期刊在线咨询服务,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

期刊咨询 杂志订阅 购物车(0)

高强混凝土论文模板(10篇)

时间:2023-03-30 11:39:23

高强混凝土论文

高强混凝土论文例1

中图分类号:TU312;TU398

文献标志码:A文章编号:1674-4764(2016)05-0020-07

Abstract:Based on the unified strength theory and the influences of intermediate principal stress and the material of tension and compression ratio were considered when coming down to the ultimate bearing capacity of square steel tube-reinforced high strength concrete column. Effective constraint coefficient and ineffective constraint coefficient were introduced to consider the different constraint functions of concrete derived from the stirrups, the constraint concrete outside steel tube was divided into effective constraint region and ineffective constraint region. The square section was equivalent to circular section to consider the double constraint function to concrete in steel tube derived from steel tube and outer steel reinforced concrete. Then a new method for the axial ultimate bearing capacity of square steel tube-reinforced concrete column was deduced. The results were in good agreement with the experimental results and the correctness of the theory formulae was proved. Influential effects of some parameters were analyzed and the analysis results showed that the ultimate bearing capacity of square steel tube-reinforced high strength concrete column increased with the increase of the side pressure coefficient. Influence coefficient of intermediate principal stress, the material of tension and compression ratio and the longitudinal reinforcement ratio, while it decreases with the increase of radius-thickness ratio.

Keywords:steel tube-reinforced concrete column;stirrup constraint; strength theory; ultimate bearing capacity

高强钢管混凝土叠合柱是由截面中部的高强钢管混凝土柱和钢管外的钢筋混凝土叠合而成的柱,也可以看成是在钢筋混凝土内置钢管混凝土而成的柱,内截面钢管形式有圆钢管、方钢管和矩形钢管,又可称为核心高强钢骨混凝土组合柱。高强混凝土有强度高、变形小的优点,但其延性差、脆性大,不利于抗震;将其与钢管结合,可以充分发挥二者的性能,同时也具有较好的变形能力、较大的刚度和良好的抗火性能等优点,经济效益良好[1-2]。

国内外对钢管混凝土已经进行了较多的研究。Evirgen等[3]通过钢管混凝土柱的轴压试验,分析了宽厚比、混凝土强度等因素对钢管混凝土柱极限承载力、延性和屈曲行为的影响;Wang等[4]基于18根圆形钢管混凝土柱轴压和偏压的试验结果,详细地介绍了该型构件的失效模式、承载能力等性能;吕学涛等[5]对圆钢管钢筋混凝土短柱进行明火试验,分析了升温时间和配筋率对受火后钢管钢筋混凝土短柱剩余承载力、刚度和延性的影响规律。而对钢管混凝土叠合柱的研究相对较少:幸坤涛等[6]利用数值分析方法对高强钢管混凝土核心短柱在轴心受压时的荷载变形关系曲线进行了全过程分析;聂建国等[7]考虑核心钢管混凝土和普通混凝土受压性能存在的明显差异,分析了混凝土体积配箍率等因素对柱协同工作的影响;龙跃凌等[8]在分析核心钢管混凝土组合柱受力机理的基础上,同时考虑圆形截面和方形截面对钢管外混凝土的影响,对核心钢管混凝土组合柱承载力进行了分析;郭全全等[9]进行了叠合柱短柱偏心受压试验,并基于试验采用截面极限平衡理论提出了叠合柱偏心受压短柱的正截面承载力公式;徐蕾等[10]利用有限元分析软件和试验结果对钢管混凝土叠合柱火灾下的温度特性和力学性能进行了研究。

目前,对于高强钢管混凝土叠合柱轴压承载力的计算,部分研究只考虑钢管对混凝土的约束作用而未考虑箍筋的约束作用;部分考虑钢管对混凝土的约束作用和箍筋对混凝土的约束作用,但均未考虑混凝土对钢管内混凝土的约束,即未考虑钢管内混凝土受到的双重约束。在实际工程中,叠合柱配箍量较多,在达到极限状态时,箍筋约束混凝土不会过分剥离,能和钢管内混凝同承担荷载。而尧国皇[11]的有限元结果也表明钢管核心混凝土受到钢管和钢筋混凝土的双重约束,其承载力比同样条件下普通钢管混凝土中混凝土要大。因此,考虑内部混凝土受到的双重约束作用是有必要的。本文以内配圆钢管的方形截面高强钢管混凝土柱为研究对象。构件处于较高应力状态时,箍筋约束混凝土角部受到约束强,边缘中部受到的约束弱,对箍筋约束混凝土利用Mander模型[12]进行有效约束区和非有效约束区的划分,推导出有效约束区系数和非有效约束区系数,同时,本文考虑钢管核心混凝土受到钢管和钢筋混凝土的双重约束效应,基于统一强度理论对钢管和钢管约束混凝土承载力分析,推导出方形截面高强钢管混凝土叠合柱的轴压极限承载力,与文献试验值对比验证,并分析了径厚比、中间主应力影响系数、材料拉压比、纵筋配筋率、侧压系数的影响特性。

1 双剪统一强度理论

俞茂宏以双剪单元体和双剪屈服准则为基础,考虑应力状态的所有应力分量以及它们对材料屈服和破坏的不同影响,建立了一个全新的强度理论和一系列新的典型计算准则。统一强度理论包含了无限多个计算准则,几乎可以适用于各种材料,应用十分方便。其表达式为[13]

2 极限承载力的计算

2.1 箍筋约束钢管外混凝土承载力

实际工程中,构件达到极限状态时,内部钢管的横向变形较小,故不再考虑钢管变形对箍筋约束混凝土的影响[1]。研究表明,方形截面的箍筋对混凝土约束较弱,且对混凝土的约束不均匀,仅在箍筋转角处对混凝土有较大的约束[8]。箍筋约束混凝土有效约束区和非有效约束区划分如图1所示。

基于文献[8]的假设:箍筋对其约束混凝土的约束应力均匀分布,则箍筋受力如图2所示。

2.3 钢管约束混凝土的承载力

基于文献[8]的结论,本文考虑钢管混凝土对钢管混凝土的约束作用。且箍筋对混凝土的约束作用均匀分布。而方钢管对于混凝土的约束效应,等同于间距为零的箍筋对混凝土的约束承载力的效应。方钢管轴压承载力的计算过程中,认为钢管对混凝土的约束也均匀分布[18]。箍筋约束混凝土和厚度与箍筋直径相同的钢管约束混凝土,二者不同的是侧面对于混凝土的约束:钢管是连续的,箍筋是间断的。本文在方钢管的基础上引入侧向约束系数ke2来考虑箍筋对混凝土约束的不均匀性,从而将箍筋约束混凝土转化为方形钢管约束混凝土。

按照截面面积和含钢率相等将方钢管的有效约束应力等效为圆形钢管混凝土的侧压力p,则混凝土和钢管受力如图3所示。

2.4 钢管混凝土叠合柱轴压承载力

在构件达到极限承载力之前,外侧的保护层混凝土早已被压碎[21],因此,在本文计算承载力时不再考虑混凝土保护层对极限承载力的贡献。并且在构件达到极限承载力时钢管和纵向钢筋已经屈服。方形高强钢管混凝土叠合柱的承载力由箍筋约束钢管外混凝土、纵筋、钢管、钢管约束混凝土构成。计算公式为

3 算例验证与分析

3.1 计算结果对比

由于钢材的拉压强度相近,取拉压比为α=1,取k=2.1,b=1时[16],将文献[22]和文献[23]中的部分试验数据代入式(21)中进行计算并与试验值对比,结果见表1。

3.2 影响因素分析

3.2.1 侧压系数和纵向配筋率的影响

取文献[22]中试件FZ-2和FZ-3柱为对象,取不同的侧压系数k值(1.5、2.0、2.5、3.0)以及不同的纵向钢筋配筋率(0.85%、1.15%、1.51%),得到的极限承载力的变化情况如图4、图5所示。

试件破坏时,纵筋已经屈服[8],在一定范围内,纵向配筋率的增加会贡献更多的承载力。图中也可以看出:承载力随着纵向配筋率的增大而增大;侧压系数越大,对混凝土的约束越强,故承载力越大。经分析,k值每增大1,承载力约提高917 kN。

3.2.2 钢管径厚比对极限承载力的影响

径厚比的影响主要表现在对核心混凝土的约束作用上。径厚比不同,其对混凝土的约束作用就不同,钢管径厚比越大,其对混凝土的约束作用越弱,反之,约束作用越强。以文献[22]中FZ-1柱,采用不同的径厚比,得到的承载力变化如图6所示。

由图6可知,随着径厚比的增大,极限承载力逐渐变小,并且减小的速率越来越慢。故为获得较大的承载力,钢管的径厚比不宜过大。

3.2.3 材料拉压比α与中间主应力影响系数b的影响

以文献[22]中试件FZ-2为例进行分析,取α分别为0.8、0.9、1.0,取b分别为0、0.2、0.4、0.6、0.8、1.0进行承载力的计算,如图7所示。

由图可见,在中间主应力系数b不变的情况下,承载力随着α值的增加而增加;在材料拉压比α不变的情况下,中间主应力系数b越大,承载力越高;而理论上b值越大,极限面也越大,理论与试验分析相吻合。在中间主应力增加量相同的情况下,材料拉压比越大,承载力曲线斜率越大,即承载力增加越多。综上所述,中间主应力和材料拉压比对承载力有影响,故计算时考虑二者对承载力的影响会使结果更加精确。

4 结 论

1)基于双剪统一强度理论,综合考虑了材料拉压比、中间主应力的影响,并且考虑了内部混凝土受到的双重约束作用,推导出了高强钢管混凝土叠合柱轴压承载力的计算公式。该公式能合理的考虑材料的实际性能,又能真实的反应构件各部分的受力状况。通过试验值与本文理论计算值的对比,证明本文推出的方形高强钢管混凝土叠合柱轴压极限承载力计算方法是正确的。

XU L,LIU Y B.Research on fire resistance of CFSTRC subjected to fire [J].Journal of Building Structures,2014,35(6):33-41. (in Chinese)

[11] 尧国皇.钢管混凝土叠合柱轴压工作性能研究[D].北京:清华大学,2012.

YAO G H.Research on performance of concrete-filled steel tube reinforced concrete columns [D].Beijing:Tsinghua University,2012. (in Chinese)

[12] MANDER J B,PRIESTLEY M J N,PARK R.Theoretical stress-strain in model for confined concrete [J].Journal of Structural Engineering,1988,114(8):1804-1826.

[13] 俞茂宏.混凝土强度理论及其应用[M].北京:高等教育出版社,2002.

YU M H.Concrete strength theory and its engineering application [M].Beijing:Higher Education Press,2002. (in Chinese)

[14] VARMA A H,SAUSE R,RICLES J M,et al.Development and validation of fiber model for high strength square concrete filled steel tube beam-columns [J].American Concrete Institute Structural Journal,2005,102(1):73-84.

[15] 吴鹏,赵均海,李艳.方钢管混凝土短柱轴压极限承载力研究[J].四川建筑科学研究,2013,39(3):8-13.

WU P,ZHAO J H,LI Y,et al.Study on the axial ultimate bearing capacity of square concrete-filled steel tubular,stub column [J].Sichuan Building Science,2003,39(3):8-13. (in Chinese)

[16] 赵均海.强度理论及其工程应用[M].北京:科学出版社,2003.

ZHAO J H.Strength theory and its engineering application [M].Beijing:Science Press,2003. (in Chinese)

[17] 中国土木工程学会高强与高性能混凝土委员会.高强混凝土结构设计与施工指南[M].2版.北京:中国建筑工业出版社,2001.

China Civil Engineering Society High Strength and High Performance Concrete Committee.High strength concrete structure design and construction guide [M].2 Edition.Beijing:China Building Industry Press,2001. (in Chinese)

[18] 令昀,赵均海,李艳.PBL加劲型方钢管混凝土短柱轴压承载力统一解[J].钢结构,2014,29(10):13-17.

LING Y,ZHAO J H,LI Y.Unified solution of ultimate bearing capacity for concrete-filled steel square tubular short column stiffened with PBL [J].Steel Construction,2014,29(10):13-17. (in Chinese)

[19] 王仁,熊祝华,黄文彬.塑性力学基础[M].北京:科学出版社,1982.

WANG R,XIONG Z H,HUANG W B.Foundation of plastic mecghanics [M].Beijing: Science Press,1982. (in Chinese)

[20] 过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,2003.

GUO Z H,SHI X D.The principle and analysis of the reinforced concrete [M].Beijing:Tsinghua University Press,2003. (in Chinese)

[21] 谢晓锋.高强钢管(骨)混凝土核心柱轴压性能的试验研究[D].广州:华南理工大学,2002.

XIE X F.An experimental research on the composite column with core of high-strength concrete-filled steel tube under axial compression [D].Guangzhou:South China University of Technology,2002. (in Chinese)

[22] 蔡健,谢晓锋,杨春,等.核心高强钢管混凝土柱轴压性能的实验研究[J].华南理工大学学报(自然科学版),2002,30(6):81-85.

高强混凝土论文例2

混凝土是目前世界上用途最广、用量最大的建筑材料。它在建筑工程、公路工程、桥梁和隧道工程、水利及特种结构的建设领域中发挥着不可替代的作用。任何混凝土结构物主要都是用于承受荷载或抵抗各种作用力,强度是混凝土最重要的力学性能。通常用强度来评定和控制混凝土的质量以及评价各种因素影响程度的指标。本文就影响水泥混凝土强度的因素做简单的分析。

1水泥对混凝土强度的影响

水泥混凝土中的活性成分,其强度大小直接影响着混凝土强度的高低。混凝土抗压强度与混凝土使用的水泥强度成正比,在配合比相同的情况下,所使用的水泥强度越高,制成的混凝土强度越高。水泥混凝土的影响取决于水泥的化学成分及细度。水泥强度主要来自于早期强度及后期强度,而且这些影响贯穿于混凝土中。用早期强度较高的水泥来制作混凝土,其强度增长较快,但在后期可能以较低的强度而告终。而无论通过改变成分、养护条件或者利用外加剂而比较缓慢地水化,都可使水泥产生较高的最终强度。

水泥细度对混凝土强度的影响也很大。随着细度增加,水化速率增大,就导致较高的强度增长率。但应避免细磨粉的含量。因为当颗粒很细时,间隙水可引起一些高W/C区域。

而水泥质量的波动对混凝土强度的影响,应引起注意。水泥厂生产的同一品种同一标号的水泥,不可避免地会在质量上有波动。水泥质量的波动,毫无疑问地在混凝土强度上反映出来。采用具有相同平均强度而离散系数小的水泥,可以降低混凝土的水泥用量。水泥质量波动大多是由于水泥细度和早期强度的差异引起的。而这些因素在早期的影响最大。随着时间的延长其影响就不再是最重要的了。即水泥质量波动引起的混凝土强度的标准离差,不随龄期而增大,但混凝土强度的离散系数却因强度随龄期的增大而减小。因此,水泥质量波动对混凝土早期强度影响大。

2水灰比对混凝土强度的影响

从混凝土强度表达式也看出,C/W即水灰比也与混凝土强度成正比,即水灰比越小,混凝土强度越高;水灰比越大,混凝土强度越底。水灰比和混凝土的捣实程度,两者都对混泥土体积有影响,水灰比-孔隙率关系无疑是最重要的因素。它影响着水泥浆基体和粗骨料间过渡区这两者的孔隙率,水泥在水化过程中的孔隙率取决于水灰比,水灰比和混凝土的振捣密实程度两者都对混凝土体积有影响,充分密实的混凝土在任何水灰比程度下的毛细管空隙率由水灰比所确定。当混泥土混合料能被充分捣实时,混凝土的强度随水灰比的降低而提高。在使用同种水泥的情况下,水灰比越小,与骨料粘结力越大,混凝土强度越高。

3粗集料对混凝土强度的影响

集料极重要的参数是集料的形状、结构、最大尺寸及级配。集料本身的强度不太重要,因为集料强度一般都要高于混凝土的设计抗压强度。在承载时混凝土中集料所能承受的应力大大超过混凝土的抗压强度。

骨料颗粒强度比混凝土基体和过渡区的强度要大。大多数天然骨料,其强度几乎不被利用,因为破坏决定于其它两项(水泥浆基体及过渡区)。一般而言,强度和弹性模量高的集料可以制得质量好的混凝土。但过强、过硬的集料不但没有必要,相反,还可能在混凝土因温度或湿度等原因发生体积变化时,使水泥石受到较大的应力而开裂。

骨料颗粒的粒形、粒径、表面结构和矿物成分,往往影响混凝土过渡区的特性,从而影响混凝土的强度。

级配良好的粗骨料改变其最大粒径对混凝土强度有着两种不同的影响。水泥用量和稠度一样时,含较大骨料粒径混凝土拌和物比含较小粒径的强度小,其集料的表面积小,所需拌和水较少,较大骨料趋于形成微裂缝的弱过渡区,其最终影响随混凝土水灰比和所加应力而不同。在低水灰比时,降低过渡区孔隙率同样对混凝土强度一开始就起重要作用。在一定拌和物中,水灰比一定时抗拉强度与抗压强度之比将随粗骨料粒径的降低而增加。试验表明,增加骨料粒径对高强混凝土起反作用,低强度混凝土在一定水灰比时,骨料粒径似乎无大的影响。另外,在同一条件下,以钙质代硅质骨料会使混凝土强度明显改善。

4细集料对混凝土强度的影响

细集料品种对混凝土强度的影响程度比粗集料小,所以混凝土公式中没有反映砂对混凝土强度的影响,但砂的质量对混凝土强度也有一定影响。由于施工现场砂石质量变化相对较大,因此现场施工人员必须保证砂石的质量要求,并根据现场砂含水率及时调整水灰比,以保证混凝土配合比,不能把试验配合比与施工配合比混为一谈。

5混凝土工艺对混凝土强度的影响

混凝土工艺对混凝土强度的影响主要包括:

5.1工艺中使用活性矿物掺合料对混凝土强度的影响。粉煤灰和矿渣等掺合料对混凝土强度有较大作用,特别对于大体积混凝土,能降低水化热,减少混凝土内部微裂缝的产生,提高后期强度;

5.2工艺中使用特殊功效的外加剂对混凝土强度的影响。最常见的混凝土外加剂为减水剂,减水剂对混凝土强度至关重要,由于拌制混凝土需要一定的流动性才能施工,传统混凝土中总的加水量是水泥水化所需水分的两倍以上,水化多余的水分从混凝土内部迁移出来形成大量的空隙,至使混凝土强度降低,减水剂的作用是保证混凝土混合料在流动性及和易性的基础上降低混凝土拌合用水量,减低水灰比,从而提高混凝土强度。

6混凝土施工技术对混凝土强度的影响

混凝土施工技术对混凝土强度的影响主要包括:模板对混凝土强度的影响。模板及支架在在施工中出现问题,将会直接影响水泥混凝土的强度;混凝土浇筑质量对混凝土强度的影响。在施工过程中必须把混合物搅拌均匀,浇筑后必须振捣密实,且经良好的养护才能使混凝土硬化后达到预定的强度;拆模对混凝土强度的影响。混凝土强度不足时,过早拆除支撑模板,过早荷载作用或者超堆荷载会使混凝土粱、板产生裂缝,导致强度降低;混凝土养护质量对混凝土强度的影响。混凝土成型后应在一定的养护条件下进行养护,才能使混凝土硬化后达到预定的强度及其他性能。

结束语

混凝土强度影响因素众多,本文根据理论分析和施工实践并结合众多工程经验,提出并总结了影响混凝土强度的几大因素。较全面的分析了这些因素对混凝土强度的影响。

高强混凝土论文例3

1 研究背景

合成纤维混凝土的研究及应用开始于20世纪60年代,在70年代得到了空前的发展。纤维对混凝土性能的提高,必须具备以下条件并且缺一不可:(1)分布均匀;(2)与混凝土的握裹性强;(3)材料本身抗腐蚀、抗碱集料反应强;(4)材质的抗拉强度好。通过以上条件来提高混凝土的抗碎、抗裂、抗折、抗冲击、抗渗水、抗疲劳等综合性能。在合成纤维中聚丙烯纤维的耐腐蚀性、强度、抗碱反应均优于其它纤维。

但是非常薄弱的一个特征是抗火性差,在火灾高温中爆裂的几率比普通混凝土大很多。因为混凝土的爆裂,使得钢筋外露在火灾中,而钢筋在火灾中很容易受热软化,导致承载能力急剧下降,导致构件、建筑物的危险程度大大提高。

因此在积极利用纤维混凝土甚至高强混凝土优点的同时,必须努力改善纤维混凝土的高温爆裂破坏性能。掌握高温后高性能混凝土力学性能和损伤规律,为全面地评价高温(火灾)后高性能混凝土结构性能变化和损伤程度提供理论依据,指导混凝土结构高温(火灾)后的合理而有效的加固修复,具有重要的理论意义和工程价值。

2 国外研究现状

国外对于聚丙烯纤维混凝土的研究,开始于20世纪60年代。纤维混凝土的研究应用与合成纤维技术的突破有非常重要的关联。九十年代以后,国外许多学者对聚丙烯纤维混凝土的抗弯性能、抗裂能力、弯剪性能、抗冲击性能分别作了研究。有关纤维混凝土的理论研究逐渐形成。

F.Hernandez-01ivares,G.Barluenga研究了表面粗糙的橡胶纤维在不同掺量下对高强混凝土高温爆裂性能的改善,发现橡胶的掺入有助于降低高强混凝土的高温爆裂的可能性,尽管抗压强度和韧性有所降低,但是降低量不大[1]。

Yer.Ottens(1975)、Waubke和Schneider(1973)、Zhukov(1976) 等对普通混凝土的研究表明:混凝土结构在火灾受热过程中可能发生毁坏性爆裂。对于脆性和密度更大、渗透性更低的一般高强高性能混凝土,爆裂更易产生,导致材料强度损失甚至构件坍塌,而且压应力越大,这种破坏越严重。

3 国内研究现状及成果

我国纤维混凝土的大规模应用是从钢纤维混凝土和玻璃纤维混凝土起步的。20世纪70年代纤维混凝土技术传入中国。20世纪90年代初,能够应用于纤维混凝土的有机纤维通过商业渠道流入我国,成为纤维混凝土在我国大量应用的契机。1998年6月26日,建设部科技发展促进中心(站)印发了《美国杜拉纤维技术研讨会纪要》,并由此推开了纤维混凝土在我国应用的崭新局面。

为了更加深入了解聚丙烯纤维对纤维混凝土高温性能的改变,国内相关专家针对聚丙烯纤维混凝土的高温性能做了大量的实验,得到了聚丙烯纤维混凝土高温下力学性能的许多重要结论。例如:

林志威的研究认为高性能混凝土具有低渗透性,在火灾高温下不可避免地发生爆炸。试验设计了144个掺有不同聚丙烯纤维(PPF)掺量的高性能混凝土立方体试块,在经历了20~800℃的温度后,研究高性能混凝土在高温后的物理、力学性能变化规律。最后分析了聚丙烯纤维影响混凝土高温后性能的机理[2]。

肖健庄设计了79块掺有聚丙烯纤维的C50,C80和C100高性能混凝土立方体试块。在经历了20~900℃的温度后,得出了外掺聚丙烯纤维高性能混凝土高温后的质量损失率和残余抗压强度,以及未发现高温爆裂的结论。分别针对试块尺寸、强度等级和经历温度等因素,研究了聚丙烯纤维高性能混凝土的高温抗压性能,通过统计回归分析,得出了可供工程设计和事故鉴定用的抗高温设计曲线[3]。

徐晓勇通过对聚丙烯纤维高强混凝土高温后力学性能的试验研究,探讨了聚丙烯纤维高强混凝土的抗压强度、抗拉强度和抗折强度在不同温度下的变化规律,并与高强混凝土火灾后性能变化规律进行比较,分析了聚丙烯纤维改善高强混凝土高温爆裂现象的机理,还阐述了聚丙烯纤维对高强混凝土受高温作用后力学性能的影响机理[4]。

朱江等人经过高温试验,发现聚丙烯纤维的加入能有效地改善高强混凝土和橡胶粉高强混凝土的高温抗爆裂性能,聚丙烯纤维与适量的橡胶粉混杂有利于提高橡胶粉高强混凝土的剩余抗压强度。

同时,他们通过实验比较,发现聚丙烯纤维与橡胶粉混杂的高强混凝土,其工作性能优于单一的聚丙烯纤维高强混凝土。通过对高温后试件爆裂表观形态的比较,发现聚丙烯纤维与橡胶粉混杂的高强混凝土与单一的聚丙烯纤维高强混凝土抗爆裂效果相近,但前者有更好的经济效益和环保作用。通过试件高温前后的立方体抗压强度试验,得到高温前后试件的抗压强度值,并通过剩余强度率比较了单掺聚丙烯纤维、单掺橡胶粉和二者混杂的试件高温后抗压强变化值,总结出800℃高温后聚丙烯纤维与再生橡胶混杂后的抗压强度剩余率高于橡胶粉高强混凝土。

4 结语

本文通过对国内当前不同掺量下的聚丙烯纤维混凝土在高温条件下的力学性质的研究成果进行简要探讨,主要有以下结论:

1 聚丙烯纤维混凝土增强高温抗压性能的原理为:在较高温度下,聚丙烯纤维熔融后,形成新的通道释放蒸汽压,避免了抗压强度过分损失甚至爆裂[1]。纤维混凝土的抗压强度随着聚丙烯纤维掺量的改变有稍微的变动,但影响不大。

2 聚丙烯纤维对混凝土劈拉性能的影响实质上是高温熔化后所留空洞的问题。一方面,与外界连通的孔洞为蒸汽压的释放提供通道,降低了热损伤,防止了高温爆裂,并有效改善了聚丙烯纤维混凝土的高温中劈拉性能;另一方面,孔洞的存在使混凝土基体内部缺陷增多,降低了聚丙烯纤维混凝土的高温中劈拉性能。 基于以上两种相反的作用效果,聚丙烯纤维掺量在适当范围内,融化产生的孔洞较少,引起的内部缺陷也较少,产生的不利作用小于释放蒸汽压产生的有利作用,从而对聚丙烯纤维混凝土高温中劈拉性能有所改善。纤维混凝土的劈拉性能随着聚丙烯纤维掺量的增加会先提高然后再降低,但仍然比普通混凝土的劈拉强度有所提高。

3 聚丙烯纤维对混凝土的高温后抗折性能的影响与聚丙烯纤维的掺量有关,随着聚丙烯纤维掺量的逐渐提高,聚丙烯纤维混凝土的抗折强度也不断提高。(作者单位:郑州大学 水利与环境学院)

参考文献:

[1] F.Herna’ndez—Olivares,G.Barluenga.Fire performance ofrecycled rubber—filled high—strength concrete.Cement andConcrete Research 34(2004)109—117;

[2] 林志威.不同PPF掺量的高性能混凝土高温后性能研究[J].华中科技大学学报.2007,24(2):1-2;

高强混凝土论文例4

中图分类号:TU375.3 文献标志码:A

0 引 言

钢管混凝土因具有三向受压混凝土抗压强度高的优点而越来越广泛地被应用于工业厂房、桥梁结构和超高层建筑结构中,取得了很好的力学及经济效果,虽然方钢管混凝土较截面面积和含钢率相同的圆钢管混凝土承载力有所降低[1],但因其具有节点构造简单,便于梁柱连接,施工方便等优点[2],在实际工程中得到了广泛的应用。混凝土的存在可以消除钢管的内凹,却不能避免其外凸,而且实际工程中还会遇到方钢管混凝土轻微受损或需要增加新功能的情况,这些都涉及到采取某种措施对方钢管混凝土进行约束、加固或修复的问题。近年来,碳纤维增强复合材料(CFRP)外包结构构件加固技术在各国已进行了大量的研究[3-4],其优良的加固效果和便捷的施工工艺越来越多地受到人们的重视。由此出现的CFRP-圆钢管混凝土已经成为一个研究热点[5-6],参照CFRP-圆钢管混凝土,笔者在方形钢管混凝土的外壁包裹CFRP以进一步改善其受力性能。利用CFRP约束钢管混凝土不仅提高了钢管混凝土的承载力、有效延缓了钢管的局部屈曲,且弥补了CFRP约束钢筋混凝土的延性不足[2],考虑到CFRP直接粘贴在方柱(未经任何倒角)上的约束效果不理想[7],因此本文研究对象为带倒圆角截面形式的CFRP-方钢管混凝土柱。目前关于CFRP-方钢管混凝土的研究相对较少,且主要为试验研究和数值模拟,王庆利等[2]对CFRP-方钢管混凝土轴压短柱进行了试验研究和有限元模拟,并提出了受约束混凝土的应力-应变表达式,刘洋[8]对CFRP-方钢管混凝土柱的压弯性能进行了试验研究,并分析了CFRP厚度、长细比和偏心率的大小等因素对承载力的影响,Choi等[9]提出一个简化模型分析不同参数下外贴CFRP对钢管混凝土的加强,Sundarraja等[10]研究了用条状CFRP加固方钢管混凝土轴压短柱的力学性能,并用钢管和混凝土各自承载力进行简单的叠加,不能真实反映钢管和混凝土的受力特性。本文充分考虑中间主应力的影响,根据统一强度理论与CFRP-方钢管混凝土的材料特点,引入了考虑厚度比ζ(ζ=tf/ts,tf为CFRP层厚度,对于采用CFRP条间隔粘贴加固的情况tf取其满铺时的平均厚度,ts为方钢管壁厚)影响的等效应力系数ξ,将方CFRP筒对内部钢管混凝土的约束等效为圆CFRP筒对钢管混凝土的约束。同时引入混凝土强度折减系数[11]和等效约束折减系数[12],将内部方钢管混凝土轴压短柱等效为圆钢管混凝土轴压短柱,进而推导出CFRP-方钢管混凝土轴压短柱的极限承载力公式,与文献试验数据进行比较验证,并得出各参数对极限承载力的影响特性。

1 统一强度理论

统一强度理论是俞茂宏在双剪强度理论的基础上建立的一种考虑了中间主应力影响的计算准则,该理论采用一个统一的力学模型,可以十分灵活地适用于各种不同特性的材料,其表达式为[13]

F=σ1-α1+b(bσ2+σ3)=σs σ2≤σ1+ασ31+α

F′=11+b(σ1+bσ2)-ασ3=σs σ2≥σ1+ασ31+α

α=σsσc,b=(1+α)τs-σsσs-τs

(1)

式中:F,F′均为主应力强度理论函数;σ1,σ2,σ3为最大主应力、中间主应力和最小主应力;σs,σc,τs分别为材料的拉伸、压缩、剪切屈服强度;α为材料的拉压比,对于韧性金属材料一般为0.77~1.0,对于脆性金属材料为0.33~0.77,对于岩土类材料一般小于0.5;b为反映中间剪应力以及相应面上的正应力对材料破坏影响程度的参数,0≤b≤1。2 极限承载力分析

2.1 CFRP受力分析

CFRP-方钢管混凝土柱在轴向压力作用下,钢管混凝土的横向膨胀使CFRP布的水平段产生水平弯曲,并对方钢管混凝土提供约束力。另外,在方形截面的角部,CFRP布受到2个相互垂直方向的拉力作用,其合力形成对方钢管混凝土对角线方向的强约束,故方钢管混凝土承受的约束力是沿对角线的集中挤压力和沿边长分布均匀的横向力[14]。本文引入考虑厚度比ζ影响的等效应力系数ξ,将方CFRP筒对内部钢管混凝土的约束等效为圆CFRP筒对钢管混凝土的约束,并采用等效约束力frf来简化计算,计算简图如图1所示,其中B为方钢管的外边长,σr为混凝土所受的侧向压力,ff为CFRP应力,其原理是使简化后的均匀约束分布与原来的非均匀约束具有相同的约束效果。对文献[10]中的试验数据进行拟合(图2),得等效应力系数ξ与厚度比ζ的表达式为

对于采用CFRP条间隔粘贴加固的情况,由于CFRP粘贴的不均匀,可采用安全系数Fs=1.2对ξ进行折减[10]。

等效约束力frf的计算公式如下

frf=ξr

(3)

式中:r为平均约束应力,r=2tfff/B。

2.2 方钢管受力分析

CFRP-方钢管混凝土向CFRP-圆钢管混凝土面积相等转换时,由于方钢管对混凝土约束的不均匀,使得这种等代有困难。本文引入等效约束折减系数β [12]将方钢管对混凝土的约束转换为圆钢管对混凝土的约束,其值为

β=66.474 1v2-0.991 9v+0.416 18

(4)

式中:v为钢管的厚边比,v=ts/B。

方钢管对核心混凝土的等效均匀径向压力P可表示为

P=βPI

(5)

式中:PI为等效外圆钢管在径向压力作用下的塑性极限荷载。

根据统一强度理论,PI值为[15]

PI=σs1-α[(rcrc+ts)2(1+b)(α-1)2+2b-bα-1]=

σs1-α[(1+μ/2)2(1+b)(1-α)2+2b-bα-1]

(6)

式中:μ为含钢率;rc为等效圆钢管的内壁半径,rc=(B-2ts)/π。

由塑性力学的厚壁圆筒理论得[16]等效外圆钢管的纵向抗压强度σzp为

σzp=4(P+frf)r2c-frf(rc+ts)2(rc+ts)2-r2c=

4PIβ4μ+μ2-frf

(7)

2.3 核心混凝土的轴压强度

CFRP-方钢管混合筒对核心混凝土的约束分布很不均匀,角部混凝土受到的约束较强,边部中间管壁受到的约束作用较弱。根据Varma等[17]的研究,核心混凝土所受的约束可分为有效约束区和非有效约束区,分界线为抛物线,其约束模型见图3,其中,re为等效圆钢管的外壁半径,re=B/π。有效约束区混凝土2个方向的约束力相近,其应力状态与CFRP-圆钢管混凝土中的核心混凝土相似,而非有效约束区,垂直于表面的约束较小。

核心混凝土处于三向受压状态,0>σ1=σ2>σ3,满足式(1),代入得

σ1-ασ3=ft

(8)

式中:ft为混凝土抗拉强度,ft=2ccos(φ)1+sin(φ),φ为混凝土的内摩擦角,c为混凝土的内聚力。

令k=1+sin(φ)1-sin(φ),并按习惯一般取压为正、拉为负,得

σ3=fc+kσ1

(9)

式中:σ1=P+frf;fc为核心混凝土的单轴抗压强度,fc=2ccos(φ)1-sin(φ)。

鉴于CFRP-方钢管混合筒对核心混凝土的约束存在一定的困难,现有CFRP-方钢管混凝土的研究多是建立在试验基础上的。本文对核心混凝土不做有效约束区和非有效约束区的划分,而采用混凝土强度折减系数[11]γu=1.67D-0.112c来考虑非有效约束区侧向约束减弱的影响,其中Dc为等效圆钢管的内径。核心混凝土的纵向抗压强度fcc为

fcc=fc+γuk(P+frf)

(10)

2.4 极限承载力计算

由于CFRP布只能承受拉力而不能承受压力,所以CFRP-方钢管混凝土的极限承载力Nu为钢管和核心混凝土的纵向承载力之和,即

Nu=Asσzp+Acfcc

(11)

As=4ts(B-ts)

(12)

Ac=(B-2ts)2

(13)

式中:As,Ac分别为方钢管和核心混凝土的截面面积。

将式(3),(5),(7),(10),(12),(13)代入式(11)可得

Nu=4ts(B-ts)(4PIβ4μ+μ2-ξr)+

(B-2ts)2[fc+γuk(PIβ+ξr)]

(14)

当没有CFRP管,即r=0时,式(14)退化为方钢管混凝土轴压短柱承载力公式,即

Nu=4ts(B-ts)4PIβ4μ+μ2+

(B-2ts)2(fc+γukPIβ)

(15)

当ξ=β=γu=1时,对钢管和混凝土截面面积As,Ac和r分别做简单数学变换,则式(14)退化为CFRP-圆钢管混凝土轴压短柱承载力公式, 即

Nu=As(4PI4μ+μ2-r)+

Ac[fc+k(PI+r)]

(16)

在式(16)的基础上,令r=0,则式(14)退化为圆钢管混凝土轴压短柱承载力公式,即

Nu=As4PI4μ+μ2+Ac(fc+kPI)

(17)3 极限承载力的验证和影响因素分析

3.1 计算结果对比

大多数的钢材是有明显屈服点的,并且各向同性,因此在应用统一强度理论时取α=1,则统一强度理论就变为统一屈服准则,这时不同的b值就对应不同已知的屈服准则或还没有定义的新屈服准则。将α=1代入式(6)并求极限得

PI=limα1σs1-α[(1+μ/2)2(1+b)(1-α)2+2b-bα-1]=

2σs1+b2+bln(1+μ2)

(18)

将文献[2],[15],[18],[19]中部分试验数据代入本文公式进行计算,并与其试验结果进行比较,结果见表1。

从表1可以看出,本文理论计算结果与试验结果吻合良好,验证了该理论公式的正确性,并且极限承载力Nu随着b的增加而增大,说明考虑参数b即中间剪应力以及相应面上的正应力对材料破坏的影响,可以更充分地发挥材料的强度潜能。当b=1时,统一强度理论退化为双剪应力屈服准则,这时本文计算值与试验值比值的平均值为0.981,方差为0.001,表明本文公式计算结果具有较高的精度。

3.2 影响因素分析

对于高强钢材,材料拉压比α将不再等于1。图4给出了试件B-1的极限承载力Nu随α,b的变化情况。从图4可以看出:当α一定时,Nu随着b的增加而增大;当b一定时,Nu随着α的增加而增大,说明当外钢管为高强度钢时考虑α的影响是有必要的。

对文献[2]中的数据进行分析,得出极限承载力Nu与CFRP粘贴层数、fc之间的关系,如图5所示。从图5可以看出,极限承载力Nu随着fc的增加而增加,且承载力的提高幅度取决于CFRP的厚度。粘贴1层时极限承载力平均提高63 kN,粘贴2层时极限承载力平均提高87 kN,粘贴3层时极限承载力平均提高105 kN,说明CFRP的约束效率随其厚度的增加而减

fc钢管厚边比v反映的是钢管的厚度和外边长的比值,厚边比不同会影响钢管对内部核心混凝土的约束,图6给出了文献[2]中试件A-1和B-1在其余条件均不变的情况下极限承载力Nu随厚边比v的变化情况。从图6可以看出,极限承载力Nu随着厚边比v的增大而显著增大,说明在构件外边长、CFRP和内部混凝土不变的情况下增大钢管的壁厚能显著提高构件的承载力。

4 结 语

(1)本文在统一强度理论的基础上推导出了CFRP-方钢管混凝土轴压短柱极限承载力的计算公式,并将理论计算结果与相关文献的试验结果做比较,验证了该公式的正确性,同时也说明了将CFRP-方钢管混凝土转化为CFRP-圆钢管混凝土的思路是可行的。

(2)CFRP-方钢管混凝土轴压短柱的极限承载力Nu随着α和b的增加而增大,说明考虑材料的拉压比α和参数b的影响是有必要的。由于CFRP筒的约束作用,方钢管混凝土柱的承载力得到较大幅度提高,承载力提高的幅值直接取决于CFRP的厚度。当钢管边长、CFRP和混凝土一定时,增大钢管的壁厚能显著提高构件的承载力。

(3)本文公式是考虑了各种影响因素的统一解,改变公式中参数就对应了不同的边界情况,CFRP-圆钢管混凝土轴压短柱承载力、圆形和方形截面钢管混凝土轴压短柱承载力都是本文结果的特例。

参考文献:

References:

[1] 吴 鹏,赵均海,李 艳,等.方钢管混凝土短柱轴压极限承载力研究[J].四川建筑科学研究,2013,39(3):8-13.

WU Peng,ZHAO Jun-hai,LI Yan,et al.Study on the Axial Ultimate Bearing Capacity of Square Concrete-filled Steel Tubular Stub Columns[J].Sichuan Building Science,2013,39(3):8-13.

[2]王庆利,薛 阳,邵永波,等.CFRP约束方钢管混凝土轴压短柱的静力性能研究[J].土木工程学报,2011,44(3):24-31.

WANG Qing-li,XUE Yang,SHAO Yong-bo,et al.Study of Static Performance of Axially Compressed Concrete Filled Square Steel Tubular Stub Columns Confined by CFRP[J].China Civil Engineering Journal,2011,44(3):24-31.

[3]MEIER U.Carbon Fiber Reinforced Polymer:Modern Materials in Bridge Engineering[J].Structural Engineering International,1982(2):7-12.

[4] SHANMUGANATHAN S.Fiber Reinforced Polymer Composite Material for Civil and Building Structural Review of the State-of-art[J].The Structural Engineering,2003(7):26-33.

[5]张常光,赵均海,冯红波.CFRP-钢管混凝土轴压短柱的力学性能[J].建筑结构,2008,38(3):34-37.

ZHANG Chang-guang,ZHAO Jun-hai,FENG Hong-bo.Mechanics Behavior of Concrete Filled CFRP-steel Tube Stub Columns Under Axial Compression[J].Building Structure,2008,38(3):34-37.

[6]王庆利,叶 茂,周 琳.圆CFRP-钢管混凝土构件受弯性能研究[J].土木工程学报,2008,41(10):30-38.

WANG Qing-li,YE Mao,ZHOU Lin.Study on the Flexural Behavior of Concrete Filled Circular CFRP-steel Tubular Members[J].China Civil Engineering Journal,2008,41(10):30-38.

[7]潘景龙,王雨光,来文汇.混凝土柱截面形状对纤维包裹加固效果的影响[J].工业建筑,2001,31(6):17-19.

PAN Jing-long,WANG Yu-guang,LAI Wen-hui.Effect of Sectional Shape of Concrete Column on the Bearing Capacity of Short Columns Wrapped with FRP[J].Industrial Construction,2001,31(6):17-19.

[8]刘 洋.CFRP增强方钢管混凝土压弯构件静力性能研究[D].沈阳:沈阳建筑大学,2011.

LIU Yang.Static Performance Study on the Strengthened of Concrete Filled Square Steel Tubular Beam-columns by CFRP[D].Shenyang:Shenyang Jianzhu University,2011.

[9]CHOI K K,XIAO Y.Analytical Model of Circular CFRP Confined Concrete-filled Steel Tubular Columns Under Axial Compression[J].Journal of Composites for Construction,2010,14(1):125-133.

[10]SUNDARRAJA M C,GANESH P G.Experimental Study on CFST Members Strengthened by CFRP Composites Under Compression[J].Journal of Constructional Steel Research,2012,72:75-83.

[11] KENIJ S,HIROYUKI N,SHOSUKE M,et al.Behavior of Centrally Loaded Concrete-filled Steel-tube Short Columns[J].Journal of Structural Engineering,2004,130(2):180-188.

[12]李小伟,赵均海,朱铁栋,等.方钢管混凝土轴压短柱的力学性能[J].中国公路学报,2006,19(4):77-81.

LI Xiao-wei,ZHAO Jun-hai,ZHU Tie-dong,et al.Mechanics Behavior of Axially Loaded Short Columns with Concrete-filled Square Steel Tube[J].China Journal of Highway and Transport,2006,19(4):77-81.

[13]俞茂宏.混凝土强度理论及其应用[M].北京:高等教育出版社,2002.

YU Mao-hong.Concrete Strength Theory and Application[M].Beijing:Higher Education Press,2002.

[14]卢亦焱,史健勇,赵国藩.碳纤维布约束轴心受压混凝土方形柱承载力计算公式[J].工程力学,2004,21(4):22-27.

LU Yi-yan,SHI Jian-yong,ZHAO Guo-fan.Study of Axial Bearing Capacity of Square Concrete Columns Confined with Carbon Fiber Reinforced Plastic[J].Engineering Mechanics,2004,21(4):22-27.

[15]赵均海.强度理论及其工程应用[M].北京:科学出版社,2003.

ZHAO Jun-hai.Unified Strength Theory and Its Engineering Application[M].Beijing:Science Press,2003.

[16]王 仁,熊祝华,黄文彬.塑性力学基础[M].北京:科学出版社,1982.

WANG Ren,XIONG Zhu-hua,HUANG Wen-bin.Foundation of Plastic Mechanics[M].Beijing:Science Press,1982.

[17]VARMA A H,SAUSE R,RICLES J M,et al. Development and Validation of Fiber Model for High Strength Square Concrete Filled Steel Tube Beam-columns[J].ACI Structural Journal,2005,102(1):73-84.

[18]韩林海,陶 忠.方钢管混凝土轴压力学性能的理论分析与试验研究[J].土木工程学报,2001,34(2):17-25.

高强混凝土论文例5

引言

随着混凝土外加剂和超细矿物掺和料的的普遍使用,现代混凝土的设计需要同时考虑工作性、强度和耐久性,而我国现有的混凝土配合比设计规范以强度为主,已经不能满足高性能混凝土配制及施工的实际需要,特别是传统观念下配制混凝土时水泥要比混凝土强度高,粉煤灰及矿渣粉等矿物掺和料用量不能超过规定比例的规定,在现实混凝土生产过程中已经失去了指导意义。根据混凝土体积组成石子填充模型,我们进行了现代混凝土配合比的设计计算,推导出了水泥、掺和料、砂、石、外加剂和拌合用水定量计算的科学依据和计算公式。

1 现代混凝土强度理论数学模型的建立

混凝土作为一种复杂的物理化学反应产物,主要由砂子、石子、水泥、矿渣粉、粉煤灰、硅粉、水、外加剂等成份组成。根据格里菲斯断裂强度理论公式:σf =可以求得硬化砂浆理论强度,该强度值主要取决于水泥熟料强度及水化产物的表面活性、胶凝材料的内部结构组成、微裂缝和缺陷的大小。

E--设计强度等级混凝土弹性模量,现有两种计算方法:

2.1 E=105/(2.2+35/ fcu.o)

2.2 E=

结合以上分析,混凝土的强度f与硬化砂浆理论强度σf、胶结材料的强度贡献率u和硬化砂浆的密实度m成正比例。由此可得现代混凝土强度理论数学模型及及城建XS公式。

即:

式中:

σf -混凝土中硬化砂浆理论强度

对于C10―C55的混凝土σf =;

-混凝土胶凝材料用量系数,α=B/1000

B= C+F+K

u --胶凝材料强度贡献率

2 现代混凝土强度理论数学模型的应用探讨

2.1 C10―C30掺粉煤灰混凝土

对C10―C30普通混凝土,胶凝材料使用水泥和粉煤灰,其强度计算公式即现代混凝土强度理论计算公式

通过以上计算可知,其他条件不变时,用水量的变化对低强度等级混凝土强度的影响主要是改变了混凝土内部硬化砂浆的密实度m。

2.2 C30―C55掺复合料(矿粉和粉煤灰)混凝土

对于C30―C55掺复合料(矿粉和粉煤灰)混凝土,胶凝材料使用水泥、粉煤灰和矿粉,其强度计算公式即现代混凝土强度理论计算公式如下:

通过以上计算可知,其他条件不变时胶凝材料细度的变化对混凝土强度的影响主要是改变了混凝土内部硬化砂浆的理论强度值和胶凝材料的强度贡献系数,用水量的变化对混凝土强度的影响主要是改变了混凝土内部硬化砂浆的密实度,由于本工程中只用到了C55等级强度混凝土,C60至C100不做详节。

2.3 水泥强度验算

水泥及胶凝材料水化后强度贡献主要来源于胶凝材料水化后的体积,砂子及胶凝材料之间存在微裂缝,导致水泥胶砂强度比理论值降低;胶凝材料拌合用水量大于胶凝材料理论水化用水量,这些水份在水泥胶砂硬化后蒸发,留下孔隙使硬化砂浆密实度降低从而影响强度。对普通水泥, u1=1.0其强度计算公式即现代混凝土强度理论计算公式可以简化为:

fc =σf×(WO/W-0.27)

3 现代混凝土体积石子填充模型的建立

现代混凝土在施工过程中是以塑性或流动性状态进行施工,当混凝土各种原材料经拌合后,以塑性或流动性状态存在,经过运输、浇注、振捣成型和养护后进入使用状态的混凝土以硬化形态出现,这时硬化的混凝土由粗骨料和硬化砂浆、气孔、水组成。我们认为混凝土由硬化砂浆和石子两部分组成,石子作为砂浆的填充料,当压碎指标小于8%时,由于它的强度大于混凝土的设计强度,只占体积不影响强度;砂浆与石子的粘结强度、砂浆体积胶中凝材料强度贡献率、硬化砂浆密实度决定混凝土的强度。

4 石子填充法在混凝土配合比设计中的应用

依据现代混凝土强度理论数学模型和石子填充模型进行混凝土配合比设计的具体步骤如下:

4.1 配制强度:

现代混凝土的配制强度按现行规范fcu.p=fcu.o+1.645σ确定。

不同强度等级混凝土σ取值表

σ值 C10-C25 C30-C55

4MPa 5MPa

4.2 有强度贡献胶凝材料用量的确定

对于基准塑性混凝土,坍落度为T(mm),用于调整工作性的用水量为0.5Tkg,其中u1=1,F=K=Si=0,由城建XS公式可知,

fcu.p=σf×[(u1C+u2F+u3K+u4Si)/ (C+F+K +Si)]×(W0/W-0.27)

将公式中有强度贡献胶凝材料用相当水泥用量C0代替,公式简化为

fcu.p=σf× (C0/ C0)×[W0/ (W0+0.5T)-0.27]]=σf/ (W0/(W0+0.5T)-0.27)

4.3 掺和料用量的确定

4.3.1 C30―C55掺复合料(矿粉和粉煤灰)混凝土

水泥用量C= C0×0.7

粉煤灰用量F=(C0-C)/( u2+ 2×u3)

矿粉用量 K = 2×(C0-C)/( u2+ 2×u3)

4.4 配合比的试配和调整

采用该理论模型进行配合比设计配制的高性能混凝土、纤维防裂混凝土和自密实混凝土经过在国家大剧院等重点工程的应用,验证了现代混凝土强度理论的正确性和混凝土体积组成石子填充模型用于混凝土配合比设计的可行性,取得了良好的技术效果。

5 结论

5.1 本文研究建立了现代混凝土强度理论数学模型,该公式同时考虑了现代混凝土设计中对工作性、强度和耐久性的要求,适应了现代混凝土配合比设计对强度、工作性和长期使用功能的要求,实现了以上技术参数在设计公式的有机统一。

5.2 混凝土体积组成石子填充模型将传统混凝土石子空隙由砂子填充,砂子空隙由泥浆填充,水灰比决定混凝土强度的设计思路转换为:混凝土由砂浆和石子两部分组成,石子作为砂浆的填充料,由于它的强度大于混凝土的设计强度,只占体积不影响强度;砂浆强度、胶凝材料强度贡献率、硬化砂浆密实度决定混凝土的强度。

5.3 现代混凝土强度理论数学模型及混凝土体积组成石子填充模型是适用于各种现代混凝土配合比设计和强度计算的数学模型,经过严格的数学推导得到混凝土配合比设计中水泥、掺和料、砂、石、外加剂和拌合用水量等组成材料的准确计算公式,解密了混凝土各组成之间的定量关系,实现了现代混凝土配合比设计和强度的科学定量计算。

5.4 现代混凝土强度理论数学模型同样适用于各种水泥的配比设计和强度计算,实现了水泥和混凝土强度计算公式的统一,在水泥和混凝土之间建立了一座紧密联系的桥梁。

5.5 与传统混凝土设计方法相比,现代混凝土强度理论数学模型与混凝土体积组成石子填充模型实现了混凝土配合比设计计算的科学、精确、简便、快捷和实用。

高强混凝土论文例6

 

1.钢纤维混凝土性能

钢纤维混凝土是在普通混凝土中掺入乱向分布的短钢纤维所形成的一种新型的多相复合材料。这些乱向分布的钢纤维能够有效地阻碍混凝土内部微裂缝的扩展及宏观裂缝的形成,显著地改善了混凝土的抗拉、抗弯、抗冲击及抗疲劳性能,具有较好的延性

1.1新拌钢纤维混凝土性能

钢纤维有一个像砂皮般粗糙的表面,使它与水泥浆体的黏结较为牢固,可减少塌边现象。论文大全。一般情况下,钢纤维混凝土坍落度值比相应的普通混凝土小20 mm,经摊铺机振动,即表现出与普通混凝土一样的黏聚性。

1.2硬化后钢纤维混凝土性能

(1)有研究表明[3],钢纤维掺量为30~50 kg/m3时,钢纤维混凝土的弯拉强度比普通混凝土提高约15%~35%,且与钢纤维的掺量成正比。(2)抗冲击性冲击强度反映混凝土在冲击荷载作用下的抗裂性能。将重8 kg的钢球从25 cm高度自由落下冲击经标准养护28 d的标准试件,当试件裂缝大于0.3mm时,记录的冲击次数即为冲击强度。文献表明[3],钢纤维混凝土抗冲击性能随钢纤维掺量增加而提高。钢纤维掺量为30~50 kg/m3时,与普通混凝土相比,其抗冲击性能可提高3~5倍。(3)抗干缩开裂性能试验在工地上进行,在养护28 d水泥稳定碎石基层上浇筑普通混凝土板和钢纤维掺量为50 kg/m3的混凝土板,用碘弧灯强光和风扇强风来加快试板失水,随时观察裂缝产生的时间。与普通混凝土相比[3],钢纤维混凝土裂缝产生时间迟,裂缝产生数量少。这表明钢纤维混凝土用于路面可以延长混凝土面板缩缝间距。(4)耐磨性耐磨性试验采用TNS-04水泥胶砂耐磨试验机。试验前将尺寸为15 cm×15 cm×7 cm的试件在60℃烘箱中烘至恒重,然后在水泥胶砂试验机上磨削50转,磨损面积为0.012 5 m2。计算试件单位面积磨损量,以此作为标准来描述混凝土耐磨性。在混凝土中掺钢纤维可显著提

高其耐磨性能。与普通混凝土相比,钢纤维混凝土耐磨性能提高了24.2%[3]。

2.钢纤维混凝土的应用

钢纤维混凝土在工程中的实际应用始于上世纪70年代,由美国Battele公司开发的熔抽钢纤维技术为钢纤维混凝土的应用提供了条件。此后在加拿大、英国、瑞典、日本等国家也迅速进行这方面的应用研究。我国是从上世纪70年代着手对钢纤维混凝土进行材料力学性能的实验研究,1989年颁布《钢纤维混凝土试验方法》(CECS13: 89),1992年颁布《钢纤维混凝土结构设计与施工规程》(CECS38:92), 2004年颁布《纤维混凝土结构技术规程》(CECS38: 2004)。目前纤维混凝土在结构工程、铺面工程、地下结构及其他特种结构工程等领域得到了比较广泛的应用。

在结构工程方面,那些对抗拉、抗剪、抗弯拉强度和抗裂、抗冲击、抗疲劳、抗震、抗爆等性能要求较高的工程部位,若采用钢纤维混凝土会得到较高的抗拉强度、断裂韧性和抗疲劳等性能。例如在梁柱节点中,已有实验证明钢纤维混凝土梁柱节点与普通混凝土梁柱节点相比,在强度、刚度、耗能能力和梁钢筋粘结锚固方面有较大的改善,采用钢纤维混凝土梁柱节点的框架与普通钢筋混凝土框架相比,结构的延性提高57%,耗能能力提高130%,循环次数提高15%,在框架梁柱节点采用钢纤维混凝土可替代部分箍筋,既改善了节点区的抗震性能,又解决了节点区钢筋过密、施工困难等问题。论文大全。

铺面工程包括公路路面、机场道面、桥面、工业地面及屋面等。因钢纤维混凝土有着优良的抗拉,抗弯、抗裂、抗疲劳、抗冲击、抗收缩、韧性好等一系列物理力学性能,因此,在铺面工程领域中得到较广泛应用。论文大全。文献[4]过恩施州318国道某路段的路面设计对比,采用素混凝土路面,路面板厚度为25cm;采用层布式混杂纤维混凝土路面,路面板厚度为仅为16 cm。

地下结构所用的钢纤维混凝土一般为钢纤维增强喷射混凝土,它具有诸多特点,强度高(抗拉、抗弯、抗剪);抵抗冲击、爆炸和震动的性能高;韧性好;抗冻、耐热与耐疲劳性能好;抗裂性能强;即使构件已产生微小裂缝,也会因钢纤维继续抗拔而使韧性大为提高。

3.总结

钢纤维混凝土具有优异的特性,使其广泛应用于各个工程领域,但其本身存在的问题,也抑制了它的应用。(1)钢纤维造价普遍较高,国产的性能相对较低,难以大规模使用;(2)钢纤维混凝土的增强机理至今也还不是很清楚,现行的几种分析理论,如复合理论和纤维间距理论都并不完善。复合理论忽略了纤维复合带来的耦合效应,纤维间距理论忽略了纤维自身的耦合作用,都有应用局限性,需待进一步的研究和探讨。(3)目前对钢纤维混凝土的研究多集中在物理性能方面,对于化学性能方面(比如耐久性)的研究相对较少。(4) 钢纤维混凝土与普通混凝土相比,在相对较低的水泥用量情况下,钢纤维混凝土具有较高的抗折强度和耐磨性能、良好的抗冲击性能和抗裂性能,非常适合在重载交通路面工程和对耐久性要求严格的工程中应用。

参考文献

[1]时宗滨,齐巧男. 浅谈纤维混凝土的应用[J]. 黑龙江交通科技,2008(6).

[2]蒋应军,刘海鹏等.钢纤维混凝土性能与施工工艺研究.[J].混凝土,2008(8).

[3]焦楚杰,孙伟等.中含量钢纤维高强混凝土施工工艺优选[J].建筑技术,2004(1).

高强混凝土论文例7

 

引言

大体积混凝土的特点除体积较大外,更主要是由于混凝土的水泥水化热不易散发,在外界环境或混凝土内力的约束下,极易产生温度收缩裂缝。因此仅用混凝土的几何尺寸大小来定义大体积混凝土,就容易忽视温度收缩裂缝及为防止裂缝而应采取的施工要求。目前建筑工程中经常使用的高强、高性能混凝土,由于单方水泥用量大,即使最小边尺寸很小,水化热也不能忽视,也应按大体积混凝土对待,必须采取温度控制措施。

1 合理布置分布钢筋间距

混凝土是以水泥为主要胶结材料,拌合一定比例的粗、细骨料和水,一般还加入少量的各种添加剂,经过搅拌、注模、振捣、养护等工序,逐渐凝固硬化而成的人工混合材料。各种组成材料的成分、性质和相互比例,以及设备和硬化过程中的各种条件和环境因素,都会对混凝土的力学性能产生不同程度的影响。如进行适当的配筋,虽然适当的配筋不能有效的阻止裂缝的产生,但适当的配筋可以约束混凝土的塑性变形,从而分担混凝土的内应力,加强结构的整体性和减小温度裂缝的宽度,同时也提高了混凝土的极限拉伸。在实际大体积混凝土的工程中,配置钢筋并非越多效果越好。混凝土配置钢筋不仅能够提高混凝土的极限拉伸,同时还增加了混凝土的自约束应力。当混凝土发生收缩时,钢筋不收缩,因而必然产生收缩应力,但在配筋率比较低的条件下,收缩应力是微小的,一般可以忽略不计。但是当配筋率比较高的情况下,产生的收缩应力就可以导致混凝土开裂。。变形钢筋与混凝土之间产生的粘结力要远大于光圆钢筋和混凝土之间产生的粘结力,更能有效的约束混凝土的塑性变形,控制温度裂缝的宽度。所以,在大体积混凝土的配筋过程中,要根据情况尽可能的选用变形钢筋。

2 避免采用高强混凝土

高强混凝土的划分范围,国内外没有一个确定的标准。从我国现今的结构设计和施工技术水平出发,也考虑到混凝土材性的变化,采用高强混凝土虽然可以提高混凝土的抗压强度,但是混凝土的抗拉强度随着抗压强度增长增长缓慢,而且高强混凝土的明显呈现出“脆性”,极限应变变小,更容易产生裂缝。采用高强混凝土必然要提高水泥的标号、减小水灰比或者使用各种聚合物作为胶结材料来代替水泥,这不仅使施工过程和施工质量难以保证,并且提高了工程造价。所以,基础混凝土宜选用中低强度混凝土,强度等级宜在 C20~C35的范围内选用,利用后期强度R60。

3 水泥的选择

大体积混凝土产生裂缝的最主要的原因是因为水泥水化时释放出大量的热量在混凝土内部产生温度应力而产生裂缝。为此,在施工中应合理的选用选用低热和中热水泥以及尽量减少单位水泥用量,从根本上控制因水泥的水化热引起的温升。一般来说水泥用量每增减10kg,度亦相应升降1℃。日前,在工程中常用的水泥,主要有硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥和复合硅酸盐水泥。在一些特殊工程中,还使用专用水泥和特性水泥,如铝酸盐水泥、膨胀水泥、快硬水泥、低热水泥和抗硫酸盐水泥等。

为了降低因水泥水化产生的热量引起的温升,在保证基础有足够的强度满足使用要求的前提下,可以利用混凝土60天或90天的后期强度,这样既可以避免混凝土在前期就释放出大量的水化热而使混凝土产生较大的温差,也可以减少混凝土中水泥的用量,以降低混凝土浇筑块体的温升。

4 骨料的选择

在混凝土中,砂、石等粗细骨料的体积占混凝土体积的70%以上,起到骨架的作用。在选用骨料的时候应优先选用热学性能好的骨料。因骨料占混凝土组成比例的绝大部分,因此混凝土的热学性能在很大程度上取决于骨料的矿物性质,优先选用热学性能好的骨料是混凝土温度控制的基本措施之一。目前,我国各地工程所需的骨料是就地取材的天然骨料,对于天然骨料应该按规范要求进行物理力学性能试验。

5 掺入其他材料

在混凝土中掺入聚丙烯网状纤维是利用“抗”的方法来阻止裂缝的出现和裂缝的开展。其原理主要在于,混凝土中水泥作为胶凝材料来握裹聚丙烯网状纤维,这些聚丙烯网状纤维起到微细配筋作用,利用水泥和聚丙烯网状纤维之间的握裹力来消耗混凝土变形开裂能量、调高混凝土的韧性、掌托骨料和减少混凝土离析泌水,从而控制水泥基体内部微细裂缝的生成和扩展,提高混凝土的抗裂性能。

另外,在混凝土中掺用粉煤灰作为混合料,在我国已经广泛使用。通过实验,在混凝上中掺入适量的粉煤灰后,不但可以节约水泥,降低工程造价,而且混凝土的许多性能都可获得改善。。在混凝土中掺入适量的粉煤灰,使水泥的用量减少,水泥中放热量大、放热速度快的铝酸三钙和硅酸三钙的含量减少,造成了掺入了粉煤灰的混凝土放热速度慢,放热量少。

6 大体积混凝土的处理

用木抹子进行表面提浆找平处理,以闭合水裂缝,初步标高用长刮杆刮平,再用木抹子收压两遍,这样既能排除混凝土因泌水在粗骨料、水平钢筋下部生成的水分和空隙,提高混凝土与钢筋的握裹力,又能防止因混凝土沉落而出现裂缝,减少内部微裂,增加混凝土密实度,提高混凝土抗裂性能。在混凝土二次收面时立即覆盖一层彩条布,并浇水养护。及时调节运输车辆,防止压车,断车而造成坍落度损失,影响泵送和基础浇筑质量。

保温养护过程中,应保持混凝上表面湿润。保温可以提高混凝土的表面抗裂能力。有资料表明,潮湿养护时,混凝土极限拉伸值比干燥养护时要大20-50%。在常温季节,混凝土终凝后也可采取蓄水养护的办法,替代前两种保湿保温养护办法。。根据混凝土内外温差数据,及时调整蓄水高度,也能收到预期效果。

结语

为了防止大体积混凝土的变形开裂,仅仅控制温度是不够的,还需要采取其它一定的技术措施来防止混凝土的开裂。比如优化混凝土的配合比、选择合适水泥的品种来提高混凝土的抗裂能力;改善混凝土结构的约束条件、改善混凝土的养护条件、严格控制混凝土的施工质量来防止混凝土的开裂等等。这些措施不是孤立的,而是相互联系、相互制约的、在实施的过程中必须结合结构的要求、现场的情况来全面考虑,合理采用。

参考文献

[1]孙春海.大体积混凝土施工技术研究[J].科技资讯,2010,(02).

[2]田弘.试论大体积混凝土温度控制施工技术[J].中华建设,2010,(02).

[3]杨晓松.大体积混凝土质量控制要点[J].科协论坛(下半月),2010,(01).

高强混凝土论文例8

钢纤维混凝土(Steel Fiber Reinforced Concrete,简写为SFRC)是在普通混凝土中掺入适量短钢纤维而形成的可浇筑、可喷射成型的一种新型复合材料。它是近些年来发展起来的一种性能优良且应用广泛的复合材料。其中所掺的钢纤维是用钢质材料加工制成的短纤维,常用的有:切断型钢纤维、剪切型钢纤维、铣削型钢纤维、熔抽型钢纤维等。钢纤维在混凝土中主要是限制混凝土裂缝的扩展,从而使其抗拉、抗弯、抗剪强度较普通混凝土有显著提高,其抗冲击、抗疲劳、裂后韧性和耐久性有较大改善,使原本属于脆性材料的混凝土变成具有一定塑性性能的复合材料。

一、钢纤维增强混凝土的基本理论

(一)复合力学理论

复合力学理论是以连续纤维复合材料理论为基础,结合钢纤维在混凝土中的分布特点形成的。该理论是将复合材料视为以纤维为一相,基体为另一相的两相复合材料。

(二)纤维间距理论。纤维间距理论又称纤维阻裂理论,是1963年由J.P.Romualdi和J.B.Batson提出来的。该理论根据线弹性断裂力学理论解释纤维对裂缝发生和发展的约束作用,认为欲增强混凝土这种本身带内部缺陷的脆性材料的抗拉强度,必须尽可能地减少内部缺陷的尺寸,提高韧性,降低裂缝尖端的应力强度因子、减少裂缝尖端的应力集中作用,故在裂缝处用纤维连接,受拉时跨越裂缝的纤维将荷载传递给裂缝的上下表面,使裂缝处材料仍能继续承载,这样,因裂缝的出现孔边应力集中程度就缓和,随着桥接裂缝纤维数目的增多,纤维间距越小,缓和裂缝尖端应力集中程度越大,对裂缝尖端产生的反向应力场也越大,当纤维数量增加到密布于裂缝时,应力集中就会消失,进一步表明纤维的阻裂效应,即在复合材料结构形成和受力破坏的过程中,有效地提高了复合材料受力前后阻裂引发与扩展的能力,达到钢纤维对混凝土增强与增韧目的。

(三)界面应力传递的剪滞理论。钢纤维混凝土中钢纤维周围的水泥基体结构与自身结构是不相同的,即在钢纤维与基体之间存在着界面层。钢纤维混凝土的性能主要取决于混凝土基体性能、钢纤维含量以及它们之间的界面特性。假定界面是一层厚度可以忽略的薄层,但具有一定的力学性能。当荷载作用于钢纤维混凝土时,荷载一般先施加于低弹性的基体,然后通过纤维-基体的界面,把一部分荷载传递给高弹模的纤维,使纤维和基体共同承担荷载,从而起到增强的作用。

二、钢纤维混凝土的应用

钢纤维混凝土作为一种新型复合材料,以其优良的抗拉、抗弯、阻裂、耐冲击、耐疲劳、高韧性等物理力学性能,目前已被广泛应用于建筑工程、水利工程、公路桥梁工程、公路路面和机场道面工程、铁路公程、管道工程、内河航道工程、防暴工程和维修加固工程等各个专业领域。

(一)水利工程

钢纤维混凝土在水利工程中的应用比较广泛,主要将其用于受高速水流作用以及受力比较复杂的部位,如溢洪道、泄水孔、有压疏水道、消力池、闸底板和水闸、船闸、渡槽、大坝防渗面板及护坡等。这些部位对混凝土材料自身的抗拉强度、抗剪强度以及抗裂性能的要求都比较高,也正发挥了钢纤维混凝土的自身优势。我国在实际工程中应用的有:三峡工程、小浪底水利枢纽工程、三门峡泄水排砂底孔等工程。以上工程都获得了较为满意的效果,并取得了较好的经济效益。

(二)建筑工程。钢纤维混凝土在建筑工程中的影响越来越广泛,一般应用于房屋建筑工程、预制桩工程、框架节点、屋面防水工程、地下防水工程等工程领域中。如抗震框架节点中使用钢纤维混凝土,能代替箍筋满足节点对强度、延性、耗能等方面的要求,而且还能提供类似于箍筋约束混凝土的作用,并解决节点区钢筋挤压使混凝土难于浇注的施工问题;钢纤维混凝土还具有良好的抗裂性,可使构件在标准荷载下处于弹性阶段而不裂,不出现应力的重分布;用钢纤维混凝土制成的自防水预应力屋面板,不仅提高了自防水预应力屋面板的抗裂性能,同时也减少了纵向预应力筋的配筋率,提高了结构的耐久性。钢纤维混凝土在建筑中的应用实例有:福州东方大厦、沈阳市急救中心站综合楼、江苏省丹阳市中医院、辽阳市食品公司办公楼等工程。

(三)道路和桥梁工程。钢纤维混凝在道路和桥梁工程方面,主要广泛应用于路面、桥梁、机场跑道等工程中,包括新建及修补工程。钢纤维混凝土较普通混凝土有较好的韧性,抗冲击、抗疲劳性。它可使面层厚度减少,伸缩缝间距加长,使用性能提高,维修费用减低,寿命延长。面层较普通混凝土可减少30-50%,公路伸缩缝间距可达30-100m,机场跑道的伸缩缝间距可达30m。用于路面及桥面修补时,其罩面厚度仅为3-5cm。在实际工程中有:北京东西环路立交桥、沪杭高速公路成渝公路、大足朱溪大桥、广州解放大桥等工程中都采用了钢纤维混凝土解决工程难题,使用效果较好,经济效益显著。

(四)铁路工程。在铁路工程方面,钢纤维混凝土主要用于预应力钢纤维混凝土铁路轨枕、双块式铁路轨枕及抢修铁路桥面防水保护层中。铁路工程承受较大的荷载、较高的速度和数万次的振动,所以要求混凝土必须具有较高的强度、较高的抗冲击性及较大的塑性。这正好利用了钢纤维混凝土的抗冲击性及较好的塑性。建成的工程有:沈阳铁路局长达线维修工程、柳州铁路局黔桂铁路铺设工程、南昆铁路隧道工程和西安安康铁路椅子山隧道等工程土。钢纤维混凝土的应用,使维修工作量大为减少,并提高了线路的使用寿命,效果良好。

(五)港口及海洋工程。钢纤维混凝土在海洋工程中的使用主要是钢纤维混凝土的腐蚀问题,所以有待进一步研究,但在日本和挪威的使用经验是令人鼓舞的。日本钢铁俱乐部采用钢纤维混凝土作钢管桩防腐层,在海水中浸泡10年,钢纤维混凝土防腐完好,钢管表面无锈蚀,仍有金属光泽。挪威将钢纤维混凝土用于北海海底输气管道的隧道衬砌、Forsmark核电站海底核废料库的支护、海洋平台后张预应力管道孔的封堵以及码头混凝土受海水腐蚀部位的修补等。我国江苏石舀港码头的轨道梁工程中也使用了钢纤维混凝土。

除了上述领域外,还有很多钢纤维混凝土的应用的实例,如承受重级工作制造工业厂房和仓库地面、薄壁蓄水结构、预制板、离心管、污水井、游泳池、耐火混凝土和耐火材料、抗爆结构、各类建筑物和构筑物的修补、补强加固、抗震加固等。

三、结束语

钢纤维混凝土具有普通混凝土不具有的优点,且具有良好的经济效益,其在民用建筑楼地面、公路路面、预制构件水利工程、港口码头、机场跑道和停机坪、桥梁隧道以及各种构筑物等方面的应用前景将是十分广阔的前景。

高强混凝土论文例9

钢纤维混凝土(SteelFiberReinforcedConcrete,简写为SFRC)是在普通混凝土中掺入适量短钢纤维而形成的可浇筑、可喷射成型的一种新型复合材料。它是近些年来发展起来的一种性能优良且应用广泛的复合材料。其中所掺的钢纤维是用钢质材料加工制成的短纤维,常用的有:切断型钢纤维、剪切型钢纤维、铣削型钢纤维、熔抽型钢纤维等。钢纤维在混凝土中主要是限制混凝土裂缝的扩展,从而使其抗拉、抗弯、抗剪强度较普通混凝土有显著提高,其抗冲击、抗疲劳、裂后韧性和耐久性有较大改善,使原本属于脆性材料的混凝土变成具有一定塑性性能的复合材料。

一、钢纤维增强混凝土的基本理论

(一)复合力学理论

复合力学理论是以连续纤维复合材料理论为基础,结合钢纤维在混凝土中的分布特点形成的。该理论是将复合材料视为以纤维为一相,基体为另一相的两相复合材料。

(二)纤维间距理论。纤维间距理论又称纤维阻裂理论,是1963年由J.P.Romualdi和J.B.Batson提出来的。该理论根据线弹性断裂力学理论解释纤维对裂缝发生和发展的约束作用,认为欲增强混凝土这种本身带内部缺陷的脆性材料的抗拉强度,必须尽可能地减少内部缺陷的尺寸,提高韧性,降低裂缝尖端的应力强度因子、减少裂缝尖端的应力集中作用,故在裂缝处用纤维连接,受拉时跨越裂缝的纤维将荷载传递给裂缝的上下表面,使裂缝处材料仍能继续承载,这样,因裂缝的出现孔边应力集中程度就缓和,随着桥接裂缝纤维数目的增多,纤维间距越小,缓和裂缝尖端应力集中程度越大,对裂缝尖端产生的反向应力场也越大,当纤维数量增加到密布于裂缝时,应力集中就会消失,进一步表明纤维的阻裂效应,即在复合材料结构形成和受力破坏的过程中,有效地提高了复合材料受力前后阻裂引发与扩展的能力,达到钢纤维对混凝土增强与增韧目的。

(三)界面应力传递的剪滞理论。钢纤维混凝土中钢纤维周围的水泥基体结构与自身结构是不相同的,即在钢纤维与基体之间存在着界面层。钢纤维混凝土的性能主要取决于混凝土基体性能、钢纤维含量以及它们之间的界面特性。假定界面是一层厚度可以忽略的薄层,但具有一定的力学性能。当荷载作用于钢纤维混凝土时,荷载一般先施加于低弹性的基体,然后通过纤维-基体的界面,把一部分荷载传递给高弹模的纤维,使纤维和基体共同承担荷载,从而起到增强的作用。

二、钢纤维混凝土的应用

钢纤维混凝土作为一种新型复合材料,以其优良的抗拉、抗弯、阻裂、耐冲击、耐疲劳、高韧性等物理力学性能,目前已被广泛应用于建筑工程、水利工程、公路桥梁工程、公路路面和机场道面工程、铁路公程、管道工程、内河航道工程、防暴工程和维修加固工程等各个专业领域。(一)水利工程

钢纤维混凝土在水利工程中的应用比较广泛,主要将其用于受高速水流作用以及受力比较复杂的部位,如溢洪道、泄水孔、有压疏水道、消力池、闸底板和水闸、船闸、渡槽、大坝防渗面板及护坡等。这些部位对混凝土材料自身的抗拉强度、抗剪强度以及抗裂性能的要求都比较高,也正发挥了钢纤维混凝土的自身优势。我国在实际工程中应用的有:三峡工程、小浪底水利枢纽工程、三门峡泄水排砂底孔等工程。以上工程都获得了较为满意的效果,并取得了较好的经济效益。

(二)建筑工程。钢纤维混凝土在建筑工程中的影响越来越广泛,一般应用于房屋建筑工程、预制桩工程、框架节点、屋面防水工程、地下防水工程等工程领域中。如抗震框架节点中使用钢纤维混凝土,能代替箍筋满足节点对强度、延性、耗能等方面的要求,而且还能提供类似于箍筋约束混凝土的作用,并解决节点区钢筋挤压使混凝土难于浇注的施工问题;钢纤维混凝土还具有良好的抗裂性,可使构件在标准荷载下处于弹性阶段而不裂,不出现应力的重分布;用钢纤维混凝土制成的自防水预应力屋面板,不仅提高了自防水预应力屋面板的抗裂性能,同时也减少了纵向预应力筋的配筋率,提高了结构的耐久性。钢纤维混凝土在建筑中的应用实例有:福州东方大厦、沈阳市急救中心站综合楼、江苏省丹阳市中医院、辽阳市食品公司办公楼等工程。

(三)道路和桥梁工程。钢纤维混凝在道路和桥梁工程方面,主要广泛应用于路面、桥梁、机场跑道等工程中,包括新建及修补工程。钢纤维混凝土较普通混凝土有较好的韧性,抗冲击、抗疲劳性。它可使面层厚度减少,伸缩缝间距加长,使用性能提高,维修费用减低,寿命延长。面层较普通混凝土可减少30-50%,公路伸缩缝间距可达30-100m,机场跑道的伸缩缝间距可达30m。用于路面及桥面修补时,其罩面厚度仅为3-5cm。在实际工程中有:北京东西环路立交桥、沪杭高速公路成渝公路、大足朱溪大桥、广州解放大桥等工程中都采用了钢纤维混凝土解决工程难题,使用效果较好,经济效益显著。

(四)铁路工程。在铁路工程方面,钢纤维混凝土主要用于预应力钢纤维混凝土铁路轨枕、双块式铁路轨枕及抢修铁路桥面防水保护层中。铁路工程承受较大的荷载、较高的速度和数万次的振动,所以要求混凝土必须具有较高的强度、较高的抗冲击性及较大的塑性。这正好利用了钢纤维混凝土的抗冲击性及较好的塑性。建成的工程有:沈阳铁路局长达线维修工程、柳州铁路局黔桂铁路铺设工程、南昆铁路隧道工程和西安安康铁路椅子山隧道等工程土。钢纤维混凝土的应用,使维修工作量大为减少,并提高了线路的使用寿命,效果良好。

(五)港口及海洋工程。钢纤维混凝土在海洋工程中的使用主要是钢纤维混凝土的腐蚀问题,所以有待进一步研究,但在日本和挪威的使用经验是令人鼓舞的。日本钢铁俱乐部采用钢纤维混凝土作钢管桩防腐层,在海水中浸泡10年,钢纤维混凝土防腐完好,钢管表面无锈蚀,仍有金属光泽。挪威将钢纤维混凝土用于北海海底输气管道的隧道衬砌、Forsmark核电站海底核废料库的支护、海洋平台后张预应力管道孔的封堵以及码头混凝土受海水腐蚀部位的修补等。我国江苏石舀港码头的轨道梁工程中也使用了钢纤维混凝土。

除了上述领域外,还有很多钢纤维混凝土的应用的实例,如承受重级工作制造工业厂房和仓库地面、薄壁蓄水结构、预制板、离心管、污水井、游泳池、耐火混凝土和耐火材料、抗爆结构、各类建筑物和构筑物的修补、补强加固、抗震加固等。

三、结束语

钢纤维混凝土具有普通混凝土不具有的优点,且具有良好的经济效益,其在民用建筑楼地面、公路路面、预制构件水利工程、港口码头、机场跑道和停机坪、桥梁隧道以及各种构筑物等方面的应用前景将是十分广阔的前景。

高强混凝土论文例10

在复合材料中,钢纤维增强混凝土是近年来迅速发展的一种新兴的建筑材料。在建筑业发展历史上它是一个必然的科学研究成果。钢纤维增强混凝土即在普通的混凝土中加入多向分布的短钢纤维而形成的一种复合材料。由于钢纤维在混凝土内部多向分布的原因,能够有效地阻止混凝土内部微小裂缝的扩大延伸及大裂缝的形成。

所以向混凝土中加入钢纤维,除了能增强抗拉、抗剪、抗弯、抗磨和抗裂等力学性能,混凝土的抗断裂韧性和抗冲击性能也都大大增强。钢纤维增强混凝土造价成本低,制作相对简单,因此广泛用于公路路面、桥面、混凝土路轨及抗震抗爆结构工程中。

一.钢纤维的增强机理分析

钢纤维混凝土增强机理的研究在理论上有两种定义:一是复合力学理论,二是纤维间距理论。从不同角度出发,两种理论分别解释了钢纤维的增强作用,其最终结果是相同的。

(1)钢纤维的复合力学理论

在复合力学理论中,钢纤维混凝土被看成是一种纤维强化作用体系。钢纤维混凝土的应力、弹性模量和强度是根据混合原理推算而出的。根据纤维在钢纤维基体中的分布与取向引入纤维方向系数,正确选择纤维方向系数是取决纤维增强效果的主要因素之一。

(2)钢纤维的纤维间距理论

在钢纤维间距理论中,是根据线弹性断裂力学原理来解释钢纤维对混凝土裂缝的产生或抑制的作用。混凝土是一种脆性材料,要想增强其抗拉强度,而多方向加入钢纤维后,使钢纤维与混凝土裂缝两边之间的粘应力对裂缝混凝土的扩展有抑制作用。

二.混凝土受钢纤维力学性能的影响

(1) 钢纤维对混凝土抗压强度的影响。

根据力学试验数据的分析,混凝土的抗压强度的大小和混凝土的基本性能有关。钢纤维的加入对混凝土的抗压强度没有太大的影响,相反因为纤维的加入,使混凝土的和易性变差,内部界面会增加许多微裂缝,使抗压强度反而降低。但是钢纤维的加入改变了混凝土被破坏后的形式,混凝土被破坏后碎但不散,这就是抗压韧性的作用。钢纤维混凝土抗压强度的尺寸效应比普通混凝土高。

受力学因素的影响,混凝土产生裂缝是内部尖端的应力集中引起。而这些裂缝发展程度有所不同,其过程可分为几个阶段:弹性阶段、裂缝扩展稳定阶段、裂缝扩展失稳阶段、纤维被拔出阶段。根据钢纤维混凝土材料裂缝的发展程度,其破坏性又可分为4个等级,第一个等级为混凝土的破坏。混凝土对应于应力应变关系中弹性阶段的末端,这时混凝土(砂浆和骨料)结合面上开始有缓慢发展的裂纹。但由于骨料对钢纤维有一种边壁效应,使钢纤维平行于骨料的边壁状态来分布,与混凝土界面的裂缝平行,这样就起不到阻止裂缝的增强作用。第二个等级为砂浆的破坏。混凝土为裂缝稳定扩展阶段的末端,此时裂缝发生了解体破坏,而导致裂缝扩展进入到硬化的水泥浆,这时钢纤维开始起到纤维的增强作用,进而使使裂缝发展的速度变慢。混凝土变形的不断发展会达到混凝土的极限强度(抗压强度)。第三个等级为硬化水泥浆体的破坏,此时的状态是裂缝迅速扩展、宏观裂缝不断增长,这时多方向加入的钢纤维能有效地阻止裂缝的发展,同时使混凝土结构韧性增强。第四个级为纤维被拔出时的破坏。混凝土宏观裂缝的不断增大,使钢纤维逐渐被拔出。通过以上分析可以得出结论:钢纤维产生的增强作用只有在钢纤维混凝土结构达到一定的抗压强度后,裂缝扩展到水泥石之中钢纤维才能发挥作用。这就从理论上解释了钢纤维加入后对混凝土抗压强度影响不大,而对混凝土的抗压韧性却有很大改善的原因。

(2)钢纤维对混凝土抗剪强度的影响。

2.1钢纤维特性对混凝土抗剪强度的影响。

由于钢纤维自身的特性,对钢纤维混凝土有着一定的抗剪强度。钢纤维的自身特性主要包括钢纤维的类型、形状、长径比以及自身强度等等。

在钢纤维抗剪破坏的过程中,钢纤维会对混凝土的抗剪强度有明显的影响,因此截面刚度和等效直径对钢纤维高强混凝土抗剪强度的影响变得更加显著。钢纤维的截面刚度和自身强度都比较高,另外铣削型纤维与基体的粘结非常牢固。再加上该纤维的两端有弯钩,都使铣削型钢纤维能大大提高混凝土的抗剪强度。

对于剪切端钩形纤维和剪切长直形纤维,其纤维均为剪切型,纤维的表面粗糙程度也很相似,这两种纤维对于提高混凝土抗剪强度有着重要作用。其中剪切端钩形纤维的抗剪强度要优于剪切长直形纤维。

冷拉钢丝切断型纤维的等效直径是这几种纤维中最小的一种,其断面是圆形而且表面非常光滑。尽管冷拉钢丝切断型纤维强度非常高,而且两端设有坚固的弯钩,但这种纤维对混凝土的抗剪强度在4种纤维中是最小的。由此可见,钢纤维具有横断面对高强混凝土有着非常大的抗剪强度。钢纤维的其他自身特性也决定了钢纤维对混凝土的抗剪强度。

2.2钢纤维掺量对混凝土抗剪强度的影响。

钢纤维的成分和掺入量的多少也决定了钢纤维混凝土的抗剪强度的大小。钢纤维体积掺和率的越高,钢纤维混凝土的抗剪强度就高。但是在混凝土基体的强度升高以后,提高钢纤维的掺入量就减弱了钢纤维混凝土的抗剪强度,但不很明显。随着钢纤维掺量的不断增多,钢纤维混凝土受到的剪切破坏现象完全是由脆性破坏向半脆性破坏发展.由于钢纤维的作用,混凝土在产生裂缝之后,仍能继续保持一定的承载能力。

热门文章