期刊在线咨询服务,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

期刊咨询 杂志订阅 购物车(0)

概念转变教学理论模板(10篇)

时间:2023-07-04 15:54:51

概念转变教学理论

概念转变教学理论例1

然而,研究者发现,如果只强调和采取逻辑和理性思维一~宾特里奇把这种方法称之为“冷酷的概念转变”,学生的已有概念非常难以改变。因为这种方法太过理性化,忽视了学习中的情感(如动机,价值观,兴趣)和社会成分,比如,没考虑到学习环境中其他的参与者(如教师和其他的学生),以及这些参与者是如何影响学习者的概念生态圈,并影响概念转变的。

社会建构主义者和认知学徒观也影响了概念转变理论,这些学习观鼓励学生互相讨论,教师是促进概念转变的一个因素。因此,概念转变不再被认为是只受认知因素的影响。情感、社会和情境因素也能影响概念转变。在培养概念转变的教学或学习环境设计中,所有这些因素必须综合考虑。

二、概念转变的定义、形式和过程

概念转变大致可以定义为改变已有概念的学习,如信仰、观点或思维方式。概念转变一般包括两种形式:(1)丰富,即同化。新概念与原有概念之间基本是一致的,个体很容易理解新概念,并能很快地接纳。新概念补充了原有概念,使原有概念更加完善。这种形式主要通过积累的方式发生。(2)修订,即顺应。新概念与原有概念不一致,产生冲突,需要对原有概念进行分析、判断和权衡,从而建立新的概念。这种转变不是细枝末节的变化,是从本质上对原有概念进行调整和改造。

概念转变是个不断循环的过程,当学习者碰到新旧概念之间不一致的情况时,就会产生一种认知冲突感。这需要学习者对两者进行分析和判断,思考各自的合理性、正确性,并最终对新旧概念做出权衡和调整,从而产生新的概念。

三、概念转变的教学策略和条件支持

一般来说,学习者的已有概念很难转变。因为学习者正是依赖这些既有概念来理解和看待他们周围的世界,他们不会轻易放弃这些概念,而采取一种新思维方式。因此,仅仅呈现一种新的概念或告诉学习者他们的概念是不正确的,这并不能转变他们的概念。概念转变的教学需要运用建构主义方法,使学习者能够积极主动地重新组织他们的知识。认知冲突策略,来源于皮亚杰的建构主义学习观,在概念转变的教学中是一种有效的工具。这种策略需要创建一种环境,在这个环境中,学生关于某个特定现象或主题的既存观点一目了然,然后直接质疑,为的是制造认知冲突或认知失衡。也就是说,学习者必须变得对他们目前的概念不满意,然后接受一种可理解的、似是而非的、有成效的选择性概念。概念转变的教学主要包括两个步骤:一是揭示学生对某个特定主题或现象的先前概念;二是用各种不同的技术帮助学生改变他们的概念框架。

波斯纳等通过研究发现,要实现概念转变,需具备四个条件:(1)对现有概念的质疑,即现有概念不能解释或解决眼前的问题,因此,学习者会重新思考现有概念。(2)新概念的可理解性,即学习者应对新概念建立整体一致的理解,而不仅仅是字面的理解,能够用自己的话说出概念是什么意思。(3)新概念的合理性,即新概念应能与个体所接受的其它概念相一致,如,与自己其它理论或知识、经验、直觉一致等。个体看到新概念的合理性,意味着他相信新概念的真实性。(4)新概念的有效性,即个体认为新概念能解决其它知识概念所难以解决的问题,并能展示出新的方向和新思想,具有启发意义。这意味着个体把新概念看作是解释、解决某问题的更好的途径。概念的可理解性、合理性、有效性之间密切相关,其严格程度逐级上升,对概念的理解是看到概念的合理性的前提,而看到概念的合理性又是意识到其有效性的前提。

四、概念转变教学模式

1.展现学习者的已有概念。概念转变教学的一个基本假设就是“新概念(学习)的建构,只能以既存的概念为基础”。即使已有知识(不管正确与否)允许我们随意看待世界,我们也不能对它毫不在意。因此,概念转变教学的第一步也是最重要的一步就是,让学生意识到他们对某个即将学习的主题或现象的观点。

2.提出并呈现问题。为了引出学习者的概念,教学必须从呈现问题开始。呈现的这个问题必须让学习者运用他们的已有概念来理解。呈现的问题可以是这两种:不知道结果或结果已经知道。在“不知道”的问题中,教师让学习者先预测结果,然后解释他们预测的结果。在“知道”的问题中,学习者不做预测,然而,他们必须解释这个事件。

3.要求学生描述或呈现他们的概念。学习者呈现他们观点的方式有很多。他们可以写下描述、画图表、创建物理模型、画概念地图、设计网页或者把这些方式随意组合,以表明他们对某个特定概念的理解。如果有电脑或合适的软件,学习者还可以用别的呈现方式(用DPT或其他的软件),创建模型或模拟,或者创建概念地图。不管使用何种方法,这一步的目的就是帮助学习者认识并开始澄清他们自身的观点和理解。一旦学习者的概念弄清楚以后,教师就可以把它作为下一步教学的基础。

4.讨论并评价已有概念。这一步的目的就是让学习者通过小组讨论或全班讨论,澄清并修正自身的原有概念。如果这是教师的第一个概念转变学习活动,最好晚一点开始。在学习者以小组的形式互相评价别人的概念之前,教师可以先示范一下这个评价过程。开始,教师请多个学习者进行陈述(概念)。陈述完毕后,教师引导同学逐个评估每个观点的可理解性、合理性和成效性。努斯鲍姆和诺维克认为,教师应该接受所有的观点,不要进行价值判断。教师还应提到每个观点的学生名字,在全班讨论之后,持不同观点的学生组成~组,互相评价观点。每个小组都要选出一个观点(或者通过评价修改后的不同观点),提出选择的基本原理,并把这个原理展现在全班同学面前。允许学习者对自认为最好的观点进行投票,并加以解释,可以增强学习动机。

5.制造概念冲突。学习者通过向其他同学陈述自身的观点,并得到同学的评价,开始意识到他们自己的观点。学习者变得不满意于自身的观点,观点冲突开始建立。认识到他们观点的不足之后,学习者也更易于改变原有观点。要制造更大的冲突,教师就要创造差异性事件。这个差异性事件是学习者用目前的观点无法解释的现象或事件,但用本次教学主题中的观点却可以解释。在这点上,如果没有学生持“正确”观点,教师就应该建议用前一个班某个学生提出的观点。如果在观点转变活动开始之前,教师还不知道学生对某个主题或现象的正确与不正确观点,就不宜提前设置差异性事件。在这些案例当中,教师应该让学生提出决定哪个学生的观点能最好地解释“现存问题”的方法。如果这个科目是科学,学生应该提出一些实验。教师也可以呈现与学生现有观点相冲突的不规则数据,来创建差异性事件。

6.鼓励认知调适。学生应该有对自身概念和目标理论问的不同进行反思和顺应的时间。教师应该把反思活动整合到课程当中,以促进认知协调或重构学生的先前概念。

7.创设合作性学习环境。一个合作性的学习环境对成功的概念转变教学是非常必要的。必须有机会讨论,学生在分享观点、思考和评价其他观点时必须有安全感。这种“安全因素”在教师运用上述认知冲突策略时尤为重要。一项研究表明,低成就感的学生会丧失自信,把冲突看成是另一种失败。

概念转变教学理论例2

【中图分类号】G612

【文献标识码】A

【文章编号】1005-6017(2013)02-0044-04

概念发展在儿童的认知发展中具有非常重大的意义,它为儿童的学习尤其是科学领域的学习奠定了基础。国内外研究者从不同的角度对儿童的概念发展进行了研究,其中,概念转变理论占据了非常重要的地位。该理论认为儿童可通过对原有概念的转变和重建来获得科学概念,因而科学教育要基于幼儿已有的经验与认识基础,这为当代幼儿科学教育及其发展提供了科学依据。本文从概念转变理论的不同视角出发,分析其对当代幼儿科学教育的启示,以期为我国幼儿科学教育的发展和改革提供科学的理论基础。

一、概念转变的内涵

所谓概念转变,即对原有错误概念进行修正和改变。它在个体原有的错误概念和科学概念之间架起一座桥梁,通过教学的催化作用促使学习者的内部概念框架和知识系统重组和建构,以保持学习者知识和概念的动态平衡发展。概念转变蕴含以下观点:

(一)幼儿的头脑不是“白板”,他们有自己的“科学理论”

研究表明,即使是很小的婴儿也已具有对周围世界的理解能力,拥有自己的“理论系统”,他们用这套理论系统来解释和保持对周围事物和现象的看法,幼儿的这种“理论系统”被称为朴素理论(或天真理论)。我们将幼儿在科学学习之前,根据早期日常生活经验或是在幼儿园日常教学情境中形成的对事物或现象的正确或不正确的看法和观念,称之为“前科学概念”,简称为“前概念”。这些朴素的知识系统和概念来自幼儿早期的生活经验,很多是日常概念和科学概念的糅合,它们在幼儿早期的生活中扮演着重要的角色,即使幼儿在进行科学学习后,也依然会继续坚持先前的认识和观点。

然而,由于受到经验的局限,幼儿的朴素认识是零散的,没有形成一个内聚性的思想体系,且又缺乏严谨、科学的表述,因而通常这些“前概念”都是一些“错误概念”。例如,幼儿在生活中常常发现,只要用力推或者拉某个物体,物体便会运动,不对物体施加任何力的话,物体便会保持静止。实际上,没有人为地外力作用,只要满足一定条件物体也会保持运动状态。当然,幼儿的朴素认知不一定全是错误的,有的同样包含着浅显的道理,因而台湾学者使用“迷思”来代替“错误”一词,以肯定幼儿朴素认知和前概念的价值。

(二)幼儿的科学概念不是与生俱来的,而是以经验和前概念为基础自主建构的

随着经验的积累,幼儿会发现,许多客观事实和自然现象与他们自身所拥有的概念系统并不相符,甚至是互相矛盾的。根据Chinn和Brewer的研究,儿童在面对新的与原有概念不同的现象时,可能会出现以下几种反应:第一,忽视、拒绝或排斥新现象;第二,对原有观念做出修正和调整以使其能够解释新现象,或者重新解释新的现象以使其符合原有概念框架,即对原有概念和理论的坚持;第三,修改自己原有概念框架中的核心观点,形成新的概念和理论框架,即进行概念转变。由此可见,幼儿原有的认识和概念在科学概念的建构中起着重要的作用,正是在原先迷思概念的基础上,才进一步实现了向科学概念的转变,促进了概念的发展。因此,幼儿的经验以及由此产生的认知冲突是概念转变的基础。

二、概念转变的不同理论视角

(一)概念转变的认识论视角

Posener等人(1982)从认识论的视角,提出了经典概念转变模型(Conceptual Change Model,简称CCM)。该理论认为,教师弄清楚学生的概念框架比设计一个不符合学生已有概念框架的教学方法更为重要,因为这样有助于引发学生对已有概念的不满意,而学生对先前概念的不满意将会引起巨大的概念转变。经典概念转变模型强调学生自身的认识(Posner et al.1982),其与激进建构主义认识论一致认为,个体的概念及其发展非常重要。如果学习者对已有概念产生了不满意,而可替代旧概念的新概念是可理解的、合理的以及富有成效的,这时新概念将会应运而生。

基于此,Posener指出了概念转变的四个条件:(1)不满意,即发现已有观念是令人不满意的;(2)理解,即新观念是易懂的、连贯的、可理解的;(3)似乎有理,即新观念是能够或很有可能选择的;(4)富有成效,即新观念优于旧观念。Posener等人认为,一个合理的概念首先必须是可理解的,一个富有成效的概念必须是可理解的与合理的。根据Hewson的概念状态理论,学习者所拥有的概念可以分为可理解的、合理的和有效的三个状态,三者的地位依次递增,学习者的概念状态越高,则其发生概念转变的可能性越大。根据Posener的观点,如果满足了概念转变学习的上述四个条件,学习者的迷思概念就会被科学概念所替代或改变,概念转变的结果可能是永久性的,也可能是暂时的,还可能是不易察觉的。

(二)概念转变的本体论视角

有研究运用特定的本体论术语来解释学习者科学概念的发展和变化,以此来强调学习者对现实物体看法的变化。Carey(1985)指出,儿童的某些概念与成人的概念并不相符合,他认为,童年期会有大量的知识重组,Vosniadou将其称之为激进的知识重组,并认为核心“框架理论”的修订同时涉及到认识论和本体论的转变。Chinn和Brewer(1993)将本体论信念描述为“物质世界的基本范畴和本质属性”。

Chi(1992)从本体论的角度分析概念的结构,将概念分为物质、过程、心智状态三个类别。其中,物质是指含有特定属性的东西,如坚硬的石头、液体以及有生命的物体等;过程是指事件的发生,可能是几率问题,也可能是因果关系;心智状态指的是情意部分,如动机或情绪。从本质上来看,物质、过程、心智状态是相互独立的,分属于三个不同类别的本体论。当需要学习的知识与已有知识之间存在共同的属性,即属于同一本体论范畴中,没有跨越本体论类别,这时发生概念改变的可能性就比较大,如“动物”和“植物”能合并成一个新的上位概念“生物”,但是“动物”就不能变成“植物”,Chi等人(1994)将这种发生在同一本体论类别中的概念转换,称为“枝节转移”(branch jumping);当需要学习的知识与已有知识之间没有共同的属性,即属于不同本体论类别之间的转换,比如从“物质”类别转移到“过程”类别,这时发生概念改变就比较困难,Chi等人(1994)将其称之为“主干转移”(tree swapping)。从中可以发现,“枝节转移”较之“主干转移”更加容易实现,而三个不同本体论类别之间概念的转换属于根本的概念改变。Chi指出,学习者在理解和习得科学概念上存在困难,并不是因为这些概念有多么抽象和复杂,而是因为学习者的原有概念与需要学习的概念之间具有不可共量性(incommensurability)。

(三)概念转变的社会、情感视角

从概念转变的角度来看,学习者的兴趣和动机等情感因素在科学教学中非常必要,他们在促进科学概念的转变上发挥着重要的作用。Posener的经典概念转变模型通过指出学习者对先前概念的不满意来映射这个问题,而且模型中指出概念的可理解性、合理性和有效性等三个特征在某种层面上也包含了情感问题。

Pintrich(1993)等人认为,学习者的自我效能感和控制信念,课堂社会背景,以及个体的目标、意图、期待和需要等在概念学习中与认知策略一样重要。同样,Solomon(1987)和Dykstm等人(1992)认为,群体因素(groupfactors)有利于概念的学习。Pintrich等人通过查阅大量文献,进一步强调了兴趣、个人信念和情境信念对学习者参与学习活动的重要性,并认为那些忽视个体和集体学习中社会因素与情感因素的教师可能会限制学生的概念转变。Zembylas(2005)指出必须使认知与情感因素协调一致,因为情感因素不仅是认知结果的调节变量,而且它与认知的地位一样,同样可以促进概念转变。Tyson等人(1997)则强调,概念转变在科学教学中具有很大的价值,而且未来的研究会更加重视情感因素在概念转变及其理论中的重要作用。

(四)概念转变的目的论视角

概念转变理论通常以建构主义的认识论作为基础,认为学习者必须自己建构知识,并且积极地、有目的地去学习。在这种情况下,“概念转变不仅仅依赖于辨别矛盾等认知因素,还依赖于元认知、动机性和情感性过程,他们会受到学习者有意识的控制,因而有可能决定概念的转变”。Pintrieh(2003)等人提出“有目的的概念转变”,具体表现为:学习以概念转变为导向,同时在学习过程中包含学习者内部动机、意志控制、元认知意识与监控以及自我调节等非智力因素的参与。

(五)概念转变的多维视角

Posener在提出经典概念转变模型后认为,只要学习者满足概念转变的四个条件(不满意、理解、似乎有理与富有成效),他们就会放弃原有旧概念而接受新概念,从而实现概念转变。事实上,实践远没有理论研究那样顺利。Matthew Sehneps和Philip Sadler(1986)曾就有关四季产生的原因以及月亮的变化阶段等问题,采访哈佛大学的毕业生、教授还有在校中学生,结果发现,这几类人都对此概念持有错误的观念,而且从他们上学起,这些迷思概念就一直根深蒂固于他们的大脑中。在经过重新学习这些概念后,只有一部分人获得了更准确的理解,还有许多人仍然保留部分错误的信念,有些甚至坚持他们原始的迷思概念。这表明,概念一旦习得,不管是正确的还是错误的,都很难改变或清除。这也促使研究者重新认识到了概念转变的困难,说明概念的转变不仅需要满足上述四个条件,还受到其他更多因素的参与和影响。

于是,在科学教育领域中涌现了许多概念转变的多维视角。Venville和Treagust(1998)综合了概念转变的不同理论视角――Posener等人(1982)的概念转变模型、Vosniadou(1994)的框架理论和心理模型、Chi等人(1994)的本体论观点以及Pintrieh等人(1993)的动机理论――对某所中学的学生在不同情境下学习基因概念的过程进行了研究。结果发现,虽然每种理论视角都可以从不同角度部分地解释课堂中的概念转变,但没有一个理论能够完满地解释课堂中发生的概念转变。

三、概念转变理论对幼儿科学教育的意义

(一)重视幼儿的前概念,引导幼儿实现概念转变

根据概念转变理论,在科学教学中要重视幼儿已有的朴素理论和前概念,把握幼儿认知发展的特点和规律,从幼儿现有的经验水平出发,通过不断地引导和顺应,实现幼儿科学概念的转变和科学知识的建构。由于幼儿的许多朴素认识和前概念是与科学概念相冲突的,根据Posener提出的四种概念转变条件,教师不能一味地纠正他们的错误概念,而应为幼儿创造面对冲突、探索新概念的机会,让他们自己去发现已有经验与现实事实间的矛盾所在。教师不应当急于否定幼儿的错误观点和理论,可以通过为幼儿提供材料的方式鼓励他们探索、观察和记录结果,再引导幼儿与先前的认识作对比。这样,当幼儿看到一个个不符合其理论的事实时,内心的冲突便产生了,于是他们开始审视和反思原有的认识,并寻求新的解释和理论,直到他们找到能够替代原有概念更为合理有效的理论解释,这时便会发生概念转变。

对于幼儿如何获知朴素理论和前概念,教师不仅要善于在与幼儿相处中进行观察和反思,还可以通过访谈、调查等方法,了解幼儿的发展水平,并以此为教育基点和新知识的生长点,引导幼儿顺利进行概念转变,实现知识的建构。

(二)运用幼儿的前概念,引发幼儿进行主动探究

根据概念转变理论,科学教学不应是简单地教授知识和事实,学习者不再被动地接受知识。教学是师幼共同建构概念和知识的过程,而不是传统意义上的“传道授业解惑”。在开发幼儿科学课程时,教师不能仅将重点放在幼儿应当学习与掌握的科学知识和概念上,而应通过提供合适材料和资源,引发、支持和促进幼儿主动探究,使幼儿经历从探究到发现最终达到概念建构和知识重组的一系列学习活动。

在幼儿科学教学过程中,教师首先要根据幼儿的需要制定教学目标、确定教学内容,通过设置问题情境,激发幼儿的学习兴趣和动机,并引发幼儿对事物的原有观点。在活动中,教师还应当积极鼓励幼儿在通过观察、操作来验证自己的观点,从而引起幼儿的认知冲突。

在实践中,教师如果要改变幼儿原有的错误观念,实现概念转变,必须设计清晰、合理的新概念,能够有效地解释新理论框架,并能让幼儿在实际操作与主动探究中了解与感知概念的转变过程。

(三)鉴别幼儿的迷思概念,采取科学有效的教学策略

研究表明,概念转变理论为设计幼儿科学教学策略提供了科学依据,而且概念转变教学通常比传统教学方法更加有效。1989年,德赖弗(Driver)根据概念转变理论提出了导向、引发、重组、应用及回顾五阶段概念转变教学模式。该模式以学生原有的概念和观点为基础,引导学生在实验中验证原有理论在解释和预测自然现象和客观事实上的有效性,通过引起认知冲突激发学生重新审视和修正原有理论框架,并鼓励学生建构符合事实的新概念和知识,从而实现概念转变。为了瓦解学生原有的迷思概念,Julia Gooding和Bill Metz(2011)认为,教师必须先鉴别这些迷思概念,并给学生提供一个面对这些迷思概念的机会,然后基于科学模型帮助学生重新建构和内化他们的知识。

在幼儿科学教育中,教师在克服幼儿迷思概念时可采取以下策略:第一,预测容易使幼儿产生迷思概念的材料,并对幼儿提出警示;第二,鼓励幼儿通过与同伴讨论实验现象和结果来检测、反思和调整其原有概念框架;第三,思考如何用演示法和实验法来解释幼儿常见迷思概念;第四,经常引导幼儿复习和反思常见的迷思概念;第五,评价和复评幼儿概念的正确性。除此之外,在科学教育中还可以使用概念冲突、类比、后设认知策略等方法,引导幼儿的概念转变。

(四)评估幼儿的概念转变,为建立评价机制提供依据

概念转变教学理论例3

中图分类号 G633.91 文献标志码 B

1 引言

1969年,比利时科学家伊利亚・普利高津提出耗散结构理论,并于1977年获得诺贝尔化学奖。普利高津认为一个开放的非线性系统在不断的物质和能量的输入达到阈值时,系统会从最初的无序状态转变为有序状态,这种远离平衡状态的有序结构称为耗散结构。耗散结构形成的条件可概括为:系统是一个开放的系统;系统必须远离平衡状态;系统内部存在非线性的相互作用;系统可以发生内部涨落。耗散结构的出现完全是自组织的,人们无法创造耗散结构,但可以创造出现耗散结构的条件。

2 学生的概念认知结构作为耗散结构所具有的特征

2.1 认知结构是一个开放的系统

建构主义认为,人的学习不是封闭于个人头脑中的过程,而是同周围环境中的工具、符号、语言乃至人际关系等媒体和功能性资源的交互过程中生成的过程,学生的学习依赖于认知结构。学生的认知结构一方面需要从外界环境输入信息,作为具有自我能动性的个体,学生通过纸质文本、视频、广播等途径获得大量的信息输入;另一方面,学生的认知结构通过对信息进行加工,完成对外的输出,即对抽象的理性问题或生活中一些实际问题的解决。因此,学生的认知结构必然是一个开放的系统。

2.2 认知结构是一个远离平衡态的系统

学习者无法解决世界上所有的问题。学生的认知结构与外部环境存在这样一个矛盾,即问题解决所需要的知识与学生认知结构中知识的不足或缺失之间的矛盾。这种矛盾导致学生的认知结构远离平衡态,矛盾越大,认知结构就离平衡态越远。这种矛盾促使学生不断地完善认知结构,从而形成更高水平的认知结构。另外,学生认知结构中的各组成部分之间也存在较大差别,这种内部组成部分间的差别也反映出学生认知结构并非是一个由均一同质的各部分所构成的平衡系统。

2.3 认知结构存在非性的相互作用

认知结构由认知形式、认知策略与方法、知识经验及其结构、认知风格和解悟认知等5个小系统组成。这五个小系统中还可细分为更小的组成部分。认知结构的功能不等于各部分功能的简单加和。在学生的学习过程中,认知结构的各组成部分之间存在复杂的相互影响和相互作用。这种复杂的作用说明认知结构各组成部分之间存在极为复杂的非线性作用,而非简单的线性作用。

2.4 认知结构内部存在涨落

在学习过程中,学生的认知结构受到很多信息的刺激,如文字、声音、图片等。在概念学习过程中,教师为学生提供了指向概念转变的多种信息,创造出多元的对话活动和情景。这些外在刺激能够使学生的认知结构发生微涨落。微涨落通过非线性的相干作用和连锁效应不断放大,当达到一定的阈值时,学生的认知结构就会巨涨落。此时,概念发生转变,认知结构的水平层次提高。因为阈值是可以通过试探性尝试找到的,因此在教学中具有操作性。

综上所述,学生的概念认知结构具有耗散结构特征,具备耗散结构形成的必要条件。

3 耗散结构理论视阈下的概念转变教学策略

概念转变的过程类似于耗散结构的出现过程,学生获得生物学概念的过程实际上就是经历从“无序”的迷思概念概念转变为“有序”的科学概念的过程。因为概念转变是通过学生自组织实现的,因此教师在教学中需要创造学生概念转变的必要条件,帮助学生自主构建起对科学概念的理解,从而使学生实现概念转变。

以高中生物学概念“细胞呼吸”为例,耗散结构理论视阈下的概念转变教学策略可以按以下环节进行。

3.1 充分了解学生认知结构中的“无序”:迷思概念

学生认知结构中的无序状态是指学生所具有的迷思概念。迷思概念是学生在进入课堂学习前所具有的对某事物或事件不完全合理的认识、想法。学生迷思概念的无序体现在:(1) 迷思概念具有片面的、零碎的内容,在知识联系上缺乏适当的关联;(2) 学生面对情景不同的同一类型问题时,往往会有不同的解释;(3) 有些迷思概念前后不一致,而有些迷思概念则十分稳定,极难改变。在教学中,教师应该调查和了解学生在学习“细胞呼吸”概念之前所具有的迷思概念,并做为教学的起点和突破口。

“细胞呼吸”属于微观的细胞水平的内容,学生主要是通过教材和教师的介绍,获得有关的了解。浙教版初中教材八年级下册第三章第五节“生物的呼吸和呼吸作用”通过汽车内部燃料与氧气发生化学反应的类比,向学生介绍了动物、植物和微生物体内葡萄糖和氧气发生反应的呼吸作用过程。通过调查发现,学生对“细胞呼吸”具有以下迷思概念:

(1) 细胞呼吸是葡萄糖的氧化分解过程;

(2) 细胞呼吸的发生必须有氧气的参与;

(3) 细胞呼吸的产物都是二氧化碳和水;

(4) 在动物、植物和微生物的体内都可以进行葡萄糖与氧气的反应。

概念转变教学理论例4

一、问题的由来

科学概念是自然界客观事物的本质属性在人脑中的反映,不仅包括一般的科学事实和概念,还包括科学的观念和对科学的看法。科学概念是科学思维的基本单位,学生掌握科学概念是发展科学能力的必要前提。科学概念教学是形成学生科学概念的基本途径,也是科学教学的基本环节,提高科学概念教学的有效性至关重要。目前,科学概念教学主要存在以下问题:

1.受教学评价体制、落后教学观念等因素的影响,教师喜欢以自身概念体系为标准,运用机械训练的策略,导致学生概念学习水平停留在陈述性知识层面,对概念缺乏实质的理解,无法实际应用。

2.科学教材中许多概念和规律是以探究的方式呈现的,也有单独设立的探究活动。但有些教师不了解学生科学概念形成的心理机制,缺乏多样化的教学策略,科学概念探究只注重结论而不是有意义的探究过程,缺乏对科学概念本质内涵的揭示,学生无法真正建构概念。

以上第2个问题的解决对于教学更具有现实意义,本文着重探讨如何运用教学策略提高基本探究的科学概念教学有效性。

二、概念转变学习理论

认知心理学研究表明,科学概念学习之前学生已形成许多日常概念,称为前概念,有些前概念近似科学概念,而有些却是“错误概念”或“相异概念”,与科学概念不相容。以建构主义为基础的概念转变学习理论认为科学学习就是学生原有概念的改变、发展和重建过程,是学生前概念向科学概念的转变过程;强调学生对科学新概念同化、顺应式“自我建构”,重视学生情感态度和元认知等因素在概念学习中的作用。基于这种观点,科学概念教学要以前概念为前提,以小组合作学习为基本组织形式,以科学探究为基本方式,以促进概念转变为根本目的。

三、促进科学概念转变的教学策略

教学策略是为了达成教学目的、完成教学任务,而在对教学活动清晰认识的基础上,对教学活动进行调节和控制的一系列执行过程。科学概念教学是一场发生在有限时间、空间里的师生互动,有效组织承载概念内涵的活动,帮助学生从活动中整理获取重要信息,促进学生思维的活跃等都要依赖教学策略合理运用。下文以文献查阅为基础、结合案例分析的形式,探讨提高科学概念教学过程有效性的教学策略,这些教学策略都基于“概念学习就是概念转变”这一观点。

(一)探测前概念,引发认知冲突

前概念泛指学生原有经验基础上的一些观点和看法,因人而异植根于学生原有的认知结构中,具有隐憋性、长期性、稳定性、缺乏概括性、牢固性等特点,师生都不易察觉。概念转变的起点是前概念,教师要借助一些方法了解学生的前概念,借机引发学生认知冲突,提升探究动机,进入意义建构概念的状态。

策略分析:

1.教师可以利用学生原有经验匹配的熟悉情景来“唤醒”前概念,再设置挑战性问题,激发学习兴趣,提高参与动机;

2.借助概念图、概念层、关健概念、连接、层级、连接词关系来探测学生的前概念,暴露学生学习相关前概念;

3.利用学生不同背景差异这种宝贵的学习资源,引导加强协商对话的小组合作,让学生不同的观点自由碰撞,自行暴露“错误概念”并意识到原有的认知结构与现有情景存在冲突,产生进一步探究的动机,进入有意义的学习状态。

概念图是探测前概念和评价概念转化的知识管理工具,适用于概念层级联系比较明显的知识章节。教师还可以通过提问、课前调查、访谈等方法了解学生的前概念。

(二)“架桥”前概念,切合科学概念

布朗和克莱门特提出并验证了“架桥”策略在概念转变教学的应用问题。“架桥”策略是通过生活事例与目标概念之间做出明确类比建立类比关系。初中学生思维抽象逻辑思给尚未发展完善,具体的形象成分在思维过程中仍起着重要作用,难以直接理解许多抽象科学概念。抽象的科学概念需要通过“架桥”类比策略帮助学生建立前概念与科学概念之间的关系,促成概念理解。“架桥”策略符合维果斯基的“最近发展区”理论观点,能有效得促成概念的转变。

策略分析:

1.学生对于抽象科学概念缺乏感性认识,教师直接介入教学,学生的兴趣与注意程度难以保证,需要一些熟悉情境来激活学生的有用经验,提取与科学概念学习相关的前概念。

2.学生难以由当前情境建构科学概念时,教师可以利用生活事例进行类比铺垫激活学生形成相似前概念情景,促进情景迁移,理解科学概念。

3.选择的事例与科学概念的内部逻辑关系必须一致,否则会让学生思维陷入混乱。

(三)加强实验创新,推动概念转变

新概念的可理解性、合理性、有效性是实现概念转变的条件。在科学教材中,许多概念和规律是以探究的方式呈现的,但不一定符合学生的认知能力水平。教师要根据学生实际能力水平,利用现有实验设备、器材,组织安排实验探究的顺序,精巧设计成本低、趣味浓、创意新的“差异性实验”,有违学生“常识”的实验,吸引学生的注意力,激活学生的思维。注重掌握科学方法、发展科学能力的同时体验科学概念的合理性、有效性,从根本上动摇并学生错误的前概念,为科学概念的建构奠定坚实基础。

策略分析:

1.在开展探究之前,教师利用相关事例,暴露学生前概念的同时,又造成学生原有经验和实验结果相违背的认知冲突,增强了学生自主探究的欲望,明确了探究的定向目标。

2.学生感受到进行了“有意义”的自主探究,同时自主讨论、汇报、分析、比较得出的结论所建立的密度概念合情合理,更为有效;

3.实验创新不是要求追求科学家探究的精度,而主要是指实验组织出现的排序,还有尽量充分地利用生活的实验素材,会让学生觉得科学就在身边。

本文对于科学概念教学策略的探讨局限于教学实施过程中,要更加有效地促进概念转变需要结合概念教学前的准备策略和教学后的评价策略进行系统思考,我们期待更多相关的研究。

参考文献:

[1]胡卫平,刘建伟.概念转变模型:理论基础、主要内容、发展与修正[J].学科教育,2004,(6):34.

[2]袁维新.科学概念的建构性教学模式与策略探析[J].教育科学,2007,23(1):25.

[3]和学新.教学策略的涵义、结构及其类型[J].教学与管理,2005,(2):5-7.

概念转变教学理论例5

由于学科处于尴尬地位(如因为未纳入中考而被有意无意地忽视),初中生物教师在教学中要花很多精力培养学生学习生物科的兴趣,又要降低学生学习的难度,不少生物教师便淡化了科学概念等抽象内容的教学。事实上,在科学知识的学习中有大量的科学概念,它们是构成科学知识的基本单元,这些概念互相链接,才形成了自然科学的基本框架。要掌握好这个框架,最基础的是要掌握科学概念。因此,重视初中学生生物学科学概念的学习显得尤为重要。故而,生物教师在教学中要善于利用前概念教育资源作有效转变,引导学生将生物学前概念提升为生物科学概念。

生物学前科学概念(以下简称前概念)指的是个体所拥有的概念的内涵、外延及其例证与科学概念不尽一致的生物学概念。狭义的“前概念”指教学前概念,广义的“前概念”指前科学概念。前概念具有隐蔽性、顽固性和不连贯性;但它并不都是错误的概念,它是学生的精神财富,学习者拥有的前科学概念也可把学习引导到当前的科学概念上来,它是个体认知的必然产物,也是值得教育者注意和利用的教育资源。如何有效引导学生将生物学前概念提升为生物科学概念,是值得我们关注与研究的课题。

一、熟悉学生前科学概念的由来,刺激学生内因,做好适时同化或顺应

学生前概念的由来依内外部的维度来分,包括学生个体及其相关的外部因素,学生个体是前科学概念形成的内因,是最根本的来源。外部因素包括与其相关的初中生物学教师、初中生物学教学资料、同学、朋友等。学生个体在接受正式的生物教育之前,同时通过小学自然科学关于生命世界的学习,对日常生活中有关生物现象的大量问题,如能看得见、摸得着的生物如花、鸟、虫、树、草及人等形成了较多的前概念,都有了自己特定的理解,因此学生头脑中的生物学前概念涉及的生物学内容相当广泛。

Posner等人结合皮亚杰的“认知建构主义”理论以及库恩的“范式更替”理论,提出了著名的“概念转变学习理论”。该理论将科学学习过程看作是学生原有概念的发展、修正或转变的过程,这就离不开个体通过“同化”与“顺应”过程逐步建构自己的认知结构。个体把外界刺激所提供的信息整合到自己原有认知结构内的过程即同化,如在“动物体的结构层次”中,知道细胞群如何形成不同组织后,能更好地理解器官、系统等结构层次的形成。这个同化过程中,前概念到科学概念的迁移是积极的;而原有认知结构无法同化新环境提供的信息时所引起的个体认知结构发生重组与改做的过程被称为顺应,这需要教师创设学习情境、引发学生们的认知冲突并想办法解决,也可利用插图、模型、实验,加深前概念的直观化,使新概念由抽象转变为具体。

二、建立有效的生物学前科学概念转变教学模式,重演概念的发展进程

为了促使学生实现概念转变,就是要进行概念转变教学,生物教师应当探索有效的生物学前科学概念转变教学模式,重演概念的发展进程,从而利于学生理解科学概念。仅仅告诉学生“正确”的科学概念是不够的。概念转变理论认为,学生学习科学的过程是一个概念转变的过程,而不是新信息的点滴积累,并提出了“概念转变”的条件。我们根据条件不同,可摸索出不同的教学模式。下面略举两例。

情形一:学生前概念中存在不合理信息,我们可以通过类比,引发认知冲突,重新解释、修正新概念并应用。类比是在解释难以理解的抽象概念时,使用的一种重要的概念性工具,它可以促使新概念得以被理解。生物学教师应该将教学视为帮助学生逐步获得较为复杂的科学现象的有关理论的过程。如在“生态系统”概念的学习中,不少同学认为生态系统就是指生物们形成的整体。

情形二:前科学概念和其他领域(目标)知识之间的原理有相似性,可以在已知知识领域和未知知识领域中间尝试搭桥模式。如学习了动物体的结构层次,通过“细胞-组织-器官-系统-动物体”这一流线图类比分析植物体,从而概括植物体的结构层次。再如宏观的生态世界―肉眼可见的生物世界―微观的生物世界(如细胞、器官、系统、个体、生态系统、生物圈等概念)都可以用到这种搭桥模式去学习。

法无定法,贵在得法,有效的生物学前科学概念转变教学方式也是多样化的,这就需要我们不懈探索。

三、在生物实验教学中,引导学生主动地探究,在探究中重建科学概念

科学来自实验,概念源于实践。实验是生物学科的基本特征,又是学生学习生物知识、探究科学方法和解决问题的重要途径。如要纠正“是一朵花”这样的错误概念,最好的办法就是让学生观察,主动探究解剖的结构,自己得出“是一个花序而不是一朵花”的科学结论。事实对于学生来说是最有说服力的,亲身体验各种各样的探究活动是转变错误前概念,建构科学概念的有效办法。

引导学生主动地探究,因为科学本身就是一个不断发生、发展的过程,以科学历史作为支撑,引导学生沿着前人探索生物世界的足迹,一方面,可以学习科学家献身科学的精神;另一方面,可以使学生理解科学的本质、掌握科学研究的方法。在这过程里,通过研究活动,借助或校正学生已有的前概念教育资源,让学生更容易理解、掌握科学概念。例如,关于“光合作用”概念教学,我们安排了在光照下金鱼藻释放了使快熄灭的卫生香复燃的气体,学生推理是光合作用产生了氧气,然后展示普利斯特利的三个小实验,学生发现植物可以更新动物呼吸的气体,但不确定是利用二氧化碳作为原料,这时可以演示在氢氧化钠和清水两种环境下绿叶植物的光合作用状况来证明。最后在“绿叶在光下制造有机物”实验中,学生发现未遮光的部分脱色后遇碘变蓝,结合萨克斯的实验让学生领悟光合作用曲折与艰辛、继承与创新的历程,让学生在实验和历史的背景与氛围中体会“光合作用”概念的丰富和完善,并在探究中重建“光合作用”概念。

总之,应充分利用前概念这一教育资源,重视生物前概念的由来和转变,启发学生建立正确的科学概念,利用实验和生活实际问题来促进学生思考,探索概念转变教学模式,重演概念的发展进程,帮助学生最终系统地建立科学的生物学概念。

参考文献:

概念转变教学理论例6

中图分类号:G633.7 文献标识码:A 文章编号:1003-6148(2016)6-0008-4

前概念广泛地存在于每个人的思维中,美国著名心理学家奥苏泊尔说:“影响学生最重要的因素是学生已经知道什么,我们应当根据学生前概念的状况进行教学。”[1]做学生前概念的调查揭示及转变策略的探索研究是很有必要的。本文选取中学力学中两个具有代表性的前概念,尝试将前概念理论运用于中学物理教学,提出调查诊断及教学的策略,探索物理前概念转变的有效途径。

1 前概念概述

1.1 前概念的界定、分类及特点

1)界定

前概念是前科学概念的简称,是指个体在没有接受正式的科学概念之前,通过长期的经验积累与辨别式学习而形成的对事物的非本质认识[2]。前概念的“前”,不仅指此观念是在学生学习系统物理知识之前形成的,也指学习后仍存在于学生头脑中的不正式、不准确、不合理的思维方式。前概念的“概念”,也不仅指常说的对某一事物现象的定义,还可以是在物理学领域的某种规律、某一原理,或者思维方式、逻辑习惯等。

2)分类

要想以前概念为出发点,提高教学有效性,就必须分清教学工作中哪些是拦路虎,哪些是推动器。前概念中与科学概念相矛盾的、对学生科学概念和严谨思维的建立造成不利影响的部分,称之为“相异前概念”,它们是教学的拦路虎;前概念中,有科学概念的雏形,对教师教学产生有利影响的部分,称之为“朴素前概念”,他们是教学的推进器。故此,对于前概念的教学处理不能一概而论,要做一分为二的辨证处理,因势利导,趋利避害。恰当的教学策略应该是对“相异前概念”采取暴露、转化,进而重构,而对“朴素前概念”,则进行顺化、补充、完善。

3)特点

物理前概念的5个特点:①普遍性,即每个中学生在学习物理前都积累了丰富的生活常识和日常经验,其中包括广泛的物理前概念;②直观性,即中学生对于摸得着、看得见、宏观的、日常生活中经常接触到的事物形成了较多的物理前概念;③顽固性,即物理前概念是中学生长期经验积累的结果,在他们脑海中印象深刻;④层次性,即每个中学生的知识背景和日常经验不同,对同一物理概念有不同层次的前概念。⑤反复性,即如果学生没真正理解和接受科学概念,一段时间后仍会用原有思维模式解决问题,反复出错、无法根除。

1.2 前概念的成因及转变

1)主要成因

知己知彼,方能百战不殆。要获知前概念转变的教学策略,就必须了解学生的原有认知结构、思维方式和经验系统从何而来。前概念的主要来源是,学生在学习科学概念前从日常生活经验中获得的对物理现象的理解和认知。另一种来源是,学生接触到此科学概念之前,学习过其他领域的类似概念,在此基础上进行一定的类比推理、主观联想,形成了自己的认知观念。

2)概念转变

概念转变是指个体原有的某种认知经验由于受到与此不一致的新经验的影响而发生重大转变[3]。一直以来,许多中学物理教育工作者以认知心理学的理论为基础,提出了一系列前概念的诊断方法和概念转变的教学策略。

①诊断方法

要完成新旧认知和经验的转变,对原有经验进行提升或重构,教学中首先进行的应该是“诊断”,通过诊断揭露出学生头脑中已有的认知结构、思维方式、经验来源,其次才是“治疗”[4]。中学常用的前概念诊断方式有问卷调查、访谈研究、二段式诊断测试、制作概念图等。

②转变策略

概念转变过程是认知冲突发生并得以解决的过程。在诊断后,教学程序可以是:首先,针对不同类型的前概念采用不同的教学策略,尝试创设物理情景,使学生对自身已有认知结构中的不足部分产生怀疑和不满。其次,配合教师的实验演示、探究和分析,学生进行小组合作讨论、交流与分享,以及教师进行引导、总结。最后,师生共同进行对比、分析,得出科学概念。如此,可以使学生的原有认知和经验有所增长或发生改变,实现概念转变。许多已有研究成果中的策略方法是值得借鉴和参考的。如:Savander-Ranne和Kolari提出的基于概念转变的PDEODE教学策略(Predict-Discuss-Explain-Observe-Discuss-Explain策略)[5],周中森提出的前概念对话式反思教学策略[6]。

2 两个前概念转变的教学尝试

下面,选择中学力学中两个具有代表性的前概念作为研究对象:一为“重的物体比轻的物体下落得快”,属“相异前概念”;一为“重的物体保持匀速运动更困难”,属“朴素前概念”,以前概念理论为依据,进行前概念的调查诊断及概念转变教学策略的教学尝试。

2.1 “相异前概念”的教学尝试

1)“重的物体比轻的物体下落得快”的前概念诊断

教学过程中,笔者发现部分学生虽已学过自由落体运动,但在日常生活的理解、交流中仍有“重的物体比轻的物体下落得快”的想法。调查分析揭示,许多教师在概念教学中,是以口头阐述或强压、硬塞给学生新概念,而不是以在根除其头脑中根深蒂固的错误观念的基础上构建新概念的方式进行教学,这是导致学生出现这种“看似理解,一用就错”的情况的重要原因。

针对“重的物体比轻的物体下落得快”这一前概念,由于在做初步诊断时发现许多学生都存在此类错误观念,且学生反映出的问题较多。所以,笔者选取昆明某中学高一年级12个班,并在每班随机抽取10人共计120人,在学生未学习《自由落体运动》一节内容之前,进行问卷调查(见附录“关于‘重的物体比轻的物体下落得快’的问卷”),以完成对这一前概念的诊断调查。调查数据统计如表1。

“关于‘重的物体比轻的物体下落得快’的问卷”,通过贴近生活的一些问题的设置,把学生隐藏在大脑深处未根除的“相异前概念”暴露了出来。由表1可见,在学生头脑中,“重的物体比轻的物体下落得快”的前概念根深蒂固,而且对“同质量的物体在不同空气阻力下”和“不同质量的物体在无空气阻力下”的下落情况的认识也模糊不清。学生关于自由落体运动的“相异前概念”来自哪里?针对这一问题,笔者选择前面被调查学生中的部分学生,采用谈话的方式,就自由落体运动的“相异前概念”的形成原因和依据作了进一步调查,并观察各组员表达观点的方式,分析各组员表达的观点。调查表明,学生头脑中“相异前概念”的形成,更多是受日常生活经验的影响。

2)“重的物体比轻的物体下落得快”的概念转变策略

经过诊断环节,教师对学生的“相异前概念”已有一定了解,接下来的环节中教师可以采用创设物理情境,通过演示探究实验的方法,来突显出已有认知与物理事实的冲突,以激起学生对已有知识经验的怀疑与不满,主动意识到引入新概念的必要性。

为纠正学生这一错误的前概念,笔者采用PDEODE策略来设计相关教学,具体做法如下:

【预测环节】描述如下实验情景并要求学生记录预测结果。

①一张纸片和一个与纸片同质量的纸团同时从同一高度静止释放,哪个先着地?

②一个纸团和一个质量更大的纸片同时从同一高度静止释放,哪个先着地?

③一枚硬币和几枚粘合在一起的硬币同时从同一高度静止释放,哪个先着地?

④在真空状态下的牛顿管中,金属块和羽毛哪个下落得更快?

学生的预测:

①纸片和纸团同时着地。

②质量更大的纸片先着地。

③粘合在一起的硬币先着地。

④金属块下落得更快。

【讨论环节】让学生在各自的小组中(3~4人)讨论和分享彼此做出预测的理由,然后通过讨论和协商来对实验情景形成组内统一的预测,为之后的解释环节作准备。

【解释环节】让各小组内部在针对实验情景达成共识之后。通过全班讨论的形式向其他小组公布自己的预测结果,并在讨论中参考他人的见解和反思自己的观点。

【观察环节】经过以上环节学生很渴望知道自己的预测是否正确,教师要充分把握学生的积极性,对预测环节中的实验情景“④”涉及的真空管实验进行演示。引导同学进行与目标概念相关的观察:不仅要观察实验现象,也要注意观察老师的操作步骤和顺序,准确判断金属块和羽毛的下落情况,并做好记录。

实验:教师完成真空管实验后,实验结果与学生预测出现极大反差。此时,认知冲突将激励同学们迫切地找出原因,接着让学生分组进行实验情景“①”“②”“③”的实验,教师给予适当的提示。实验结果如下:

①纸团先着地。

②纸团先着地。

③硬币和粘合在一起的硬币几乎同时着地。

④金属块和羽毛下落得一样快。

【讨论环节】教师抓住时机引导学生通过组内讨论的方式,对比分析实验结果与预测不一致的原因,试图寻找新概念。

【解释环节】最终,教师只需给予学生关于“空气阻力”问题的适当提示,学生即会豁然开朗,此时讲述科学概念,即可实现“相异前概念”向科学概念的转变,同时保障理解效果和长时记忆。

2.2 “朴素前概念”的教学尝试

1)“重的物体保持匀速运动更困难”前概念诊断

摩擦力部分教学过程中,了解到学生对“滑动摩擦力的大小与接触面所受正压力成正比”结论较容易接受,未出现明显疑惑。是什么样的原有认知和经验使学生对与此相联系的科学概念的理解和接受更顺利呢?本次诊断因为所需研究的问题较单一、不复杂,笔者采用访谈方式,在昆明某中学高一年级学生未学习《摩擦力》一节的内容之前,与其中的10名同学进行对话式交流。

下面是笔者与其中一名同学的谈话。

教师:物体在水平面上运动,要保持其匀速运动,是否需要一个水平拉力F?

学生:当然需要。

教师:那如果是两个质量不同的物体,哪个需要的拉力更大?

学生:重的物体需要的拉力大。

教师:物体越重保持其匀速运动需要的拉力越大吗?

学生:是的,应该与物体的质量有关。

教师:具体是什么样的关系,你能用数学表达式说明吗?

学生:我想,是质量越大的需要的拉力越大。

教师:那是什么支持你的想法?

学生:应该是平常的生活经验吧。

对话式访谈诊断揭示:学生头脑中关于“滑动摩擦力大小与接触面所受正压力关系”的前概念虽也源于日常生活经验,但并没有完全与科学概念相冲突,只是不够抽象严谨,与抽象的科学概念比较而言,相对表面、感性。仅有“所需推力F与物体重力G有关”的定性认识,并没严谨到“F=μFN”的定量表达。

2)“重的物体保持匀速运动更困难”的概念转化策略

经过诊断环节,教师对学生的“朴素前概念”已有一定了解,教学时可以采用以原有认知经验为起点,进行适当同化和顺应的策略。通过适当的实验演示,创设物理模型,即可抽象提升出科学概念。

为了同化、顺应学生脑海中的“朴素前概念”,笔者作了如下的教学设计。

【观察环节】 教师进行实验演示,引导同学进行与目标概念相关的观察。

实验:取质量约200 g的带挂钩木块,置于长木板上,用弹簧测力计拉动,然后保持匀速运动,读取测力计读数,即为拉力大小,视为木块受到的摩擦力的大小。然后,逐步往木块上加50 g的砝码,分别读取读数,完成表2第三行的内容。实验过程提示学生检查并调整弹簧测力计,注意量程和分度值。(g=9.8 m/s2)

由此,同学发现拉力F与重力G间有数据上的具体联系,刺激学生找出原有认知与科学概念的差距。

【讨论环节】此环节教师利用学生熟悉的控制变量法,引导其对比分析,通过分组讨论,分享想法,找出数据比值的共同点,发现拉力F与重力G的线性关系。

【解释环节】利用二力平衡,作用力和反作用力的受力分析,明确正压力FN=G=mg。引导学生得出“滑动摩擦力的大小与接触面所受正压力的线性关系”,从而顺利地完成朴素观念“重的物体保持匀速运动更困难”向“滑动摩擦力大小与接触面所受正压力成正比”的科学概念转变,将感性认知抽象成 “F=μFN”的定量表达。

通过教学,学生基本理解“自由落体运动规律”和“滑动摩擦力大小与接触面所受正压力的关系”。但是,概念转变的教学环节不是封闭的,而是不断循环的,每次循环中对概念的理解都在不断深入[7]。在随后的教学中还将留意进一步的反馈信息,分析评价采用的策略,针对未达效果的情况再次调查诊断和修改,以求得出更完善的教学模式,让学生体会严谨地建立科学概念的过程。

参考文献:

[1]郑挺谊.前概念――科学教学中的一道坎[J].物理教学探讨,2014,32(3):22―27.

[2]黄树玲.消除物理前概念的不利影响[J].福建教育:中学版,2012(10):60―61.

[3]沈兰.高中物理教学中前概念转变的策略与实践[J].中学物理,2013(1):19―21.

[4]吴志标.初中科学教学中学生前错误概念揭示和矫治[J].中学物理:初中版,2012(9):80.

[5]蒋军用,张军朋.基于概念转变的PDEODE策略在物理教学中的应用[J].物理教学探讨,2013,31(1):30―33.

[6]周中森.浅谈针对物理前概念的“对话式反思教学策略”[J].物理通报,2012(5):106―109.

[7]姜明.浅谈高中物理的概念转变教学――以重力和引力概念教学为例[J].教育实践与研究,2013(9):31―34.

附录:

关于“重的物体比轻的物体下落得快”的问卷

1.日常生活中,0.1 kg的石头和1 kg的石头同时从同一高度静止释放,哪个先着地?( )

A.0.1 kg的石头 B.1 kg的石头 C.一起着地

2.日常生活中,0.1 kg的石头和一张纸片同时从同一高度静止释放,哪个先着地?( )

A.0.1 kg的石头 B.纸片 C.一起着地

3.日常生活中,一张纸片和一个与纸片同质量的纸团同时从同一高度静止释放,哪个先着地?( )

A.纸片 B.纸团 C.一起着地

4.日常生活中,一个纸团和一个质量更大的纸片同时从同一高度静止释放,哪个先着地?( )

A.纸团 B.纸片 C.一起着地

5.日常生活中,一枚硬币和几枚粘合在一起的硬币同时从同一高度静止释放,哪个先着地?( )

A.一枚硬币 B.粘合在一起的硬币

概念转变教学理论例7

学生在接受学校教育之前,就已经通过对日常生活中的一些现象的观察和体验,形成了许多 概念。在这些概念中,一些是反映客观世界的朴素概念,但更多的是有悖于科学的错误概念 。我们把学生头脑中存在的错误概念或与科学概念不完全一致的认识叫做迷思概念。迷思概 念不能正确地反映事物的本质而仅仅反映事物的一些表面现象,违背了科学道理,对学生正 确地掌握科学概念、形成正确的认识造成一定的障碍。

一、学生迷思概念的成因

1.受日常生活经验的影响

科学作为一门包括物理、化学、生物、地理等知识在内的综合性的理科学科,与日常生活息 息相关。又由于初中生年龄较小,生理、心理还不够成熟,往往只能凭借自己的感性认识、 经验得出结论。例如,学生认为燃烧必须要用火点燃、金属不能燃烧、燃烧必须有氧气参加 等等。据调查,有60%的学生对月相存在迷思概念,认为月亮只有在晚上可以看到,除了天 气状况影响以外;有一半以上的学生认为,夏天、冬天的变化是地球与太阳的距离远近造成 的。

2.受个体认知方式的影响

个体在发展过程中,总是凭借自己喜好的认知方式认识事物。wWw.133229.COM作为一种重要的思维方法,归 纳是人类认识事物本质和发现规律的重要的认知方式。但是,由于学生知识面较窄,经验较 少,思维简单,往往把事物的非本质属性当做本质属性。例如,学生 把鲸当做鱼类,把蝙蝠当做鸟类。从访谈中得知,学生小时候看到麻雀、乌鸦、燕子等,通 过自己大脑简单的分析归纳得出结论,把“会飞”归结为鸟的本质属性,而不能抽象 提炼出鸟的本质特征。所以,就造成迷思概念的出现。

3.受教师授课方式的影响

在课堂教学中,教师常常采用灌输的方式讲授,学生对知识囫囵吞枣,死记硬背,导致对知 识缺乏科学的理解。例如,学生对酸雨的概念理解就存在偏见。他们认为酸雨是酸性的雨水 。殊不知,酸雨的ph值必须小于5.6;而且酸雨不仅包括液态水,还有固态水(如冰雹、雪 等)。有些教师在讲授科学知识或演示实验时,过分地强调某个知识在章节中的作用,而忽 视了对它在整个学科知识体系中的地位和作用的讲解,造成概念的片面性,导致迷思概念的 出现。如在催化剂的教学中,教师为突出催化剂在分解氯酸钾过程中起到加快反应速度的作 用,而忽略了催化剂这个科学概念也有减慢反应速度的作用。教师自身存在着迷思概念,是 学生形成迷思概念的一个不可忽视的因素。

二、迷思概念转变的策略

1.利用科学方法,对学生的迷思概念进行探查——转变迷思概念的前提

用来探查学生有关迷思概念的方法有多种,可以利用访谈法[1]、测验法来研究学 生的迷思概念,也可以采用二阶式多选题的方式来进行研究[2]。近来更有人提出 以制作概念图的方式来探究学生的迷思概念。笔者利用访谈法对呼吸作用与光合作用这个主 题进行探查,研究结果显示,学生对这两个科学概念,头脑中潜存着许多迷思概念:有的学 生认为光合作用会制造蛋白质;有的学生认为绿色植物只有在夜晚(或没有光时)才进行呼吸 作用;有的学生认为绿色植物在有阳光时,放出二氧化碳的量最大;有的学生认为呼吸作用 只发生在叶子细胞中,因为叶子有气孔能交换气体;有的学生认为绿色植物依靠根从土壤中 吸收营养,并储存在叶子中……探查出这些迷思概念,不仅让教师了解了学生学习前的认知 架构,也提供了提升科学教学成效与学习进步的基础。

2.创设问题情境,引发认知冲突——转变迷思概念的契机

建构主义理论认为,学生以自己头脑中原有的认知结构来完成对新知识的理解[3] 。 当新知与原有的经验相符合时,就会容易理解并接受,纳入认知结构,顺利地完成认知结构 的同化过程。当新知与原有经验矛盾时,则必须经过认知结构的顺应才能接纳新知识。而顺 应过程是有条件的,并且相当困难。教师如果没有采取有效的策略,随着时间的流逝,学生 很容易将顺应建立起来的知识淡化或遗忘。因此,转变迷思概念策略的落脚点应放在如何促 进学生对知识的顺应过程上。科学的历史发展,给我们转变迷思概念以深刻的启示。众 所周知,历次重大科学观念改变之前,都要经历新旧观念的对峙阶段。只有当新旧观念矛盾 日益尖锐,发展成危机、灾难,再也无法规避时,人们才不得不走出他们建造的象牙之塔, 以审视的眼光和批判的思维来对待曾经深信不疑的象牙塔基,从而导致观念的革命性变革。 科学发展的历史是一部人类对知识建构的历史,它与学生个体的知识建构具有雷同的地方。 因 此,迁移到课堂教学中,教师在转变迷思概念时,要先给学生一个“震撼”,引起学生认知 冲突,以使其放弃迷思概念,实现科学概念的构建[4]。例如,在牛顿第一运动定 律教学中,有许多学生持力是维持物体运动的原因这一观点。他们认为,物体受了力,才会 运动,没有受 到力,就会停止。为了消除学生头脑中的错误观念,教师可以创设情境,提出问题:骑自行 车 ,用力蹬车,自行车就走了,但用力压闸时,自行车反倒停下来——这是否与我们认为的“ 物体有 了力就运动”背道而驰呢?此时学生就会对自己已有观念进行质疑,产生强烈探求新知的欲 望。教师应抓住这个转变迷思概念的契机,趁热打铁,促进学生对科学概念的顺应建构。

3.讨论交流,相互辨析——转变迷思概念的途径

现代教育心理学认为,学生的学习过程是“学习共同体”所有成员之间相互讨论交流的过程 。 组织学生讨论交流,相互辨析,不失为转变学生迷思概念的好策略之一。因为学生如果只听 教师讲解,则只是被动地吸收知识,缺少自己对知识结构的主动建构。组织学生讨论,合作 交流,互相辨析,不仅调动了学生的思维积极性,还能够使不同观念相 互交锋,使学生的头脑经历一场“晴天霹雳”,重新构建认知结构。教学实践证明,学生思 维活动越多,学生对迷思概念的错误认识就暴露得越充分,在知识结构中的“根”就挖得也 越 深,科学概念的建立就越牢固。例如,学生对滑动摩擦力的方向存在迷思概念。为了转变这 一认识,教师可以用手握木棒向上作匀速运动,让学生讨论交流。有的同学说“摩擦力的方 向跟运动方向相反”;有的同学说“摩擦力的方向跟运动方向相同”;有的同学反驳:“如 果 摩擦力的方向竖直向下,同时重力的方向也是竖直向下,两个竖直向下的力能使人向上作匀 速运动吗?”通过讨论交流,学生发现用自己原有的概念无法解释现象,从而使学生改变了 自己的认识,建立起正确的概念。

4.整合教学方法,强化、巩固科学概念——转变迷思概念的保证

把建立起来的科学概念全面、深刻、牢固地印留在学生的头脑中,是转变迷思概念的关键。 为此,教师应该优化、整合教学方法,巩固学生已经建立起来的科学概念。

(1)运用随即通达教学法。随即通达教学是斯皮罗等学者提出的,他认为,对同一内容的学习要 在不同时间里多次进行,而每次的情境都需要经过改组,而且目的不同,分别着眼于问题的 不同侧面[5]。这种多次通达,绝不是传统教学意义中的复习,这里的每次通达都 有不同的学习目的,都有不同的问题侧重点。例如,在讲述季风的时候,很多学生将“近地 面气温高气体体积膨胀大气密度变小气流上升气压变低”理解为“气温高气低压 ”。这个迷思概念的产生是因为学生忽略了气压的高低变化是相对于同一水平面而言的。针 对这一情况,在教学大气压受海拔高度的影响时,我重点突出在2000米海拔以内,高度升高 ,温度降低,大气压也降低。而且,我在讲授对流层气温随高度增加而递减的特点时,就落 实 到某地垂直方向的气压总是近地面的比高空的高,并不是气温高气压低。教学实践表明, 运用随即通达教学法能使学生获得对事物全貌的理解,能让学生把自己头脑中的迷思概念与 科学概念进行对照、比较,从而达到对科学概念的意蕴的理解。

(2)采用概念变式教学法。所谓概念变式教学是指在引导学生认识概念属性的过程中,不断变 更所提供材料或事例的呈现形式,使概念的本质属性保持不变而非本质特征不断变化[ 6]。概念变式教学能满足学生的情感需求,激活学生的内心思维,活化学生的知识结构 ,是概念教学的一种好方法。例如初中生对氧化反应存在迷思概念,学生错误地把氧化反应 理解为物质与氧气发生的反应。教师应该说明氧化反应概念中的氧是指能提供氧元素的物质 ,不仅包括氧气,而且还包含氧化物。如氧化铜与氢气反应,二氧化碳与碳反应等,都属 于氧化反应。教师在举例的时候,应抓住氧化反应的关键特征,即得到氧的物质发生氧化反 应 。在教学中通过不同的变式进行比较,突出概念事例的关键特征,舍弃其无关本质的特征, 可以使学生获得正确的概念,有效地转变迷思概念。

(3)制作概念图的方法。概念图是指学习者按照自己对知识的理解,用结构网络的组成来表 达概念的意义及其他概念之间联系的一种网络结构示意图[7]。一般地讲,概念图 包括节点(概念)、连线(有关的概念之间)、层次(不同概念的抽象水平)、命题(两个概念之 间的意义关系)等要素。其基本制作方法是在有关系的概念间连线(箭头),并在连线上用最 简洁的语言标注描绘其关系的文字。例如,在物质的组成教学中,因这部分知识概念较抽象 ,学生易混淆,存在较多的迷思概念,教师可以帮助学生制作概念图(如图1)。通过概念 图的制作,能使学生清楚地看到各个概念之间的联系,在大脑中形成知识的脉络,促进学生 正迁移和有意义学习的发生,实现迷思概念的转变。

参考文献:

[1]osbome,r.j. & gilbert,j.k.(1980).a technique for exploring thestudents’view of the world.physics education,50(65):376-379.

[2]haslam,f.& treagust.d.f.(1987).diagnosing secondary students’m isconceptions of photosynthesis and respiration in plants using a two-tier multi ple choice instmment.journal of biological education,21(3): 203-211.

[3]张大均.教育心理学[m].北京:人民教育出版社,2004:127.

[4]梁旭.中学物理教学艺术研究[m].杭州:浙江大学出版社,2005:188.

概念转变教学理论例8

高中学生的物理知识与概念都是在学习中逐步构建的.概念的有效转变,有利于学生学习能力与探究能力的提高,也有利于培养学生的批判性思维.物理概念的科学构建,是高中物理教学的重点与关键,也是学生进行物理探究、提高物理学习能力与自身体验的基础所在.因此,在高中物理概念教学中,对于学生的物理知识网络的梳理与构建有着重要意义.

一、物理概念综述

第一,物理概念的构成.物理概念主要分为前概念以及迷思概念两个组成部分.首先,前概念.就是泛指学生已有的相关物理知识,学生对于事物的认知能力与方式.也就是在教师讲授知识之前,学生对于相关事物的看法与观念.前概念是学生自身知识系统的关键组成部分,无论学生自身的前概念是否积极、正确,都是学生学习相关知识的基础所在,学生基于自身的前概念进行相关知识的学习、问题的探究与解决.因此,教师要加强对前概念的重视,将其作为物理概念教学的基础.其次,迷思概念.就是在教师讲授相关知识的过程中,教师的教学理论与学生自身思维模式与概念知识间存在的内在冲突或差异性,对学生学习与理解相关知识带来困扰.迷思概念的形成主要与学生的生活实际以及交流等有关.学生通过自己的想法,利用这些与公认不同的概念,对各种物理问题进行解释.

第二,物理概念的转变.基于物理概念的组成,教师明确了前概念与迷思概念在学生的思想中是客观存在的,无论其是否正确,都是教师应该正视的问题.在讲解物理知识之前,教师要对学生自身的前概念以及迷思概念进行系统了解,根据具体情况,运用科学的方式,不断塑造与更新学生的相关物理概念,进而提高学生对全新的物理概念的理解与运用能力.这整个过程,就是概念转变的过程.在概念转变教学中,对于学生的自主学习能力较为重视,通过教师的正确引导,转变学生新旧概念之间存在的各种冲突问题,进而解决学生存在的迷思概念,提高学生对一些物理概念的认知能力.

二、高中物理概念转变教学策略

第一,构建情境.情境构建与创设是物理教学的重要方式之一.物理知识相对较为抽象,学生在学习过程中还是存在一定困难的.同时,因为学生自身前概念的影响,使学生在学习过程中容易产生各种问题与困惑.教师要根据相关教学内容,科学合理地设置教学情境,提高学生的直观体验,进而提高学生对相关物理概念的理解.教师要根据学生自身的需求,有针对地构建相关物理概念,提高学生的学习动力,消除学生存在的各种问题与困惑.例如,在讲解重力与引力相关概念时,教师可以构建教学情境:首先,将学生按照同桌的方式进行小组划分,间隔一臂半的距离彼此相对站立,并进行推动,其中一个学生在推动过程中会明显地感受到另一个学生也对自己产生了力.然后,以组为单位,发放皮筋,让学生同时拉动,学生发现力的产生,并让学生感受谁的力更大一些,学生对此产生一定的猜测,再让学生同时拉动弹簧秤,学生发现弹簧秤的数值一致.最后,适当提出力的相互概念,让学生了解力是无法单独存在的.这样,提高了学生对物理概念的转变,更新了学生的相关物理知识.

第二,课堂实验.在物理教学中,物理实验有着重要作用,教师可以通过实验教学转换抽象的物理知识.同样,在物理概念转变教学中,教师可以充分地应用此种方式.在高中物理教学中,引力与重力相对较为重要.在学生的学习过程中,其相关概念逐渐升华.在生活中,学生对于引力与重力有一定的了解与认知.因此,学生对于引力与重力的前概念相对较为深刻,不利于相关物理概念的转换.对此,教师可以通过实验方式,加强学生对物理概念的转换与理解.例如,在讲“自由落体运动”时,教师可以开展如下实验:首先,通过面积相同的两张纸片以及一张白纸作为主要实验工具;其次,向学生提出问题:两种重量不同的物体,那个下降速度更快?大部分学生的答案都是,相对较重的物体下降速度较快.教师可以让学生进行实验演示,将纸揉成团与报纸在同一高度内同时松手,学生发现纸团先落地,这时学生就会对自己产生一定的疑问,认为自己的想法是错误的 ,然后教师再将另一张纸做成粉笔大小的圆柱体,然后重复实验步骤,学

生发现两者的下降速度相同,此时学生就会充满疑问,自身的前概念就与实验产生了一定的冲突,教师进行适当引导,就能激发学生的探究欲望.此时,教师引导学生探究空气阻力的相关问题,提高了学生对物理概念的了解.

第三,教学实践.研究教材知识发现,重力与引力的概念不断深化,涉及其他相关领域的知识、概念.这些教学内容与知识相对较为分散,学生无法在特定的章节中对物理知识进行深入了解,也就无法理解物理知识、概念.在教学中,教师要提高对相关物理知识的了解与掌握能力,通过对重力、引力相关概念的系统设置,利用纵向课程引导,提高学生对其深入认知,进而构建科学的概念转换教学模式.其一,针对重力以及引力教学课程的纵向构建与设计.在讲重力与引力物理知识时,教师要对其进行系统的安排、科学的统筹,分层教学、深化衔接,提高学生对重力与引力概念的认知与了解.例如,在开展相关课程的过程中,教师要围绕重力与引力教学重点,通过问卷调查的方式,了解学生自身的前概念内容,有针对地设计相关问题:重力、万有引力以及向心力的基本概念与内在关系是什么?其二,在开展课程设计与互动活动中,教师要具有一定的概念转换思想.通过各种有效的方式,提高对学生迷思概念的认知与了解,利用合作学习模式、物理探究实验等方式,引发学生自身的概念冲突,深化学生的概念理解.在设计与开展活动时,教师要利用学生之间的讨论与探究,提高教学的有效性,进而加强学生的前概念认知冲突,有针对性地解决学生的迷思概念.例如,教师可以提出地球上的不同位置上,物理的重力有没有变化等问题,对学生进行正确的引导,拓展学生的批判性思维,解决学生的迷思概念.其三,引入全新的物理概念,提高学生自身的概念冲突解决能力,逐步树立全新的物理概念.例如,在讲重力知识时,教师可以对重力与地球吸引力的内在关系、存在的区别以及重力大小、重力方向以及重心的概念等相关知识与概念进行引入.在教学中,教师要明确教学目标,设置有效的问题,合理地安排n程,从而提高教学效果.

总之,概念转变教学在高中物理教学中的应用有着显著的效果.在教学过程中,教师要更新教学观念,优化概念转变教学模式,转变学生自身的思维模式,提高学生对各种物理概念的认知与理解.

概念转变教学理论例9

一、前概念的分类

关于前概念的分类,不同的学者基于不同的角度给出不同的分类。比如李高峰、刘恩山(2007年)依据前概念产生的时间,将其分为原发性前概念和继发性前概念;依据前概念的状态,将其分为空壳概念、不完整概念、异质性概念、条件缺失概念、绝对化概念,[1]等等。笔者基于前概念的意义,即诊断学生的前概念旨在实现向科学概念的顺利转变,故而依据前概念与科学概念的差异度,将前概念分为:与科学概念完全一致的前概念、与科学概念部分一致的前概念、与科学概念完全不同的前概念。

(一)与科学概念完全一致的前概念

在数学概念教学中,这类前概念与科学概念完全一致,如“1天有24个小时”“1年有12个月”等等,这些概念学生在日常生活中早已接触,并且已经掌握。这类前概念对数学学习是有促进作用的,其为科学概念的学习和掌握奠定了扎实的基础。在教学过程中,教师可以不把这些前概念作为教学重点,只要适当提及、引出即可,以便合理安排教学时间。

(二)与科学概念部分一致的前概念

这类前概念与科学概念部分一致,学生头脑中已经知道这些概念,只是存在一定的偏差,需要进一步完善。如“圆的认识”,“圆”是日常生活中最常见的图形,也是小学生最熟悉的一种图形。学生对“圆”的认识与“圆”的科学概念大体一致,但是,小学生经常将“球形物体”看作是“圆形物体”。因此,教师在教学中,对这类与科学概念部分一致的前概念要加以重视,需要通过一定的教学干预来丰富或修正学生的前概念。

(三)与科学概念完全不同的前概念

这类前概念与科学概念完全不同,又称错误概念,如小学生认为“角的大小和它的两边画的长短有关” “长方形的周长越大,面积就越大”等等,这类错误的前概念会影响科学概念的学习,会阻挠科学概念的顺利形成,它们是学生犯错的地雷区,是教师教学的挑战点。在教学过程中,教师应该花大力气将这类前概念合理转变为科学概念,这是教学的难点,也是学生学习的关键点。如果这类前概念不能很好地实现转变,不但妨碍对新知识的理解,而且后患无穷――会使后续学习产生新的错误概念。

综上所述,教师应该把教学的重点和难点定位在后两类前概念上。与前概念的类型相呼应,概念转变主要有两种途径:一是充实,二是重建。[2]充实是指在现存的概念结构中概念的增加或删除,仅仅涉及量的变化,主要指向“与科学概念部分一致的前概念”;重建是指摧毁旧的概念结构,创造新结构,它是一种质的变化,主要指向“与科学概念完全不同的前概念”。在小学数学概念教学中,教师不但要学会分析前概念的类型,而且要依据不同的类型提供不同的概念转变途径,使前概念能更好地转变为科学概念。

二、前概念的诊断

学生前概念的诊断方法有很多,小学数学教师熟悉的或者经常使用的方法有:提问法、访谈法、画图法,等等。还有一些方法,教师可能不太熟悉,却能有效诊断学生数学学习的前概念,笔者在此稍作简单介绍。

(一)概念图分析

奥苏伯尔指出:为了使学习有意义,学习者个体必须把新知识和已有的概念联系起来。这里的“已有的概念”事实上就是本文提及的“前概念”。概念图是康乃尔大学的诺瓦克博士根据奥苏伯尔的有意义学习理论提出的一种教学技术,是一种知识的组织与表征的方式,能有效地联结前概念和新知识。概念图分析一般有两个步骤,首先给学生一组概念,让学生进行画线连接;然后教师对这些连线进行深入分析,了解学生的前概念。如教学“角的初步认识”这一课之前,教师可以指导学生制作“角”的概念图,了解学生对这一概念的理解程度,清楚学生对“角”的前概念,找到合适的教学切入点。

(二)二段式诊断测试

二段式诊断测试是国际上常用的问卷测试方法,该测试包括两个部分:第一部分评价学生的具体知识,一般由选择题构成,选项包含正确答案和错误答案;第二部分评价学生对知识的理解,即针对第一部分提供原因解释,由选择题或填空题构成,要求学生说明选择该项的理由。并必须同时答对第一、二部分的选项,才能视为正确。与普通问卷测试相比,二段式诊断测试可减少学生猜题倾向与机会,施测结果更能表现学生内心的真实想法,更能准确测出学生的前概念。

(三)确定性指数分析

确定性指数 (Certainty of Response Index,简称 CRI) 是Saleem Hasan、Diola Bagayoko和Ella L Kelley(1999年)提出的,他们认为教师在教学过程中区分学生“知识的缺乏”和“错误概念”非常重要,于是他们通过确定性指数分析来诊断学生的错误概念。[3]具体操作步骤如下:首先,学生对某题作出选择;然后,学生对自己作出的选择进行确定性评价,即给定 CRI值。CRI值域是0~5,随着数值的增加,确定性程度逐渐加强,其中0表示完全猜测,1表示几乎是猜测,2表示不肯定,3表示肯定,4表示几乎确定,5表示确定,而中间值2.5作为衡量标准,低于2.5表示低确定性,高于2.5表示高确定性。确定性指数分析即依据学生作出的选择和CRI值进行分析,当确定性指数低于2.5,不论是正确或是错误的回答,都可以诊断为缺乏知识;当确定性指数高于2.5,正确的回答可以诊断为具有正确概念,而错误的回答则诊断为具有错误概念(如表1)。确定性指数分析可以帮助教师诊断学生前概念的类型,尤其对错误概念的诊断具有重要意义。

最后,补充说明一下前概念诊断方法的时效性。一般而言,上述各种方法既可以安排在教学前,也可以安排在教学后,当然,不同时间的安排意义是截然不同的。教学前的诊断,目的往往是了解学生的前概念,以便及时进行教学干预;教学后的诊断,往往是探测学生通过教学是否已将前概念(尤其是错误概念)成功转变为科学概念,以便为有效的概念转变教学提供良好的反馈。

三、前概念的教学干预

前概念的教学干预,实则进行合理的概念转变教学。教师分析前概念的类型,诊断学生的前概念,旨在教学过程中进行合理的概念转变,使学生的前概念能顺利转变为科学概念。从建构主义的角度看,概念转变教学是学生前概念改变、发展和重建的过程,这是一个十分复杂的认知建构过程,教师应注意以下几点。

(一)创设认知冲突点

波斯纳等人在皮亚杰认知建构理论和库恩“范式更替观”的基础上,提出了概念转变学习的条件理论。[4]为了促使学生进行概念转变,他们认为必须提供4个条件:①对已有概念的不满;②新概念的可理解性;③新概念的合理性;④新概念的有效性。其中第一个条件“对已有概念的不满”是概念转变的前提条件,也是4个条件中唯一关注“已有概念”的条件。学生只有感到自己的某个概念失去作用,他才可能改变原概念。也就是说,在小学数学概念学习中,学生只有对自己已有的前概念产生不满,才有可能进一步促进概念转变,该条件是概念教学的起始点,也是教师进行教学干预的落脚处。

那么,如何让学生对已有概念产生不满呢?最好的做法是――创设认知冲突。认知冲突是一种认知矛盾,在学生原有认知结构和新知识之间产生的无法包容的矛盾,也是学生前概念和新概念之间最初的“不协调”。教师只有深入了解学生的前概念,才能合理创设认知冲突点,并且,认知冲突越强烈,学生对已有概念的不满也会越强烈,这点与我们生活中的其他“冲突”案例有异曲同工之处。

从认知冲突产生的原因来看,认知冲突大致分为两类:第一类是与实验结果相冲突,即学生通过动手操作,发现实验结果与预测(前概念)截然不同;第二类是与他人观点相冲突,即学生通过讨论、对话等形式,发现自己的观点与他人的观点有明显差异。此处“他人”的观点,在课堂情境中,既包括教师的观点,也包括其他学生的观点。教学过程中,教师应重视学生之间观点的冲突,那是实现概念转变教学的契机。钟启泉教授指出:“处于同样认知水准的同学之间通过略有差异的观点与认识的碰撞,各自产生内部的认知冲突,这种认知矛盾的解决将会引起每―个个体内部的知识的重新建构”。[5]针对这两类认知冲突,教师在教学过程中应依据客观情况创设冲突情境,既可以创设需要学生实际操作的实验情境,也可以创设小组合作的讨论情境,还可以通过教师直接提问创设冲突点,激发学生的求知欲和探索心向。当然,情境的创设往往是综合的,很多冲突情境既有师生对话,又有生生对话,更有动手操作。如教学“角的大小”时,为了转变学生的错误概念“角的大小和它的两边画的长短有关”,教师可以创设这样一个问题情境:“同学们,你们觉得鳄鱼妈妈(见图1)的嘴巴张得大,还是鳄鱼宝宝(见图2――图1的缩小版)的嘴巴张得大?”在这个过程中不同的学生会呈现不同的答案,那些有着错误前概念的学生会产生认知冲突,教师可以引导学生合作学习,进行充分的生生对话,最后通过实验测量得出正确答案。

(二)读懂概念“时空区”

有人把前概念表述为“发展中概念”(Developing Conception),确实,概念转变不是一朝一夕、一蹴而就的事情。学生的认知发展及前概念自身的发展都要经历一片时空区。概念转变教学中,教师不能急于求成,要学会读懂学生概念的“时空区”,要学会包容学生的错误概念,真诚地等待学生的生长,保持良好的教学心态。

学生的认知发展有一片时空区。概念转变是一个不断发展、深化的过程,对同一个事物受制约于前概念的影响,不同年龄阶段的学生会出现不同的认知结果。奥苏伯尔认为:当学生认知尚不成熟、心理准备尚未充分的情况下,强迫学生进行概念学习,必然会使学生产生错误概念。如吴娴等人作过一项关于儿童对于速度概念的研究,结果发现:低年级儿童的速度概念有其特殊性,并不是以度量的形式出现,而是以序数的形式出现,具有位置决定倾向。幼儿园大班学生的速度概念持明显的位置决定论;一年级学生的速度概念与幼儿园大班学生相比,有一定的进步;三年级学生的速度概念与幼儿园大班学生相比,有了很大提高,超过半数的学生不再持位置决定论,能够对运动物体进行动态分析,表现出对距离和时间的综合考虑。[6]学生前概念的发展也有一片时空区。前概念一旦形成,就会有思维定势,在学生头脑中根深蒂固,具有 “顽固性”,因而前概念向科学概念的转变并不是一帆风顺的。甚至学生在学习科学概念后,前概念仍然很难在一个有限的学习时间里彻底消除,很容易形成反复,并且先前的知识结构还会对新的知识结构产生负面影响,出现负迁移。由此可见,前概念的发展轨迹错综复杂,时空感很强。如教学“分数除法”时,对于“2除以等于8”,某生不能理解,疾呼:“商怎么可能比被除数大,简直没有逻辑!”教师这时不能简单批评该生。事实上,该生的观点是符合其自身概念转变路径的,该生带着前概念进入课堂,认为“除法意义”要沟通“除法与平均分”的联系,此时,该生正在沟通“除法与平均分”的联系,他不能理解“分到的东西居然比要分的东西还多”。这个案例中,生活化与数学化的矛盾出现了,有些数学内容是很难用具体的生活情境加以解读的,而学生的前概念仍停留在生活化的数学中,在前概念和科学概念之间找不到合适的桥梁过渡的时候,怎么办?有些学生就简单地背诵分数除法的计算法则:甲数除以乙数(零除外),等于甲数乘以乙数的倒数。这也不失为一种方法!这个案例中,还出现了“负迁移”,先前学习的科学概念却成为新知识的绊脚石!确实,这种情况也是存在的,我们知道,科学知识的发展和探索是永无止境的,当新的科学理论出现时,旧理论往往就成为与“科学概念部分一致的前概念”。

教师在这个过程中,能做什么呢?首先,当然是读懂概念的“时空区”,对学生的认知发展和前概念的发展轨迹,做到知根知底。其次,教师在了解的基础上,应该具有一种大气的心态,能包容学生由于这方面的原因而犯下的错误,还能在概念时空区里耐心等待,静静地聆听花开的声音,直到瓜熟蒂落。

参考文献:

[1]李高峰,刘恩山.前科学概念的研究进展[J].内蒙古师范大学学报(哲学社会科学版), 2007(04): 62~67.

[2] Hsiao―Ching She.Fostering Radical Conceptual Change through Dual-Situated Learning Model[J]. Journal of Research in Science Teaching,2004. (2):142~164.

[3] Saleem Hasan,Diola Bagayoko,and EllaL Kelley.Misconception and the certainty of response index(CRI)[J].Phys.Educ,1999,34(5):194~299.

[4]GJ.Posner,K. A. Strike,P. W. Hewson,W. A. Gertzog. Accommodation of a scientific conception: Toward a theory of conceptual change[J].Science Education,1982. 66:211~227.

[5]钟启泉.社会建构主义:在对话与合作中学习[J].上海教育,2001(7):45~48.

概念转变教学理论例10

学生在幼年时期,通过对生活的观察,他可能自发地产生了“玻璃珠比树叶下落的快”、“小车没人推就会停下来”这样的感性认识。我们就把在教师进行教学之前,学生已经持有的非本质的感性认识,称为教学前概念,简称为前概念。

1。2 “前概念”是力学中的特有现象吗?

通过我列举的两个例子,可能有人会认为前概念仅仅是力学中的特有现象,事实就是这样吗?从我教学实验的学生问卷中,我简单列举几例: ①鸡蛋碰石头,鸡蛋破碎的原因是石头对鸡蛋的力比鸡蛋对石头的力大。②电源越多,功率越大。经过的电灯越多,电流就越小。③任何环境下,凹镜都会发散光线,凸镜会汇聚光线。④冬天,同处于室外的铁块和木块,铁块更冷一些⑤磁铁只能够吸引铁,对别的物质无能为力。⑥气体分子间斥力产生了气体压强。⑦分子热运动,会改变物体的形状。⑧在LC震荡电路中,学生认为刚放电瞬间,既然电压最大,那么电流也应该是最大。

通过对学生的问卷调查,我发现,几乎所有的物理学分支,如力、电、光、热、原子、电磁,都有大量的前概念的存在。

1。3 前概念仅仅来源于生活吗?

在上文中,我曾经举过的一些例子,诸如“气体分子间斥力产生了气体压强”,“分子热运动,会改变物体的形”。这些事例都在明确的告诉我们:前概念并不仅仅来源于生活经验,由之前教学所产生的知识的“负迁移”也是产生前概念的重要原因。在物理学习中,思维定势造成的知识负迁移并不罕见,因为学生总是倾向于用原有概念去解释新的物理现象。

1。4 前概念对建构科学概念产生的负作用

在高一的教学中,我曾经做过一个关于惯性的教学调研,高一学过惯性概念后的学生的错误率超过了初三刚毕业未学过惯性的学生。这对我们提出了严重的警告,那就是如果我们的教学不能克服前概念的负作用,将使得学生无法建立科学概念同时对将来的学习也带来严重的后果。

2 传统“接受式”教学理念可以治愈前概念的负作用吗?

在“接受式”理论的指导下,我们过去的物理教学并不成功。教师的教学设计,仅关注物理概念本身,却忽略了学生在日常生活和之前的教学中早已产生了大量的前概念。这些前概念对科学概念的建立起到了负作用,导致学生概念紊乱,而紊乱的概念又必定导致学生对物理本质理解的紊乱。

叶圣陶先生说,学生绝非“空瓶子”,等着“揭开瓶盖”,把各种知识,各项概念条目装进去,学生是生命主体,本身就具有萌发生长的机能,只要给以适宜的培育和护理,就能自然而然的长成为佳果、美蔬、好树、好花。

大量的研究用事实向我们表明表明:传统的教学模式对改变学生头脑中错误的前概念的贡献是微乎其微的。这使得我们必须审视原有教学模式的缺陷,引入更为科学的有利于前概念转变的教学模式,这在当前的物理教学中,显得尤为迫切。

3 前概念转变理论和策略

3。1 理论依据

①奥苏伯尔就曾这样说过:如果我不得不将所有的教育心理学原理还原为一句话的话,我将会说,影响学习的最重要因素是学生已经知道了什么,然后根据学生的原有知识状况进行教学。我们想要要“治愈”前概念的负作用,我们必须了解学生在新概念建立之前已经产生了哪些前概念。

②维果茨基认为:学生现已经达到的层次,既前概念层次。学生付出努力后可以达到的层次,既科学概念层次。他继而提出了“最近发展区理论”:科学概念的发展和前概念的发展层次并不一样,在科学概念领域学生所能达到的理解层次要高于前概念里的理解层次。而二者之间的差距即为“最近发展区”。如果我们能够在教学中为学生创设一个理想的“最近发展区”,使之成为前概念与科学概念相互联系的桥梁,将有助于学生认知层次的提高。例如讲述电场时可以与重力场进行类比,起到“最近发展区”的作用。

③皮亚杰的“发展认知理论”认为:平衡是在知识建构过程中的一种心理状态,当学生已有的认知结构能够轻松地同化环境中的新经验时,就会感到平衡,否则就会感到失衡。心理状态的失衡驱使个体采取行动调整或改变现有的认知结构,以达到新的平衡。

3。2 前概念转变策略

由上述理论可知,概念教学的本质就是前概念与科学概念相对地位的转变。我们可以通过以下三个步骤来完成前概念向科学概念的转变。

第一步:暴露学生的前概念(诊断阶段)。应采用延迟性的评价原则,待所有学生的观点都暴露后,再提出矛盾,以免暴露不彻底有所遗漏。

第二步:产生认知冲突(冲突阶段)。产生认知冲突,引起学生对前概念的怀疑是物理概念转化的最好的契机和最原始的动力。所谓“学贵有疑,大疑则大悟,小疑则小悟,不疑则不悟。”说的就这这样的意思。

第三步:引导认知顺应(建构阶段)。认知顺应是概念转化的关键,在顺应中矛盾消失达到心理平衡。可以通过讨论和实验,肯定一些观点,否定另一些观点,引导学生得到科学的概念。

孔子曾说:“不愤不启,不悱不发。”朱熹解释:“愤者,心求通而未得之状也;悱者,口欲言而未能之貌也。启,谓开其意;发,谓达其辞。” 这里的“愤悱”就是指学生产生认知冲突的状态,此时教师再去“启发”就能收到事半功倍的效果了。

4 转变案例:铁球和一张纸谁下落更快?

步骤1 暴露学生的前概念(诊断阶段)

①师演示:将铁球和纸片从相同的高度同时释放,请学生观察,哪一个下落的更快?

生回答:铁球比纸片下落更快。

②师提问:在距今两千三百多年的古希腊最伟大的科学家亚里士多德也得到了和我们相同的结论,请大家思考为什么铁球下落的更快?

学生回答:铁球比较重,下落的速度和重力有关(重力论)。或是铁球是圆的,纸片是矩形的,所以比较慢(形状论)。等等。

步骤2 产生认知冲突(冲突阶段)

①师提问:我们将铁球和小气球同时从相同的高度同时释放,如果“重力论”的同学是正确的,我们将观察到什么现象?[HJ1。65mm]

生回答:小铁球下落更快,符合“重力论”的观点。

②师提问:如果我们将铁球和气球拴在一起释放,如果“重力论”仍旧是正确的,我们又将观察到什么现象?

生回答:按“重力论”观点,由于总重量的增加,整体的下落速度应该大于小球单独的下落速度。

③师将铁球和气球连接并演示,提问:大家看到了什么现象?

生回答:整体的下落速度小于铁球的但大于气球的。说明“重力论”是错误的。

④教师将纸片捏成球状和铁球一起释放,提问:大家看到了什么?

生回答:一起落地,并欢呼:形状论是正确的。

⑤教师取一支真空管,放入纸片和纸球,提问:大家看到什么?

生回答:纸球和纸片同时下落,这说明“形状论”也是错误的。显得十分疑惑。

步骤3 引导认知顺应(构建阶段)

①师提问:在我们关注“重力”、“形状”等因素的时候,我们是否忽略了什么?

生回答:我们似乎没有考虑空气阻力。

②师提问:那么真相究竟是什么呢?

生回答:如没有空气阻力,轻重物体应该同时下落。

③教师将铁球和纸片同时放入真空管,并演示。

学生观察到想要的现象后,非常兴奋。

④教师总结:总结:在距今大约四百年前,意大利科学家伽利略利用实验和逻辑推理的方法得到了和我们相同的科学结论。

5 启示与不足

(1)前概念理论的研究始于1903年,由美国教育心理学家霍尔(Stanley Hall)启动一调查。上世纪八十年代后,查朴尼教授和E・Mazur相继提出了以对话为基础的教学策略“对抗与偏见”和“课堂激活式”教学方法,前概念理论得到了进一步的发展和完善。我国从上个世纪九十年代开始前概念理论的研究,与国外相比介入较晚,未形成全面的理论,相应的教学实践也很少。