体实际的重心位置,若重心位置有偏差时,则可通过在箱梁顶加水袋或砂袋进行配重。

(二)、正式转体

1、20 号墩转体梁转体工程,就是要把原本南北向的“拼板”(一块重达7400 余吨的钢筋混凝土桥梁)原地转体90°,变成东西向,同之前已经建好的桥梁形成连接。开始转体时,通过两台ZLD200 型千斤顶,分别拉动上转盘预留的两端牵引索, 让桥头旋转起来, 为保证上转盘仅承受与摩擦力矩相平衡的动力偶,无倾覆力矩产生, 这两台千斤顶的作用力始终保持大小相等、方向相反。

2、转体在数次精确测量下,逐渐旋转,转体梁以每分钟约0.9度的速度逆时针旋转,旋转过程中,监测人员实时监测,测量人员反复观测轴线偏位,梁端部位高程变化,如果出现异常情况,必须立即停机处理,待彻底排除隐患后,方可重新启动设备继续运行;当转体结构到达设计位置(主梁悬臂段中心点距离设计桥轴线1m)时,系统“暂停”,为了防止转体过度,下方在预定位置焊接限位装置,降低牵引索千斤顶的供油量,对整个平转体减速,转体开始进入“点动” 阶段(点动时间为0.2 秒/次, 每次点动千斤顶行程为1mm,梁端行程10.3mm),动力系统改由“手动”状态下点动操作,为保证转体就位准确,在系统暂停后,在滑到上焊接有限位型钢加橡胶缓冲垫,这样一来,即使发生转体过位,还可以利用型钢做支撑,用千斤顶反推就位,每点动操作一次,测量人员测报轴线走行现状数据一次,反复循环,直至转体段箱梁中心线与箱梁设计轴线重合,每动几下都要进行反复核验、检测,确保转动合乎设定,防止出现偏差,最后完成剩余2 度的旋转。

3、按设计文件对转体时间的初步考虑, 转体在单个92min 内可能无法完成,即停转后须进行临时锁定,以确保铁路运营安全和桥梁结构安全;精调及上下转盘临时锁定后,快速调直、焊接连接钢筋,立模浇筑封固混凝土(C50 微膨胀混凝土)、使上转盘与底盘连成一体,完成转盘结构固结、19 号和21 号墩预应力悬臂梁与20号墩水平转体在跨中进行合拢、安装护栏等工作。

结束语:

总而言之,随着经济的不断发展,对桥梁设计的要求会越来越多,难度也越来越大,对桥梁的质量要求也会越来越高,虽然不能阻止地震的发生,但可以将地震的伤害降到最低。所以,桥梁设计人员要深入桥梁抗震设计的研究中,在借鉴其他地区的先进抗震技术经验的基础上,遵循桥梁抗震设计原则,采用适当的设计方法,使桥梁的设计在质量上得到最大限度的保证。

铁道桥梁工程论文例3

中图分类号: TU997 文献标识码: A

1 工程概况

拟建南湖立交桥场地原为地势较平坦的农田,地形自南向北、自西向东分别以1.02%和0.5%的坡率倾斜。西环路-南湖路区段,填方厚度1.8-5.5m不等,地面高程1432.14-1438.54m;西环路-西滨城路区段,原始地形变化不大,地面高程1432.45-1433.56m。

2 主要技术标准及桥面设计

2.1 技术标准

(1)荷载等级

汽车:城市—A级

(2)净空高度

主线:≥5.0m

匝道:≥5.0m

车行地面辅道:≥4.5m

人行及非机动车道:≥2.5m

(3)抗震设计

地震基本烈度八度,桥梁采用八度抗震设计,动峰值加速度取值0.2g。

2.2 桥面宽度

(1)M线标准宽度

双向四车道:0.50m(防撞栏杆)+7.75m(机动车道)+0.5m(防撞栏杆)+7.75m(机动车道)+0.50m(防撞栏杆)=17m

双向四车道:0.50m(防撞栏杆)+11.25m(机动车道)+0.5m(防撞栏杆)+11.25m(机动车道)+0.50m(防撞栏杆)=24m

(2)Z主线标准宽度

双向两车道:0.5 m(防撞栏杆)+8.5 m(机动车道)+0.5m(防撞栏杆)=9.5 m

(3)匝道标准宽度

单向两车道:0.50m(防撞栏杆)+7~7.75m(机动车道)+0.50 m(防撞栏杆)=8~8.75 m

3 桥梁设计方案分析

3.1 主线及匝道主梁结构形式

立交常用的上部结构分为预制吊装及现场浇筑两大类,预制吊装的主要有空心板梁、小箱梁、预应力混凝土T梁、钢箱梁及叠合梁等五种。现场浇筑的主要有钢筋混凝土连续梁及预应力混凝土连续梁等形式。合理选用主梁的结构型式对工程投资及工期进度等有着比较大的影响。现从工程造价、工期、施工安排、施工期间交通组织、工厂化结构构件的生产能力以及美观等方面。经综合比选,本工程位于该地区对外的交通出口,景观效果要求较高,宜优先选用景观较好的箱梁现浇施工。从南湖立交平面线型看,80%为曲线段及变宽度分叉口梁,综合以上因素,选用基本跨径20-22m的钢筋混凝土连续梁为基本结构。

3.2 跨铁路处主梁结构形式

南湖立交上跨电厂输煤运输线及城市铁路线。

根据现有线路标高来看,跨越铁路的路口部分也有采用贝雷架进行现浇施工的条件,但施工周期长。电厂输煤运输线交通繁忙,每天的施工开窗期不足半小时,采用现浇施工法不太合适,因此只能在预制梁中作比较。而采用预制吊装方案,上跨城市铁路段采用预制吊装的钢盖梁,叠合梁和钢箱梁可不做钢盖梁,在端横梁处设大横梁,和纵梁焊接,施工难度比钢盖梁稍大。采用预制吊装梁可最大限度地减少在铁路上方现浇混凝土数量,缩短施工周期,减小对铁路的影响,跨铁路处桥梁结构型式比较后认为,小箱梁景观效果较好,造价较低,施工速度较快,对铁路影响较小,因此跨铁路处采用预制钢盖梁加小箱梁。

3.3 桥墩结构型式

(1)群桩柱墩

本工程在上部结构为连续梁处选用此种形式桥墩,根据桥宽在匝道上采用独柱墩,在主线处采用双柱墩。

(2)盖梁柱桥墩

上部结构采用小箱梁时,下部结构采用盖梁。该桥墩为横向双柱或独柱,柱底设置钢筋混凝土承台,群桩基础,柱顶设置盖梁,盖梁为预应力混凝土或钢筋混凝土结构,主要在匝道上部结构采用小箱梁,同时桥墩处于铁路界限外时采用。

(3)混凝土立柱钢盖梁组合门架墩

跨铁路处,为减小在铁路上方现浇混凝土对铁路带来的不利影响,加快施工进度,采用混凝土现浇立柱,预制吊装钢盖梁的组合门架墩。立柱及承台均在铁路限界外,不影响铁路的运行,钢盖梁预制吊装,施工速度快,在夜间等铁路非繁忙时段吊装,对铁路影响小。钢盖梁和混凝土立柱间做刚性接头,可承受轴力和弯距。在跨铁路处采用。

3.4 桥梁基础型式

桥梁桩基一般采用打入桩和钻孔灌注桩两种桩型,根据工程实践,从比较中可以看到,两种桩型各有优势。根据该地区以往公路工程建设情况看,桥梁工程普遍采用钻孔灌注桩作为桥梁基础,桥梁在各类复杂地质状况下进行钻孔桩施工已积累了大量的经验。

桥梁桩基较多采用直径1200mm或以上的钻孔灌注桩。考虑本工程所处地区为8度地震区,经计算分析,最终确定在本工程推荐采用钻孔灌注桩作为桥梁桩基。桩径采用1200mm、1500mm、1600mm三种。

3.5 桥梁的结构设计

(1)上部结构设计

1)主线上现浇混凝土连续梁采用单箱多室截面,梁高2.2m,横向控制。顶板厚25cm,底板厚20-40cm,腹板厚40-55cm,采用斜腹板。中横梁宽2.4cm,端横梁宽1.2m。

2)匝道上现浇混凝土连续梁采用单箱单室截面,梁高1.7m。顶板厚25cm,底板厚20-40cm,腹板厚40-60 cm,采用斜腹板。中横梁宽2cm,端横梁宽1.2m。

3)小箱梁预制梁宽2.4m,跨径36 m时梁高1.8m,跨径25 m时梁高1.5m,采用和大箱梁相对应的斜腹板。顶板厚18cm,底板厚18-25cm,腹板厚18-25cm。跨中及梁端设横梁。

(2)下部结构设计

整个立交包括M主线、Z主线、A匝道、B匝道、C匝道及D匝道。M主线与A匝道、B匝道及C匝道衔接,跨越电厂输煤运输线及城市铁路线,桥面宽度17-35m不等。

1)M主线下部结构多数采用双柱墩,双柱横向中心间距根据桥面宽度、地面道路及邻近匝道的限制决定,宽度为10-17m。桥墩尺寸:单柱横桥向1.8m,顺桥向底部2m,顶部2.1m。墩柱采用C40混凝土。承台采用分离式 。

2)M主线桥面宽度17m段下部结构采用H型桥墩。H型桥墩尺寸:单柱横桥向底部1.3m,顶部1.8m。H型桥墩双柱横桥向底部净距3.6m,底部外边距6.2m,顶部净距3.9m,顶部外边距7.5m,支座中心距5.7m。双柱顶部系梁连接。H型桥墩顺桥向底部1.8m,顶部2.1m。墩柱采用C40混凝土。

3)M主线跨越铁路部分下部结构多数采用双柱墩加钢盖梁的结构型式,双柱横向中心间距根据桥面宽度、地面道路及跨越铁路的限制决定,宽度为12.5m-25m。桥墩尺寸:单柱横桥向×顺桥向为2.5m×2.5m,顶部1.5m为钢柱,截面2.0m×2.0m,钢盖梁宽2.0m,高3.0m。承台采用分离式。

4)Z主线、A匝道、B匝道、C匝道及D匝道中墩基础横桥向设1个承台及墩柱。桥墩采用Y型独柱墩。Y型独柱墩桥墩尺寸:横桥向底部1.6m,顺桥向底部1.3m。墩柱采用C40混凝土。

5)Z主线、A匝道、B匝道、C匝道及D匝道边墩基础横桥向设1个承台及墩柱。桥墩采用Y型独柱墩。Y型独柱墩桥墩尺寸:横桥向底部2.0m,顺桥向底部1.3m。墩柱采用C40混凝土。

6)Z主线、A匝道、B匝道、C匝道及D匝道跨越铁路处边墩基础横桥向设1个承台及墩柱加混凝土倒T形盖梁。

7)承台厚度一般为2.3-2.5m,钢筋混凝土结构。桥台采用重力式桥台,台后设置搭板,钢筋混凝土结构。

铁道桥梁工程论文例4

中图分类号:U238文献标识码: A

近年来,随着我国高速铁路的飞速发展,高速铁路的技术体系也在不断的完善,主要包括:工程建造技术、高速列车技术、列车控制技术、系统集成技术和运营维护技术。其中,由于我国自身地理环境的复杂性和多变性,对高速铁路的工程建造中桥梁建设的发展提出了越来越严格的要求。

1 高速铁路桥梁建设概述

在现代高速铁路建设中,桥梁设计与建造技术已成为关键技术之一。桥梁是高速铁路土建工程的重要组成部分,主要功能是为高速列车提供平顺、稳定的桥上线路,以确保运营的安全和旅客乘坐的舒适。高速铁路技术就是通过改造原有线路(直线化、轨距标准化),使营运速率达到每小时200 公里以上,或者专门修建新的“高速新线”、使营运速率达到每小时 250 公里以上的铁路系统。高速铁路除了使列车在营运达到速度一定标准外,车辆、路轨、操作都需要配合提升。我国高速铁路运营状况的现状是设备质量可靠、运输安全稳定、经营状况良好。无论是线路基础、通信信号、牵引供电等固定设备、还是动车组等移动设备、质量稳定,运行平稳。高速安全保障体系日趋完善,职工队伍素质过硬,保持了良好的安全记录没有发生旅客伤亡事故,并且高速铁路受到广大旅客的青睐,市场需求旺盛。这些都离不开铁路桥梁的建设。广义的高速铁路包含使用磁悬浮技术的高速轨道运输系统。为了满足高速铁路列车设计、施工及运营等各方面的要求,高速铁路桥梁应具有构造简洁、设计标准、便于施工架设和养护维修的特点,另外还应具有足够的耐久性和良好的动力性能。在我国现在的铁路桥梁建设中主要运用一些方法来满足列车高速、舒适、安全行驶的要求,才能使桥梁必须有足够的刚度和良好的整体性,设计必须满足结构、自振频率、竖横向挠度和徐变上拱限值。桥梁设计必须满足车桥动力响应的各项指标,按刚度控制设计强度进行检算。为了保证列车运行 的连续且平顺并确保跨区间无缝线路钢轨附加应力不超限,对下部结构的刚度、工后沉降、沉降差做了严格的限制,并按车桥相互作用模型进行桥上长钢轨纵向力分析,使桥梁下部的设计更为合理。按耐久性设计作为主要的设计原则并且强调结构与环境的协调、重视生态环境的保护、注意了结构外形、色彩、防震降噪。对于我国的铁路桥梁建设从各个方面将实现建设世界一流高速铁路的宏伟目标,我国现在大力推进体制创新、管理创新、技术创新。在体制创新方面,创建了合资建路的崭新模式。并且对于铁路桥梁建设管理方面等,需要充分发挥我国铁路路网完整、运输集中统一指挥的优势,统筹利用铁路内外的各方面科研力量和人力资源,形成强大合力。在铁路建设中,无论是工程管理部门,还是设计、施工、监理单位、都协调行动,组织起了强大的工程建设队伍,在技术装备制造中、无论是运营单位还是制造企业、科研院所、都统一步调,形成了强大的研发制造体系。这种科学高效的管理模式,大大提高了我国高速铁路桥梁的建设。

2我国高速铁路桥梁建设的设计特点

由于速度大幅提高,高速列车对桥梁结构的动力作用远大于普通铁路桥梁。桥梁出现较大挠度会直接影响桥上轨道平顺性,造成结构物承受很大冲击力,旅客舒适度受到严重影响,轨道状态不能保持稳定,甚至危及列车运行安全。这些都对桥梁结构的刚度和整体性提出了极高的要求。

2.1 高架桥所占比例大。

高架长桥多桥梁在高速铁路中所占的比例较大,主要原因是在平原、软土以及人口和建筑密集地区,通常采用高架桥通过。京津城际铁路桥梁累计长度占全线正线总长的比例为86.6%,京沪高速铁路为80.5%,广珠城际铁路为94.0%,武广客运专线为48.5%,哈大客运专线为74.3%。

2.2 大量采用简支箱梁结构形式。

根据我国高速铁路建设规模、工期要求和技术特点,通过深入的技术比较,确定以32m简支箱梁作为标准跨度,整孔预制架设施工。预应力体系有先张法和后张法两种。少部分采用12 m,16 m跨度的T形梁,预制吊装。

2.3大跨度桥多。

受国情路况的制约,我国客运专线中,跨度达100 m及以上的大跨度桥梁很多。据统计,在建与拟建客运专线中,100 m以上跨度的高速桥梁至少在200座以上。其中,预应力混凝土连续梁桥的最大跨度为128 m,预应力混凝土刚构桥的最大跨度为180 m,钢桥的最大跨度为504 m。

2.4桥梁刚度大,整体性好。

为了保证列车高速、舒适、安全行驶,高速铁路桥梁必须具有足够大的竖向和横向刚度以及良好的整体性,以防止桥梁出现较大挠度和振幅。同时,还必须严格控制由混凝土产生的徐变上拱和不均匀温差引起的结构变形,以保证轨道的高平顺性。

2.5限制纵向力作用下结构产生的位移。

避免桥上无缝线路出现过大的附加力。由于桥梁结构的温度变化、列车制动、桥梁挠曲会使桥梁在纵向产生一定的位移,引起桥上无缝线路钢轨产生附加应力,过大的附加应力会导致桥上无缝线路失稳,影响行车安全。因此,要求桥梁墩、台具有足够的纵向刚度,以尽量减少钢轨附加应力和梁轨间的相对位移。

2.6改善结构的耐久性,便于检查和维修。

高速铁路是极其重要的交通运输设施,桥梁结构物应尽量做到少维修或免维修,因此,设计时需要将改善结构物的耐久性作为设计原则,统一考虑合理的结构布局和构造细节,并在施工中加以严格控制,保证质量。另一方面,高速铁路运营繁忙,列车速度高,维修时间都放在夜间“天窗”时间进行,一般为4h,因此桥梁结构构造应易于检查和维修。

3我国高速铁路桥梁建设的关键技术

3.1大跨度桥梁设计建造技术

高速铁路桥梁通常宜采用小跨。但由于跨越大江、大河和深谷的需要,高速铁路大跨度桥梁的修建也不可避免,而我国高速铁路大跨度桥上速度目标值与其他路段保持一致,这也增加了大跨度桥梁的设计建造难度。主要设计建造技术包括:采用更高强度等级钢材、应用新型空间结构、研制大跨重载桥梁专用装置、采用深水基础施工新工艺等。

3.2无缝线路桥梁设计建造技术

桥上无缝线路钢轨受力与路基上钢轨受力不同,桥梁自身变形和位移将使桥上钢轨承受额外的附加应力。为了保证桥上行车安全,设计应考虑梁轨共同作用引起的钢轨附加力,并采取措施将其限制在安全范围内。钢轨附加应力包括制动力、伸缩力和挠曲力。经过多年的专题研究,目前我国系统建立了无缝线路梁一轨作用的力学模型,通过相应的模型试验和实桥测试验证了分析模型和理论的可靠性,制定了相应的技术控制指标。

3.3“车―线―桥”动力响应仿真技术

为保证列车高速、舒适、安全行驶,高速铁路桥梁必须具有足够大的刚度和良好的整体性,以防止桥梁出现较大挠度和振幅。我国从20世纪80年代初就开始进行“车―线―桥”动力相互作用理论和应用研究,建立和发展了多种分析模型,制定了相应的评定标准。在铁道部组织的桥梁动力性能综合试验中,试验车创造了300 km/h以上的速度纪录,验证了我国“车―线―桥”动力仿真分析方法的有效性和评定标准的可信性。通过多年科研攻关和工程实践,基本掌握了高速铁路“车―线―桥”动力响应作用机理。

3.4 无砟轨道桥梁设计建造技术

在无砟轨道桥梁设计中追求构造简洁、美观,力求标准化、便于施工架设和养护维修,确保其足够的耐久性和良好的动力性能,关键在于解决梁体的刚度和变形控制技术。通过对梁体的竖向挠度、水平挠度、扭转角、竖向自振频率等主要技术参数的研究,以及对预应力混凝土梁徐变上拱的控制研究,使桥梁结构能够满足无砟轨道铺设条件。目前我国已基本掌握了高速铁路无砟轨道桥梁的设计建造技术。

3.5 高架长桥快速施工技术

正在建设的高速铁路桥梁长度占线路长度的比例远远大于普通铁路,并出现了一些长度大于l0 km、甚至达到上百千米的特长高架桥。标准跨度简支梁一般采用在沿线现场预制梁厂集中预制,并以配套运架设备逐孔架设的施工方法,特殊跨度的连续梁采用原位浇筑的施工方法。通过工程实践,形成了一系列成熟的标准梁制、运、架工艺及相应装备,高质量、高速度地实现了特长桥梁的建造。

3.6900t级整孔简支梁制造运输架设技术

为解决32 m整孔预制箱梁的运架施工问题,国内自主研制了多种形式的450 t级提梁机、900 t级架桥机,900 t级运梁车、900 t级移动模架造桥机等,从建场、制梁、移运、架设等方面摸索出整套制梁技术,具有较好的施工效率、安全性与可靠性。

4结语

不断发展中的中国高速铁路表明,高速铁路在我国还有进一步提高的空间和潜力,这需要充分利用自身优势,促进我国高速铁路的跨越式发展。因此,在未来得一段时间里,不但要持续发展高速铁路,并且要在技术和管理上赶超一些发达国家,从而实现中国铁路现代化。由此可见,高速铁路对中国及其经济发展的重要性,中国高速铁路的发展需要桥梁建设等基础设施的支撑,需要专业技术的不断提高和突破。那么,在我国科研和发展的支持下,在广大施工一线的工人群众的大力支持下,我国发展高速铁路将会有更大的进步,前景也将会一片光明。

参考文献:

铁道桥梁工程论文例5

中图分类号:F426.91 文献标识码:A 文章编号:1009-914X(2015)44-0313-01

0 引言

随着城市化近程的发展,城市交通行业的发展,尤其是道路工程目前的形式可以说是蒸蒸日上。城市中也出现越来越多的地铁隧道,其中不乏有一些穿越桥梁桩基的地铁隧道。然而,已经有的桥梁桩基与新建的地铁隧道并不是没有交集,相反,二者之间存在着错综复杂的关系,目前国内钻地铁隧道的方法往往为盾构法,本文将以西北地区以陕西省为核心的典型带及其周边地区为例研究当地地铁隧道与既有桥梁桩基的关系,并设计一些方案来保护桥梁桩基,为该工程提供一些有价值的建议。

1 工程概况

陕西省位于中国的西北地区,居住人口居多。陕西根据其地质情况可以分为四个大部分。即黄土高原、沙漠高原、段陷盆地和秦巴盆地。其岩石组成主要为湿陷性土层,砂土层,亚粘土和沙砾层。除了独特的地质条件以外,陕北地区处于特殊的黄土层中,黄土的主要成分是粉土,粉土的含量超过了百分之五十。同时,黄土中包含了多达六十多种矿物成分,包括中矿物、轻矿物和胶体矿物,在施工时这些都将予以考虑。

2 设计方案

由于地铁隧道和桥梁桩基以及地质的特殊情况,应该保证地铁的两侧外部轮廓,也就是两侧边缘的线应该不小于8米。因此,具体设计如下:两侧外部轮廓之间的线设计为9到15米,两侧外轮廓与各个桩基之间的差距定于3.0到5.0米。地铁隧道的方法不作改变,依旧选择传统的盾构法对地铁隧道进行施工,左边在前,右侧在后。

换桩方式设计的方面,在传统上,我们常用围绕桥桩去打新的桥桩的方式去保证原有桥桩的强度与结构,这种古老的方式具有着清晰的目的,即让新打的桥桩去代替旧的桥桩去承受上部的载荷,保证桥的安全。但是此方案并不适合这个工程,原因是这个工程在施工时桥下存在较厚的回填土层,该土层承受载荷的能力较差,同时地处交通繁忙区域,要求的围挡工期很紧张。如果用单一桥桩分别施工,难度大,工期长。另外,桥距离地面的高度普遍不高,大部分情况下桥下净空不超过五米,在技术上要求高,打桩难度太大,因此,需要用创新的方式去解决保证桥梁强度的问题。在这里我们决定用连环计的方式,把单个桩基替换为一个整体,用整体一个基础去承托桥梁,保证安全性。这种方法有利有弊,好处是所有的桩基变成一部分之后,大家共同受到上部载荷。但是缺点也同样明显,这种整体吃大锅饭的形式并不如分别托桩受力分工清晰。但由于这个劣势带来的只是部分的影响,而这些部分只要具有动态化,即把这个整体设置为可动的装置,即可以降低盾构对桥梁的影响。

3 演算工程所需的参数

在模拟过程中,设定盾构机以八米每秒的速度进行工作,土层的压力假定为0.40兆帕,隧道部分的厚度为0.20米,注浆压力为0.35兆帕。因为该工程整体比较大,桥的纵向长度超过了一百米,所以盾构机使用的管片长度应保持在两米以内,以方便工程上的进尺。同时,该工程如果按实际来操作的话,存在着计算量过大,容易出现多种误差的可能性。因此,根据盾构机的工作速度,我们只要保证误差控制在要求范围内即可。

桥梁的桩基方面,应采用PILE单元,侧端面应保证KT0.03GPA,Kn1.2MPA,端界面要保证KT与KN均为1.0GPA,承台方面应选SHELL单元,考虑桥梁与桥桩关系的方面时,应用BEAM单元进行同时的状态参考,用实体来模拟隧道管片等实体装置。根据沙涌桥的实际结构,承载的顶部载荷应该用5100KN。为方便计算,采用以下公式:桥桩的弹性模量与桥桩面积的乘积等于混凝土弹性模量与混凝土面积的乘积,还等于钢筋弹性模量与面积的乘积。根据实际情况采用有限元法进行计算,根据自建的模型,我们把这个工程的模型划分为42576个单元,其中单元与单元之间共有78245个节点。下表为使用材料的参数。

4 计算结果分析

盾构机方面,盾构机的挖掘会引起地下土层的损失,在模拟方案中,如果我们选择不注浆,此种情况下最大的损失与沉降发生于两侧轮廓线的中间位置,整体呈正态分布,极值为24.1毫米,沉降区域的宽度为45米左右,如果选择部分注浆或者不注浆,沉降极值类似,均在18毫米左右,降低了接近百分之五十。但宽度同样变窄。同时盾构开挖还有其他的影响,会影响到地层,会形成部分收敛。

使隧道发生斜度的倾斜,同时强度与挠度也受到了影响,该情况同样需要分为浇注与不浇注分开讨论。当讨论到浇注情况时,水平方面的平移长度为11.2毫米,而半浇注情况时,平移的极值为8.9毫米,降低了大约百分之十,全浇注时,桩身移动的极值为4.9毫米,降低了大约百分之四十五。经过进一步的讨论我们可以得出,浇注的优势在于增加了桥梁的刚度和挠度,降低了桩部的挠度变形,而竖直方向两端的平移数值几乎为零。顶端和地步都会受到地表土层和上部桥梁的影响。

5 结论

通过应用有限元法对桥梁进行计算与分析,以及对地铁隧道和桥梁的数值模拟,如下结论。首先局部注浆确实能够大大地提高强度及刚度,但是工程耗费较大,工期长,造价比较高,不是特别实用。局部注浆在能够保证误差范围的前提下,可以保证安全情况,具备经济与省时的特点。同时整体打新桩法具有独特创新的作用,可以在今后的工程中推广使用。

参考文献

[1] 钟涛.浅埋暗挖法地铁施工对地表及邻近建筑物影响研究[D].辽宁工程技术大学,2012.

铁道桥梁工程论文例6

中图分类号:U24 文献标识码:A 文章编号:1672-3791(2017)04(b)-0072-02

国内外高速铁路桥梁主要采用简支梁结构,其中预应力混凝土简支梁具有受力明确、构造简单、耐久性好、施工便捷等优点,是高速铁路桥梁的主要结构形式。

1 高速铁路桥梁概况

截止2014年底,我国高速铁路运营里程超过16 000 km,“四纵”干线基本成型,约占世界高速铁路运营里程的50%,已拥有全世界规模最大、运营速度最高的高速铁路网。

我国高速铁路多采取“以桥代路”策略,各条高速铁路桥梁所占比例均较高,其中以跨度32 m预应力混凝土简支箱梁桥为主,部分采用跨度24 m简支箱梁,少量采用跨度40、44、56 m简支箱梁。跨度32 m及以下箱梁主要采用沿线设制梁场集中预制、架桥机架设的方法施工,跨度32 m以上简支箱梁主要采用现场浇筑或节段拼装的方法施工。

我国高速铁路桥梁里程占线路里程的比例最高达82%,其中常用跨度混凝土简支箱梁桥占桥梁总里程的比例基本在80%以上,最高达96%。桥梁技术的发展和进步成为我国高速铁路建设工程中的重大技术突破,并形成了我国自有的技术标准体系。随着高速铁路建设的发展,桥梁设计理论和建设技术也在逐步完善和发展,其中基于预制架设施工模式的大跨度预应力混凝土简支箱梁就是其中重要发展方向之一。

我国高速铁路建设规模大,桥梁数量多,设计、施工技术成熟,并依托联调联试工作积累了丰富的试验数据,对于高速铁路桥梁的建设和发展也积累了充足的技术储备。根据近年来高速铁路常用跨度预应力混凝土简支梁的设计和试验研究成果,我们对简支梁的设计理论有了更为深刻的认R,为高速铁路(时速250 km及以上)大跨度预应力混凝土简支梁的进一步发展打下了基础。

高速铁路跨越河流、沟谷的高墩桥梁以及软基沉陷地区的深基础桥梁,下部结构造价在桥梁建设费用中的比重较大,大量使用跨度32 m简支梁时经济性较差;跨度>32 m时若只能采用原位浇筑的简支梁桥或者连续梁、连续刚构桥,经济性也较差,且质量不易控制。发展跨度40 m及以上预应力混凝土简支梁,并采用集中预制、运梁车移运、架桥机架设的施工模式,将显著提高桥梁的经济性。我国高速铁路发展跨度40 m及以上、采用预制架设施工模式的预应力混凝土简支梁技术,不但能够提高简支梁桥的跨越能力,还能够扩大简支梁桥的适用范围,并具有一定的技术、经济优势。

2 既有高速铁路简支梁设计与使用情况

2.1 设计参数及控制指标

对于我国高速铁路用量最大的跨度32 m预应力混凝土简支箱梁,高速铁路运营活载静态效应(动车组)约为设计活载静效应的35%~40%,桥梁结构设计控制指标已由强度变为刚度。桥梁结构的变形和变位限值主要是为保证桥上轨道结构受力安全性和稳定性,同时满足列车高速运行条件下行车安全及乘车舒适的要求。根据现行规范,高速铁路桥梁刚度设计参数应满足如下要求。

2.1.1 梁端转角

对于采用无砟轨道的桥梁,由于梁端竖向转角使得梁缝两侧的钢轨支点分别产生钢轨的上拔和下压现象。当上拔力大于钢轨扣件的扣压力时将导致钢轨与下垫板脱开,当垫板所受下压力过大时可能导致垫板产生破坏,对于采用有砟轨道的桥梁,还要保证桥梁接缝部位有砟道床的稳定性。

2.1.2 竖向自振频率限值

研究表明梁体固有频率过低将导致高速列车通过时产生较大振动或共振,频率过高时桥上轨道不平顺引起的车辆动力响应明显增加,因此,对简支梁竖向自振频率提出限值。对于运行车长 24~26 m的动车组、L≤32 m混凝土及预应力混凝土双线简支箱梁,给出了不需要进行车桥耦合动力响应分析的自振频率限值。同时,研究发现对于跨度40 m及以上的简支梁,由于长列荷载的影响,动力荷载产生的突变效应减弱。高速铁路桥梁设计的控制性参数与桥梁跨度有关。研究发现,选取跨度20、24、32及40 m的简支箱梁,每种跨度的简支梁分别选取21种不同尺寸的截面,二期恒载统一按180 kN/m来计算梁体竖向基频,以此研究分析不同刚度设计参数间的关系。根据不同刚度限值对应函数关系。32 m及以下跨度简支梁基频取现行规范中不需要动力检算的下限值,40 m箱梁基频取现行规范中公式计算的下限值,梁端悬出长度按预制架设模式统一取0.55 m,梁端转角限值取1.5×10-3 rad。

综上分析可以看出:(1)梁体竖向刚度满足梁端转角限值或满足基频限值的情况下,挠跨比远小于规范规定的1/1 600,挠跨比不控制梁体设计;(2)跨度32 m及以下的预制简支梁,基频为梁体设计控制指标;(3)跨度40 m预制简支梁,基频和梁端转角的对应关系接近,梁体设计控制指标在基频和梁端转角方面差别较小,可实现箱梁经济性设计。

2.2 实梁设计状况

以我国高速铁路跨度32、40 m预应力混凝土简支箱梁为代表,分析了既有简支梁的设计情况。

2.2.1 跨度32 m简支箱梁

高速铁路有砟、无砟桥面双线箱梁二期恒载设计值分别为 206.5~211.0 kN/m和120.0~180.0 kN/m,受二期恒载影响(不同无砟轨道类型、直曲线及有无声屏障等),同一图号的无砟简支箱梁基频和残余徐变拱度略有差异。对于设计时速350 km高速铁路32 m无砟轨道预应力混凝土双线简支箱梁,预制梁的梁端转角、基频的设计参数与规范参数比值分别为53%,101%~108%,现浇梁相应的两者比值分别为70%和106%~114% 。

2.2.2 跨度40 m简支箱梁

时速350 km高速铁路无砟轨道后张法预应力混凝土双线简支箱梁,计算跨度为39.1 m,施工方法为原位现浇,截面中心梁高为3.75 m,桥面宽度为12.0 m,质量1 130 t。对于设计时速350 km高速铁路跨度40 m无砟轨道预应力混凝土双线简支箱梁,梁端转角、基频的设计参数与规范限值的比值分别为62%和139%。

2.2.3 对比分析

(1)高速铁路各种箱梁的挠跨比设计值远小于规范规定的限值;(2)跨度32 m箱梁的竖向基频设计值稍大于规范规定的基频限值,梁端转角富余度较高,基频限值控制箱梁的设计;(3)跨度40 m梁与跨度32 m梁的梁端转角设计值与规范限值的比值基本相当,40 m梁基频设计值与规范限值的比值大于32 m梁的相应比值,跨度40 m梁的竖向基频有较大优化空间。

2.3 实梁测试结果

将高速铁路常用跨度简支梁设计情况和实测结果对比可知:(1)挠跨比不是梁体设计控制指标,跨度32 m以下的简支梁的设计参数由基频控制,跨度40 m的简支梁基频和梁端转角的影响接近;(2)高速铁路各种箱梁的挠跨比设计值小于规范规定的限值。跨度32 m箱梁竖向基频设计值稍大于规范规定的基频限值,跨度40 m箱梁基频设计值与规范限值的差别较大,有较大的优化空间;(3)从设计和运营指标测试结果来看,我国高速铁路发展跨度40 m及以上的预应力混凝土简支箱梁技术可行(如图1)。

3 研究结论

根据高速铁路预制后张法预应力混凝土大跨度简支梁技术可行性和经济性对比分析研究结果,得出结论如下:(1)高速铁路跨度40 m简支梁的设计控制指标已从跨度32 m简支梁的刚度(基频) 控制转变为强度和刚度(基频、梁端转角)共同控制;(2)跨度40 m预制简支梁的梁高设计可以控制在3.1 m左右,单孔梁质量可以控制在1 000 t以内。该梁高与既有跨度32 m简支梁的梁高接近,便于桥梁跨度布置及美观设计;(3)无论是研制新的运架设备还是对既有的运架设备进行改造,均可满足跨度40 m预制简支梁的制、运、架施工要求;(4)高速F路跨度40 m的预制简支梁桥,在墩高10 m左右的常规地段综合造价与跨度32 m简支梁桥相比具有一定经济优势,在高墩、深基础等下部结构费用较高的地段综合造价与跨度32 m简支梁桥相比经济优势增加;(5)采用跨度40 m预制简支梁桥,可提高桥梁的跨越能力、增加桥跨布置的适应性、减少墩台基础的数量、扩大简支梁桥的适用范围,并可减少施工作业班次、提高生产效率,工程建设实际意义显著。

铁道桥梁工程论文例7

      目前我国城市轨道交通建设还处于起步阶段,由于缺少相应的建设标准,因此在工程设计中往往套用其他相近行业(如铁路) 的设计标准[ 1 ] 。但城市轨道交通有其自身的特点,这些标准的适用性是值得探讨的,因此,有必要建立使用城市轨道交通的技术标准,而轨道交通的安全性和乘客乘坐的舒适性(即列车的走行性) 是建立这些标准的出发点。

      由于技术原因,我国铁路技术标准的制定,很大程度上以静力分析为主,所必须考虑的动力学问题往往也变换成一般的静力形式。目前我国的铁路设计技术标准已经难以适应提速、高速列车开行和新结构设计的需要。对此,许多学者正在进行标准铁路和高速铁路列车动力学的研究,试图通过有效的研究,为铁路设计提供更为科学的技术支持[ 2~5 ] 。学者们的工作取得了成效,对轨道交通的发展起到了积极的作用。但是,这些研究各有特定的方法对象,难以对制定城市轨道交通结构的技术标准提供进一步的依据。因此,针对城市轨道交通工程中急需解决的实际问题,进行城市交通列车走行性研究是十分必要的。

1  模型的建立

      由于列车、轨道、桥梁结构动力问题的空间特性,如平曲线、竖曲线、曲线桥梁等,以二维的方法(参见文献[ 2~4 ]) 进行研究有其局限性;因此在建立列车、轨道和桥梁模型时,应该采用三维空间模型。据此, 本文分别建立了每一辆车具有23 个自由度的车辆模型,桥梁则用每节点具有6 个自由度的有限元模拟[ 6 ] ,同时在考虑车桥耦合振动时,引进蠕滑理论[ 7 ] 以更好地反映轮轨之间的相互作用。

1. 1  车辆模型

      由于列车运行的空间特性,本文在建立车辆计算模型时采用了轨道随动坐标系,因此在计算列车通过平曲线、竖曲线时,其质量矩阵、刚度矩阵、阻尼矩阵可以采用固定形式,而只需对外力向量进行修正,最后将不同情况下的附加外力向量进行迭加。一般情况下,用矩阵表示的列车动力平衡方程为

mvδv + cvδv + kvδv = fv

式中: mv 为车辆质量矩阵; cv 为车辆阻尼矩阵; kv 为车辆刚度矩阵;δv 为车辆位移列向量;δv 为车辆速度列向量;δv 为车辆加速度列向量; fv 为车辆外力列向量。

1. 2  桥梁模型

      本文在建立桥梁模型时采用的是系统整体坐标系。用矩阵表示的桥梁动力平衡方程为

mbδb + cbδb + kbδb = fb

式中: mb 为桥梁质量矩阵; cb 为桥梁阻尼矩阵; kb 为桥梁刚度矩阵;δb 为桥梁位移列向量;δb 为桥梁速度列向量;δb 为桥梁加速度列向量; fb 为桥梁外力列向量。

1. 3  轮轨关系

      本文采用了kalker 的线性蠕滑理论, 并作了如下假定: ① 轮轨接触几何关系为非线性; ② 计及线路不平顺; ③ 计及缓和曲线上曲率及超高的变化; ④ 不计车辆产生轮缘接触等大蠕滑现象; ⑤ 蠕滑规律以及悬挂元件是线性的; ⑥ 不计自旋蠕滑所产生的蠕滑力; ⑦ 不计钢轨的弹性及阻尼。

在竖向, 假定车轮始终密贴于钢轨, 即轮轨之间在竖向通过位移联系。而在横向, 由于轮轨之间存在间隙, 只能通过力来联系。其中蠕滑力由蠕滑理论求得。

1. 4  列车通过曲线桥梁时坐标系的采用

      当桥梁位于线路上曲线区段时, 通常以多跨简支直线梁组成的折线梁段来实现, 如图1 所示。以前分析列车通过曲线桥梁采用2 种方法:一为只采用曲线正交随动坐标系, 二为采用系统整体坐标系[8 ] 。本文在考虑列车曲线通过时, 对列车部分采用轨道随动坐标系, 桥梁部分使用系统整体坐标系, 两个系统间的动力学和运动学量值通过坐标转换矩阵实现。这种方法可以使分析分别在简单的系统中进行, 同时其转换的实现方式是标准的。

1. 5  动力平衡方程解法

      车辆、桥梁动力平衡方程都是大型动力微分方程组。求解这类问题, 一般采用直接数值积分方法。本文即采用了常用的wilson -θ法。

2  程序的实现

      用visual c + + 6. 0 开发了城市轨道交通列车走行性研究系统rtv 。本程序主要包括4 类:cbridge(桥梁类) 、cvehicle(车辆类) 、ctrain(列车类) 、ctrack(轨道类) 。另外利用其可视化的特点,制作了良好的界面,如图2 所示。

3  走行性分析

3. 1  平曲线中缓和曲线长度对列车走行的影响

      平曲线中缓和曲线的长度对列车走行的影响主要有: ① 通过缓和曲线时, 因内外轨不在同一平面上, 而使前轮内侧减载, 在横向力作用下, 可能发生脱轨事故, 因而要对外轨超高顺坡值加以限制; ② 通过缓和曲线时, 外轮在外轨上逐渐升高, 其时变率应不致影响旅客舒适; ③ 旅客列车通过缓和曲线, 未被平衡的离心加速度逐渐增加, 其时变率应不致影响旅客舒适。按上述3 个条件推导的公式[9 ] 计算, 在城市轨道交通中,400 m 半径曲线所需最短缓和曲线51 m ;800 m 半径曲线所需最短缓和曲线26 m 。

 

 

图1  曲线轨道折线梁及桥墩布置平面图

图2  双线对开

图3 ~ 6 为r= 400 m 时由自编程序rtv 进行计算得到的结果(车辆参数取自地铁1 号线,下同) 。由此可见,随着缓和曲线长度的增加,列车通过平曲线时的性能,包括安全、横向舒适、竖向舒适会得到很大的改善。同时可以看出:30 m 缓和曲线对800 m 半径曲线及60 m 缓和曲线对400 m 半径曲线已能满足要求。

 

 

图3 r= 400 m 时缓和曲线长度与横向斯佩林指标的关系 图4r= 400 m 时缓和曲线长度与竖向斯佩林指标的关系

 

 

图5 r= 400 m 时缓和曲线长度与横向蠕滑力关系  图6 r= 400 m 时缓和曲线长度与脱轨系数的关系

      经过理论分析和自编程序计算可以看出:在城市轨道交通中缓和曲线长度可以比标准铁路适当减小, 标准铁路缓和曲线长度的规定见文献[ 9 ] 。本文建议400 m 半径曲线最小缓和曲线长可取60 m ;800 m 半径曲线最小缓和曲线长可取30 m 。

3. 2  竖曲线半径大小对列车走行的影响

      设定竖曲线半径大小应考虑2 个因素: ① 列车通过竖曲线时, 会产生的竖直离心加速度; ② 列车通过凸形竖曲线时, 产生向上的竖直离心力, 上浮车辆在横向力作用下容易产生脱轨事故。按这2 个条件推导的公式[8 ] 计算, 在城市轨道交通中, 所需竖曲线半径为1 646 m 。

      图7 、图8 为由自编程序计算得到的结果:分别计算了半径大小分别为5 000 m 、3 000 m 、2 000 m 、1 000 m、500 m 、300 m 时的情况。可见,随着曲线半径的增大,列车通过性能会得到很大的改善。另外,由图可见, 2 000 ~ 3 000 m 半径竖曲线对行车舒适、安全已能满足要求。

经过理论分析和自编程序计算, 本文推荐最小竖曲线半径可取2 000 ~ 3 000 m 。

3.3  列车通过直线桥梁走行性分析

      轨道交通明珠线大部分采用跨径30 m 左右的预应力混凝土单箱双室梁,截面特性为:a = 5.3 m2 ,ix = 2.63 m4 ,iy =2.26 m4 ,iz =21.1 m4 ,e =3.5 ×1010 n/ m2 ,g =1.5 ×1010 n/ m2 ,γ =2.5 ×103 kg/ m3 ,轨道中心线离桥梁中心线的距离b = 2 m ,桥梁质心离轨顶面的高度h = 1 m 。

 

 

图7  v = 80 km/ h 竖曲线半径与竖向斯佩林指标的关系

图8  v = 80 km/ h 竖曲线半径与轴重减载率的关系

3. 3. 1  基础不均匀沉降对列车走行的影响

      本文选用6 跨32 m 桥梁进行研究,隔桥墩沉降量相同。rtv 程序计算结果表明:单线通过桥梁时,随着基础沉降的增加,某些桥梁跨中竖向挠度和冲击系数要减小,某些桥梁跨中竖向挠度和冲击系数要增加;双线对开通过桥梁时,随着基础沉降的增加,所有桥梁的跨中竖向挠度和冲击系数都要增加;不论单线还是双线,随着基础沉降的增加,列车的竖向振动都要加剧。

3. 3. 2  桥梁徐变对列车走行的影响

      本文取6 跨32 m 桥梁进行计算。假设桥梁各跨徐变大小相同,各跨桥梁徐变线型为抛物线。计算结果表明:无论单线还是双线通过桥梁时,随着桥梁徐变的增加,所有桥梁的跨中竖向挠度和冲击系数要减小,而随着桥梁徐变的增加,列车的竖向振动有加剧趋势。

3. 3. 3  列车通过直线桥梁计算结果

① 列车静力通过直线桥梁竖向挠度单线为4. 34 mm , 双线为8. 23 mm 。单线动力过桥,竖向挠度最大为4. 432 mm ; 双线动力过桥,竖向挠度最大为8. 626 mm 。挠跨比1/3 710 符合现有规范1/ 800 的要求。

② 单线过桥冲击系数最大为1. 021 , 双线对开冲击系数最大为1. 048 。

③ 列车通过直线桥梁,横向振幅最大为0. 041 mm , 远小于规范的要求。

3. 4  列车通过多跨简支曲线轨道折线梁走行性分析

      把6 ×32 m 跨度的桥梁布置在曲率半径分别为400 、600 、800 m 的曲线圆弧段上进行分析。经计算,得出以下结论:

① 当列车在曲线轨道折线梁上运行时,列车横向振动响应,如横向舒适度指标、横向蠕滑力、脱轨系数等一般均比在直线梁上运行时要大。

② 由桥梁跨中横向振动位移时程曲线(见图9) 可以看出,曲线轨道折线梁的跨中横向振动位移波形相对平衡位置有一定偏心,而列车通过直线桥时,桥梁跨中则是在平衡位置附近作来回振动。

 

图9  r=400 m , 双线, v= 80 km/ h 通过桥梁跨中横向位移

③ 随着平曲线半径的减小,桥梁的横向振幅要增大。

④ 明珠线曲线轨道折线梁具有足够的横向刚度,车桥最大振动响应在规定的行车安全、舒适的控制指标以内。列车最大横向舒适度指标2. 756 接近我国机车平稳性评定标准优良2. 75 ; 最大脱轨系数0. 455 小于我国规定的容许限值1. 0 ; 桥梁横向振幅最大为0. 158 mm 。

4  结论与建议

1. 上海轨道交通明珠线的设计是安全的,桥梁的竖向、特别是横向刚度足够大。建议今后在设计城市轨道交通桥梁时考虑这方面的因素,根据动力分析的结果确定桥梁的横截面,以达到较为经济的目的。

2. 为保证旅客乘坐的舒适性,控制缓和曲线的长度是必要的。本文建议平曲线半径为400 m 时,缓和曲线长度不宜小于60 m ; 平曲线半径为800 m 时,缓和曲线长度不宜小于30 m 。

3. 在竖向曲线坡度的选用上,列车的安全性和平稳性不是控制因素。建议竖曲线半径取2~3 km 。

4. 由于桥梁截面较大、列车运行速度较低等原因,基础沉降、桥梁徐变的影响总体上不是太大[ 10 ] 。

参考文献:

[1] 孙 章. 加快发展以轨道交通为骨干的城市公共交通[j ] . 城市轨道交通研究,1998 (2) :3~5.

[2] 张 弥,夏 禾,冯爱军. 轻轨列车和高架桥梁系统得动力响应分析[j ] . 北方交通大学学报,1994 ,18(1) :1~8.

[3] 吴 迅,李新国,胡 文. 列车过桥竖向振动模型试验研究及其程序验证[j ] . 上海铁道大学学报,1997 ,18(4) :37 ~44.

[4] 朱东生,田 琪. 高速铁路车桥系统横向振动研究[j ] . 兰州铁道学院学报,1997 ,16(3):1~6.

[5] 王 刚. 高速铁路三塔斜拉桥车桥动力分析[j ] . 上海铁道大学学报,1999 ,20(10) :11~15.

[6] 张玉良,匡文起. 结构矩阵分析[m] . 沈阳:辽宁科学技术出版社,1987. 286~288.

[7] 王福天. 车辆系统动力学[m] . 北京:中国铁道出版社,1994.

铁道桥梁工程论文例8

1 概述

1.1 线路地理位置及径路

海青铁路位于山东省胶东半岛与内陆地区咽喉地带,途径潍坊市下辖的昌邑市、高密市,青岛市下辖的平度市、胶州市四个县级市。线路北起德龙烟铁路大莱龙段的海天站,南接胶济线的芝兰庄站。呈南北向,线路全长约90.3km。北端通过德龙烟铁路和黄大线沟通了京津塘地区;南端通过胶济线连通了青岛地区;通过胶黄线和青日连线沟通了黄岛港和南部沿海地区,形成一条贯通南北的沿海大通道,促进沿线地方经济发展。

1.2 主要技术标准

1.2.1 海青铁路

铁路等级:I级;正线数目:单线;最小曲线半径:一般3500m,困难2800m;限制坡度:6‰;牵引种类:电力牵引;机车类型:货运 HXD1,客运 SS9;牵引质量:5000t;到发线有效长度:1050m;闭塞方式:自动站间闭塞。

1.2.2 胶济客专

铁路等级:客专;正线数目:双线;最小曲线半径:一般2800m,困难2200m;限制坡度:12‰,局部20‰;牵引种类:电力牵引;机车类型:动车组;牵引质量:1000t;到发线有效长度:700m;闭塞方式:自动闭塞。

1.3 铁路交叉规定

随着大规模铁路建设的深入推进,铁路工程线路交叉跨越现象不断增多。为解决好客货共线铁路与高速铁路之间的跨越关系,确保高速铁路列车安全运行,铁道部于2010年下发了《关于铁路工程设计线路交叉跨越有关规定的通知》(铁建设[2010]146号),要求对在建项目和已经批复初步设计项目进行认真核查和整改。

铁建设[2010]146号的规定交叉时按照“较高速铁路上跨较低速铁路、客运铁路上跨货运铁路(含客货共线铁路)”的原则,同时与已建高速铁路交叉时,应选择已建铁路桥梁地段的较高桥墩、较大桥跨处下穿方案。

2 交叉方案研究

铁道部、山东省于2010年6月8日联合下发了《关于新建海天至青岛铁路初步设计的批复》,批复的线路方案为海青线在DK80+806处与胶济客专(K75+811)交叉,交叉方式为海青线采用32m简支T梁上跨胶济客专。

胶济客专为双线电气化铁路,设计速度200km/h,目前局部地段最高时速250km/h,线间距为5m。海青线与胶济客专K75+811.3交叉,法线夹角为28°,交叉处胶济客专为路基,填土高度约2m。2010年按照铁道部铁建设[2010]146号和鉴综电[2010]455号文件规定,对胶济客专交叉变更方案做了进一步的研究。

2.1 海青线下穿胶济客专方案

铁建设[2010]146号的规定交叉时应选择已建铁路桥梁地段的较高桥墩、较大桥跨处下穿。本次对胶济客专既有桥梁情况进行了梳理:

海青线与胶济客专交叉点距离胶济线接轨站直线距离仅有8km。本段胶济客专与济青高速走向基本一致,最近处距离仅有400m,K64+700处为同三高速,K68+600处为S219,K81+800向西进入高密城区规划,K85+200向西进入高密是城区,区域内有多条超高压电力线路,其中在建660kV超高压电力线路呈南北向,2条500kV超高压电力线路,基本呈南北向,在王庸路#2中桥附近折向东。综合考虑胶济客专轨面标高、济青高速的路面标高、交通网、区域的城市规划等因素,选择胶济客专K65+000~K85+000段进行重点研究。

经梳理胶济客专K65+000~K85+000段胶济客专既有桥梁共11座,详细资料详见表1。

既有胶济客专除跨大河外的桥梁的孔跨数较少,基本都是1或者2孔,且净空不高,如果利用既有桥梁下穿,受桥梁结构高度的影响下挖深度要比采用框架桥下挖深度大,同时需要改移公路并为公路新顶进涵洞,不如在胶济客专的路基地段为海青线新顶进框架桥,可以减少下挖的深度和改移公路的长度。

因此变更设计方案补充研究了在胶济客专路基地段新顶进框架桥的方式,原位下穿方案、东移改线下穿方案和西移改线下穿方案。

2.1.1 原位下穿方案

平面位置和原设计方案一致,下穿胶济客专处为填土路基,采用1-7m框架桥顶进,需要下挖约8.5m。高密东站填土高度需要抬高0.8m,路堑长约1.9km,最大挖深10.6m,挖深大于5m地段和公路上跨地段设计采取明洞,挖深小于5m地段设计采取U型槽,上方设置雨棚。在最低处设置排水泵站2座。

另外,本段采取下穿后截断了多处道路,本方案下挖地段考虑4条村村通道路采用上跨本线方式,其余道路封闭。天然气管道位于U型槽地段,埋置深度不足,需要继续改移并设置防护函。

2.1.2 东移改线下穿方案

向东改线,选择胶济客专填土高度较高地段进行穿越,交叉处采用1-12m框架桥顶进,交叉处路基填土高度约9.5m,需要下挖约1m,采用顶进法施工。其他挖方地段按照路堑进行防护处理。高密东站需要向海天方向前移4.7km,高密东站至芝兰庄站间需要增加1个车站。

另外,本段采取下穿后截断了多处道路,本方案考虑3条村村通道路采用上跨本线方式,其余道路封闭。胶济客专与济青高速间有一条东西方向的天然气管道天然气管道位于挖方地段,埋置深度不足,需要继续改移并设置防护函。

2.1.3 西移改线下穿方案

向西改线,选择胶济客专填土高度较高地段进行穿越,交叉处采用1-7m框架桥顶进,交叉处胶济客专路基填土高度约6.5m,需要下挖约4m,采用顶进法施工。其他地段设置U型槽,上方设置雨棚。在最低处设置排水泵站2座。

该方案在DIIK82+150处与在建的660kV超高压电力线路交叉,目前该段电力线路已经基本施工完毕,为山东省重点工程,净空不能满足电气化铁路要求,需要协调抬高电力线路。

另外,本段采取下穿后截断了多处道路,本方案下挖地段考虑4条村村通道路采用上跨本线方式,其余道路封闭。

2.1.4 方案分析(见表2)

通过综合分析,海青线下穿胶济客专方案虽然运营期间胶济客专比较安全,但施工期间对胶济客专安全影响较大,尤其西移改线下穿方案和原位下穿方案中交叉处的地下水位较高,下挖深度较深,施工期间全部需要大量降水,将会引起既有胶济客专路基沉降,同时暴雨或者洪水时下穿地段有被淹没的危险。

2.2 海青线上跨胶济客专方案

因下穿方案无论施工还是运营期间都存在较多问题和安全隐患,经与铁道部沟通后,补充研究采用连续梁上跨转体施工方案。

2.2.1 上跨安全隐患分析

①列车桥上脱轨

本桥设置了双侧护轮轨,当列车脱轨后,护轮轨起到限制落在基本轨内侧的车轮继续横移,使列车在敏感区间不翻车的作用。在保证桥梁施工质量和不发生大的自然灾害使桥梁发生破坏的前提下,通过桥梁上设置双侧通长护轮轨,列车发生脱轨后冲出桥梁的可能性可以降至最低。根据实践检验,桥梁上采用老式Ⅲ型桥枕铺设护轮轨,在列车脱轨后可以将列车沿线路引导前行,而不会掉道或冲出桥梁。因此,影响桥下安全的范围内采用老式的桥枕铺设护轮轨。

②桥梁发生断裂或者落梁

公路上跨桥和铁路上跨桥有着很大的不同,汽车超载现象严重,致使公路上跨桥一般很难达到设计的使用年限就损坏需要维修,而铁路中火车一般不会出现超载现象,因此铁路上跨桥只要保证桥梁施工质量的前提下,在桥梁设计使用周期内基本不会发生断裂。另外,在运营期间加强对跨线桥梁的检查和监测,也可以起到较好的预防作用。桥梁两端的支座处采取防落梁措施,只要不发生大的自然灾害基本不会出现落梁。

③桥面道碴掉落

采用连续梁上跨,桥面为一整体,中间没有梁缝,道碴与泄水孔间有挡碴墙相隔,不会出现道碴掉落。

④桥梁外侧人行道板掉落

采用连续梁上跨,人行道与梁体一起整体现浇,不会发生掉落。

⑤货物列车货物掉落、旅客列车乘客扔物体

列车运行时可能存在货物掉落和车窗未封闭列车上的旅客扔物体的可能。为防止物体掉落对桥下客运专线的影响,在影响范围内的桥梁两侧设置防抛物设施,按照半封闭设计。

2.2.2 连续梁的跨度选择

采用连续梁转体施工方案,综合考虑桥梁结构尺寸和施工空间,连续梁跨度可以采用(32+48+32)m和(40+64+

40)m两种尺寸。

根据技术经济比较(40+64+40)m连续梁转体施工方案较(32+48+32)m连续梁转体施工方案投资省约115.41

万元。

2.2.3 施工方法

在海天端中墩处平行于既有铁路线,在支架上立模现浇连续梁中墩墩顶梁段,挂篮浇筑悬臂段施工,待施工到最大悬臂状态后,结合既有线运营、施工要点及天气等因素,择机实施转体施工。将梁体逆时针旋转62度,转体到位后,与转体前已在原位施工完成的青岛端半跨再进行合拢段施工。在转体施工过程中,必须做好安全防护工作,确保施工安全和既有线运营安全。胶济客专铁路右侧海天方桥墩承台施工时,采用钢轨桩及挖孔桩对路基边坡进行防护。其余标准跨度简支梁按照工厂预制,架桥机架设。

3 方案推荐意见

若按照铁建设[2010]146号文件要求采用海青线下穿胶济客专方案,虽然运营期间胶济客专比较安全,但施工期间对胶济客专运营安全影响较大,尤其西移改线下穿方案和原位下穿方案中交叉处的地下水位较高,下挖深度较深,施工期间全部需要大量降水,将会引起既有胶济客专路基沉降。同时建成运营后遇到暴雨时海青线下穿地段有被淹没的危险。海青线下穿胶济客专方案虽然符合铁道部最新文件精神,但是无论施工还是运营期间都存在较多问题和安全隐患。

通过对海青线上跨胶济客专的安全隐患分析可知,海青线采用连续梁上跨胶济并转体施工方案施工期间对胶济客专影响较小,转体在天窗点内即可完成;采取各项安全措施后,运营期间对胶济客专的运营安全也降低至最低。

综述所述,由于下穿方案存在诸多问题,难以实施,而采用连续梁上跨并转体施工方案采取了安全可靠的防护措施,将各项隐患降至最低,能够保证胶济客专的安全运行。因此设计认为海青线采用连续梁上跨并转体施工方案为最优方案,予以推荐。

4 研究结论及建议

海青线采用连续梁上跨胶济客专并转体施工方案最终获得铁道部批复,已经与2012年10月顺利实施转体合拢。目前我国铁路建设里程不断攀升,各种等级的铁路交叉在所难免,新建铁路在可选择跨越形式的情况下,尤其是在按照铁建设[2010]146号文件要求实施困难时,不能搞一刀切,必须严格按照高等级上跨低等级的原则办理,需要从既有线的重要性、区域内地质条件、地形条件和工程的可实时性等多方面进行比选确定,以便使方案更加科学经济合理,更好的服务于国民经济发展。

参考文献:

[1]中华人民共和国铁道部.GB50090-2006铁路线路设计规范[S].北京:中国铁道出版社,2006.

[2]中华人民共和国铁道部.关于铁路工程设计线路交叉跨越有关规定的通知[Z].北京:中华人民共和国铁道部,2010.

铁道桥梁工程论文例9

Abstract: now for the acceleration of railway construction, railway through the tunnels through mountains, through the bridge across the river. With the ascension of economic technology, the quality of the construction of railway Bridges safety standards is also in constant increase, for the safety of railway bridge construction site and quality control, is the need to focus on in the railway engineering projects. This article from the problems existing in the construction site of railway Bridges and railway bridge construction site safety and quality management and control aspects to illustrate.

Key words: Bridges; Construction management; Safety; The quality

中图分类号:U448.13文献标识码:A文章编号:2095-2104(2013)

铁路桥梁施工现场存在的问题

(一)、施工现场的状况

铁路桥梁的施工是整个铁路建设中比较重要的一部分,因为铁路桥梁的建设环境比在平路上铺铁轨要复杂很多,它涉及桥在江河上的构建使铁路能够跨过江河,所以对于铁路桥梁施工现场要进行严格的管理及控制,以保证铁路桥梁的质量与安全。

(二)、铁路桥梁的施工不符合实际

现在的铁路桥梁的施工都是根据前期设计好的图纸进行施工,但是对于铁路桥梁的施工现场是一个实际操作的过程,会出现许多的具体情况需要根据实际解决。铁路桥梁的施工如果没有根据实际出现的问题经行调整的话,就会造成铁路的施工现场出现安全隐患。

铁路桥梁的施工不符合实际有可能是因为在铁路桥梁的施工现场的操作流程没有严格执行标准或者理解的施工方法有误差,都会对铁路桥梁的施工造成人员安全、桥梁质量、桥梁安全上的影响。

(三)、施工队伍素质低

施工队伍的专业素质水平会直接影响到铁路桥梁施工现场的安全和质量的控制。现在有很多的施工人员都是为了生存,从事这些繁重的工程项目体力活,他们并没有进行专业的工程项目培训,不懂也不理解一些专门的铁路桥梁知识,这样对于这种专业性、操作性很强的铁路桥梁进行施工,就会使铁路桥梁建设的现场出现一些不可控制的安全问题,同时对于复杂的铁路桥梁建设也会造成质量上的影响。严格的按照规定进行铁路桥梁建设,才能减少铁路桥梁施工现场的事故,更好地保证铁路桥梁的质量。

、设备危害

铁路桥梁的施工现场都放有大型用于施工的机械设备,所以也要对施工现场的机械设备的安全进行控制和管理,防止设备危害。设备的伤害可以分为设备对人的伤害,因为在施工现场大型的设备都在运转,如果没有按照规定制度在不应该出现人员的地方出现了人员,就会造成施工人员受伤。其次就是人对设备的损坏,没有按照操作就成进行随意的操作,会加速设备的折旧速度,对设备有一定的损坏,影响铁路桥梁建设的质量。

(五)、偷工减料

现在电视上经常报道一些“豆腐渣”桥梁建设,就是因为在建设中的施工材料没有达到这个工程项目的要求,就会缩短桥梁的使用寿命。所以在铁路桥梁的施工现场,要严格控制施工材料,不偷工减料造成铁路桥梁的质量问题。

二、铁路桥梁施工现场的管理及控制

(一)、图纸设计人员参与铁路桥梁施工

对于铁路桥梁的设计图纸与铁路桥梁施工有误差的地方,需要图纸的设计人员参与到其中,以便发现铁路桥梁设计中的问题,及时的根据现在铁路桥梁的施工现场的问题状况解决。图纸的设计人员要详细的对图纸上的施工过程、注意事项等类容进行说明。制定铁路桥梁施工细则,严格的按照铁路桥梁施工细则进行施工处理,这样既可以保证铁路桥梁施工现场的安全,因对施工过程中出现的突发事件,又可以保证铁路桥梁的施工质量。

、对施工队进行专业知识的培训

在进行铁路桥梁项目施工前对施工队伍进行铁路桥梁施工的专业知识培训。首先是要了解铁路桥梁的施工图纸,包括施工现场的地质环境,铁路桥梁的设计结构,经常出现问题的解决方法……制定严格的施工制度,按照施工制度进行施工,保证这些施工人员的安全,只有在熟悉和了解铁路桥梁要如何进行设计的情况下进行施工,能保证铁路桥梁建的设质量。同时施工队伍要招收一些有专业知识的人员在现场指导铁路桥梁施工,更好的进行铁路桥梁施工现场的管理及控制。

(三)制定操作安全制度

不论是人员的伤害,还是设备的损失都是属于铁路桥梁施工中的安全隐患,所以要排除这些安全隐患,需要制定操作制度,严格的按照操作制度进行铁路桥梁的施工,减少施工现场的安全事故。制定的安全制度要包括:设备的规范操作流程、设备使用管理、人员在施工现场的服饰、人员的安全施工……一系列的有关于铁路施工现场的安全制度的制定。光制定制度不严格施行就不会有显著性的效果,除了制定这些制度,在施工之前要组织施工队伍仔细阅读这些铁路桥梁施工现在的安全规定,并且在铁路桥梁现场的施工中,进行严格的监督务必要按照铁路桥梁安全制度操作。在施工现场组织一个专门负责现场施工安全的小组,对铁路桥梁施工现场的安全进行监控,保证施工人员的安全,也保证铁路桥梁的施工质量。只有严格的按照规定进行铁路桥梁建设,才能减少铁路桥梁施工现场的事故,更好地保证铁路桥梁的质量。

(四)、杜绝铁路桥梁建设的偷工减料

在铁路桥梁施工现场对于施工材料的使用,要严格的按照施工的图纸进行施工,在桥梁的设计中需要用多少材料就要实际用多少材料,应该使用什么质量的材料就使用什么质量的材料,对于材料的材质是什么材质的就用什么材质的,这样才能保证铁路桥梁建设出来的质量有保证,不能说是为了压缩成本,就用一些次品的材料来替代或者是减少材料的使用量;也不能因为压缩工期时间,就不按照计划,简单的进行施工,偷工减料经行铁路桥梁建设。这样的做法都会影响铁路桥梁的使用年限,影响铁路桥梁建设的质量。

在国家《建筑法》明确指出:“用于建筑工程的材料、构配件、设备等等,都必须符合设计要求和产品质量标准。”在铁路桥梁的建设中偷工减料不仅仅是对这个工程项目不负责任,对铁路桥梁在使用过程中的使用者不负责任,同时也会触及国家法律层面,所以在铁路桥梁施工现场要严格的控制建设材料的质量,铁路桥梁施工的质量,杜绝铁路桥梁建设的偷工减料。

(五)、材料的验收

对于铁路桥梁建设要加强材料验收工作。材料的质量也会对铁路桥梁建设产生影响,只有对材料进行严格的把关才能确保铁路桥梁建设的质量。不论是钢筋、水泥、石料……都应该有一个质量检测报告,说明这些材料的质地是合格的,除了质量检测报告之外,在材料验收的时候,需要根据报告的内容对材料进行核实,是否符合标准。首先对这些材料进行一个试用,看这些材料能否用于铁路桥梁的建设使用,对于不能通过的材料不应验收,而是要进行退货处理,以保证这些材料是符合质量标准的。这样才能保证在铁路桥梁施工的时候出现材料问题造成的停工问题和纠纷。所以对于铁路桥梁施工管理中加强验收工作是非常有必要的,它能够保证铁路桥梁施工的顺利进行。

三、总结

现在对于铁路建设的速度不断加快,铁路通过隧道穿越高山,通过桥梁穿越江河。随着经济技术的提升,铁路桥梁的修建的质量安全标准也在不断地提高,对于铁路桥梁施工现场的安全与质量的控制,是在铁路工程项目中需要重点关注,这些又包括铁路桥梁建设安全、施工的材料质量、人员操作的安全、设备安全……只有严格的按照规定进行铁路桥梁建设,才能减少铁路桥梁施工现场的事故,更好地保证铁路桥梁的质量。

参考文献:

[1]熊广忠.工程建设监理实用手册[M].北京中国建筑工业出版社.(2012)

[2]苟涌泉.论桥梁工程施工质量管理[J].中国新技术新产品.(2010)

[3]杨志惠.浅谈创精品工程施工质量控制措施[J].福建建设科技.(2007)

铁道桥梁工程论文例10

1.研究概述

1.1国外研究现状

由于国外关于高大桥梁的建设施工进行较早,在上世纪初甚至是在19世纪大量的进行了桥梁施工[1],在经过了长期的施工经验的总结下,形成了以大量的不同型号、不同吨位的建桥机械施工例如各式的运梁机、架桥机等[2]。随着国外机械化程度的发展,国外现在的桥梁施工主要依靠架桥机械进行现代化施工[3]。根据文献参考,使用大量机械施工不但可以节省大量的人力以及物力还可以极大的缩短施工工期[4]。这样的先进经验为我国的桥梁建设提供了大量的宝贵的参考价值。

1.2国内主要研究现状

我国由于在桥梁大规模施工方面开始的时间较晚,近些年来我国才开始大规模的进行机械化桥梁施工[5],所以在具体的一些施工经验上与国外发达国家相比有着一定的不足[6]。随着近些年来我国高速公路热潮的开始,特别是近些年来我国高速公路发展速度加快[7],我国开始对大型施工技术进行了相当多的研究。我国在桥梁施工技术方面的研究特别是简支箱梁预制拼装施工技术方面的研究主要集中在以下几个方面[8]:

(1)简支箱梁施工设备以及施工技术研究。

(2)简支箱梁预制场地以及简支箱梁存梁区域研究。

(3)大型桥梁预制拼装施工组织设计研究。

2.大型桥梁简支箱梁预制拼装结构施工技术研究

2.1高速以及铁路桥梁箱梁预制拼装施工技术要求研究

根据对多年工作经验进行相应的总结并依靠设计文件中对高速以及铁路桥梁的施工要求进行研究。作为我国新型的高速以及铁路大型桥梁应当具有以下几个特点:

(1)桥梁刚度较大,整体性要求较高:由于我国高速列车以及汽车工业的快速发展。对于桥梁的整体性特别是竖向方向的挠度控制要求越来越高。所以根据对近些年来桥梁设计文件的研究,我们可以得到新一代的桥梁施工中关于桥梁的刚度要求要较为严格。

(2)严格限制纵向作用力产生的结构位移,减小无缝线路中的附加压力:由于经过多年工作经验总结,桥梁易受到温度影响以及车辆制动影响等外界因素产生变形。这些变形会影响行车安全性。所以,为了保证桥梁可以安全有效的进行工作必须要保证纵向结构位移。

2.2简支箱梁预制拼装施工存梁区域技术研究

在现代桥梁施工中预制箱梁的存梁区域的选择决定了桥梁施工的主要施工进度以及施工组织设计的编制。所以根据经验,在确定了箱梁的简支预制拼装施工技术后,应当马上选取相应的存梁区域的位置。主要的选取依据根据理论分析以及经验总结有以下几点:

(1)台座数量:由于在施工过程中会受到较大的其他因素影响,例如软土地区施工工期较长,应当尽量设置较多的施工台座。所以施工台座数量直接影响了存量区域的选择。所以在存量区域选择确定之前一定要编制好完整的施工组织计划,科学确定台座数量。

(2)提梁方式以及提梁便道的设计:由于在现在的大型桥梁施工中,大型运梁机可以节省较多的施工时间以及人力成本。所以在考虑存梁区域时应当考虑到提梁方式以及提梁便道的方式。

3.高速公路以及铁路大型桥梁简支箱梁预制拼装施工技术研究

3.1具体施工技术方法研究

由于在上面的研究中我们可以看到对整体刚度的要求较高是预制箱梁预制拼装施工中的施工技术要点。所以根据具体的刚度要求以及整体性要求,在高速公路以及铁路大型桥梁的施工中主要可以采取以下三种具体的施工技术:

(1)制运架梁法。

(2)桁架法现浇。

(3)架桥机桥位制梁。

主要的施工流程为:现场预制箱梁,箱梁运输至架梁位,箱梁架设安装。在施工工序中分别有钢筋绑扎、钢筋笼制作、混凝土浇筑、混凝土养护等一系列工序。在整体施工过程中具体关于决定架梁工期的主要施工工序主要为:灌注箱梁混凝土与箱梁混凝土养护。

3.2具体施工技术要求研究

具体的施工技术方面的研究结果主要集中在具体的施工工艺上。为了保证箱梁预制拼装施工效果满足现代高速桥梁的整体性高、刚度大以及平顺性好的技术要点关于施工过程中应当在以下几个方面予以重视:

(1)冬季施工技术要点要求:冬季施工是指平均气温低于零下3摄氏度的时间连续超过十天。在这段时间内施工时必须要严格参考气候资料。缩短混凝土运输时间,并保证混凝土入模时间不低于10摄氏度。特别是在气温低于零下5摄氏度时,应当马上停止预制箱梁。以免温度过低导致箱梁质量水平降低,难以满足桥梁质量要求。

(2)夏季施工技术要点要求:在昼夜平均气温高于三十摄氏度时,关于箱梁预制拼装施工应当按照夏季施工技术要点进行施工。具体的施工要点有:入模温度不能低于35摄氏度。严格控制混凝土坍落度,保证每50立方混凝土进行一次混凝土坍落度测定。在进行压浆施工时一定要保证浆体温度小于25摄氏度。

(3)施工设备的筛选:高速桥梁预制箱梁简支拼装施工中具体有三种施工技术。三种具体的施工技术可以根据实际情况进行选择或者结合使用。但是,在建设桥梁时,建议在资金较为宽裕的条件下应当尽量选择架桥机施工技术。可以选择地有轮胎式架桥机与900t架桥机。这样的施工技术可以在保证施工质量的同时满足施工进度的具体要求。

4.结论与展望

4.1结论

在进行桥梁施工时特别是在进行箱梁预制拼装施工时,因为要保证桥梁的整体性、平顺度以及刚度要求。所以应当考虑到以下几点施工技术要点:

(1)明确施工目的,保证施工技术,保证桥梁在修建完毕后可以保证良好的整体性特别是竖向的挠度与纵向裂缝的质量控制。

(2)选择合适的存梁区域,根据大机械化施工技术特点的要求,保证存梁区域可以满足施工工期要求。

(3)严格分析施工工艺流程,研究得到了影响施工工期的最主要的施工流程。

(4)为了在保证施工质量的基础上保证施工进度的要求,对于不同季节条件下的施工技术做出了一定的限制。

4.2展望

随着我国近些年来,高速铁路的大量修建,对于高速桥梁的建设特别是关于高速桥梁预制箱梁拼装施工技术的研究会越来越多。本文通过对桥梁施工技术理论研究以及多年工作经验的总结对桥梁的施工技术提出了一定的施工要求技术要求。但是随着社会的发展,今后这方面研究应该更加系统化更加专业化。

【参考文献】

[1]李志义主编.秦沈客运专线施工技术[M].北京:中国铁道出版社,2003.

[2]李怡厚主编.铁路客运专线架梁铺轨施工设备[M]北京中国铁道出版社,2003.

[3]铁建设[2004]157号,京沪高速铁路设计暂行规定.

[4]铁建设函[20051754号,客运专线无碴轨道铁路设计指南.

[5]秦沈指挥部.秦沈客运专线技术总结[MI].北京:中国铁道出版社,2002.