期刊在线咨询服务,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

期刊咨询 杂志订阅 购物车(0)

热力学教学模板(10篇)

时间:2023-03-10 15:05:53

热力学教学

热力学教学例1

教师在教学学生时,很多学生也是很用功的,但是在学习的能力上显得很差劲,学习效果不好。其关键是对于科间的沟通与衔接差,教师没有起到科学组织教学作用。化工热力学是一门专业基础课程,其中涉及到热力学基本定律和热力学函数。如焓、熵、内能、自由能、自由焓、流体P-V-T关系的状态方程等等知识,对于这些知识有很强的理论性、应用性,而且知识又具有强烈的过渡性,而且这些知识大多是物理化学中所学习过的,现在需要在化工热力学中进一步深化与应用,这就需要做好逻辑性的过渡,而往往很多教师只是单纯的就课本而教书,导致很多学生学不好,这里就需要改革。

做好数学学科的沟通,起到穿针引线的作用,因为化工热力学课程中涉及到很多计算公式,如流体的P-V-T关系计算公式、热力学性质的计算公式、化工过程能量分析计算公式、相平衡计算公式、化学反应平衡计算公式等方面。这就要求数学知识功底的厚实了,学校在开展化工热力学课教学时,应该加强与相关的专业基础课程及专业课程的横向联系,使得理论联系实际,从而放开思路,使得学生不觉得化工热力学理论太深,难以学习的目的。

二、 合理设置教学内容

教师应该根据学生的实际情况,根据教材的内容合理调整教材的结构,使之具有合理性、实用性,达到理论与实践相结合 。为了更好的制定教学大纲和选择教学内容,可以 将热力学知识体系分为两个板块:一是流体的P-V-T性质及计算、流体热力学性质以及应用。让学生深刻的认识到气体和液体的P-V-T性质及计算、流体的热力学性质计算。并且能够熟练掌握常用的流体状态方程和应用计算,还有要求学生学会计算的思路、步骤和方法;具备利用状态方程和热容数据计算流体的热力学性质的方法,绘制热力学图表的能力。二是溶液理论、相平衡和应用。教师应采取循序渐进、先易后难的方法进行逐步讲解和学习,最后达到融会贯通。并根据超额吉布氏自由能与活度系数的关系,和结合模型方程计算混合溶液的活度系数;同时掌握相平衡理论在不同条件下的方程表达式及其应用,和超临界流体在分离中的应用功能。

三、 化工热力学方面的多媒体教学

热力学教学例2

通过本节课的学习,我认为:

1.教师备课的同时还得备学生、备学法、备教法。对于教学中的重难点,可以通过生活中的自然现象与实际问题,引导学生由浅入深,由已知到未知,从实际到理论,循序渐进。实际教学中该讲的就讲,尤其是自然地理的教学,完全靠学生自主学习是学不透的。

热力学教学例3

1 前言

热力学属于物理化学研究范畴,而物理化学是化学的分支学科。化学乃自然科学之中心科学之一,是人类须臾不能离开的科学领域。

热力学是研究体系所涉及的热与其它形式的能量间转换关系的一门科学。把热力学的基本原理用来研究体系中发生的化学现象及与之相关的物理现象的科学,被称作化学热力学。传统意义上,它与化学动力学和物质结构一起成为物理化学的三大组成部分。本篇仅就化学热力学展开讨论。

化学热力学所要解决的核心问题是,在指定条件下,一个热力学体系中发生的过程变化的方向和限度(即平衡)问题。解决这种问题的基础是热力学的三大定律――热力学第一定律、第二定律、第三定律,它们是人类经验(实验)的高度概括和总结。由它们导出的结论和结果的正确性和可靠性,古今中外还没有遇到过任何例外。化学热力学理论已被广泛应用于自然科学的若干学科领域。应用热力学理论解决问题,不仅结论正确,结果可靠,而且解决问题的过程和方式也十分简洁。这里,核心和关键之处是要准确把握和正确应用热力学的基本概念和热力学的基本关系式及其适用条件。

然而,迄今为止,国内外学生在学习化学热力学课程时普遍感到困难。一是对热力学的一些概念和理论感到难于理解(最难之处莫过于对熵函数概念的理解和把握);二是对热力学理论精髓的把握,尤其是对各种热力学条件下热力学函数的计算及其应用的把握,朦朦胧胧;三是让理应得到的创新思维和创新能力的培养湮灭在苦苦挣扎的概念理解和把握中。造成这种状况的主要原因,可能既源于热力学若干概念和理论本身的抽象,在某种意义上也似乎源于我们在这门课程的教材内容设计及授课方式上的“刻板”和对某些基本热力学量之物理意义的解释过于“肤浅”(未能完全做到随时与“能量或能量变化”这一核心丝丝紧扣和巧妙关联)。有鉴于此,本篇企图在这一教、学领域的突破方面做一点探索和尝试。这主要包括:(1)力求紧紧围绕“热力学过程变化方向和平衡条件的评判――能量交换及其清算”这条主线展开讨论,始终抓住“基本概念、基本公式、基本条件”这个纲,正确掌握各种热力学条件下热力学函数的计算及其应用;(2)尝试采用一种易于理解的从一般能量项的分解表达入手的推理方式,导出若干重要的热力学基本函数,随后再介绍其历史发展沿革,力求充分发挥化学热力学理论因其高度抽象而带来的“纲目性规律”的优势,竭力把握其知识精髓;(3)重在努力揣度和探究化学热力学理论知识的原始创新过程和创新方式,力求避免将这种把握和探索迷失在单纯的一个接一个的热力学概念的介绍和关于相应热力学公式的严格而又繁多的应用条件的讨论之中。如果说全面掌握热力学的有关理论是本篇的重心所在因而非常重要的话,那么,透过这些努力,学习抽象思维方式,学习高度归纳概括和引伸外推的科学研究方法,培养创新精神和创新能力,则更为重要。此乃本课的追求。

热力学教学例4

0 引言

在热力学统计物理中,引入的热力学函数中,最基本的是物态方程、内能和熵。其它热力学函数均可由这三个基本函数导出。如果适当选择独立变量,只要知道一个热力学函数,就可以通过求偏导数而求得均匀系统的全部热力学函数,从而把均匀系统的平衡性质完全确定。那么,这样的热力学函数就称为特征函数,它是表征均匀系统的特性的。它们和热力学系统的各种状态参量和各个热力学量之间有着千丝万缕的联系。一般来讲这些联系用热力学基本方程来解决,而方程中涉及的有些函数和物理量,如:熵S、固体和液体的定容热容量Cv等往往很难直接测定,为了间接测定这些函数和物理量,人们定义了很多辅助量,这些辅助量就是那些表征均匀系统的特性的特征函数,如:内能U、焓H、自由能F、吉布斯函数G等等,从而建立了相应的热力学微分方程。

笔者在北京师范大学做访问学者的时候,曾听到朱建阳教授在教学中采用的热力学标尺和椭圆记忆法很有效,而热力学量与偏导数间的关系和麦克斯韦关系的推导,在传统教材中较繁琐,不便于学习和应用,笔者在朱建阳教授的教学中得到灵感并总结了自己长期教学中的经验,发现还有更简单的记忆方法,在此通过四个方面给出总结,谨供参考,以飨读者和各位同仁。

一、热力学特征函数的定义

一般来说,热力学系统很复杂,表征其特性的特征函数也很多,这里只给大家介绍以下四个常用的特征函数。

内能U:它是个基本特征函数。是系统中分子无规则运动的能量总和的统计平均值。无规则运动的能量包括分子的动能和分子间相互作用的势能以及分子内部的振动能量。

焓H:是个辅助物理量。等压过程中系统从外界吸收的热量等于状态函数焓的增加值。其定义式为:H=U+PV。

自由能F:是个辅助物理量。在可逆等温过程中,系统所做的功等于自由能的减少。即在不可逆等温等容过程中,系统的自由能永不增加。其定义式为:F=U-TS。

吉布斯函数G:是个辅助物理量。在可逆等温等压过程中,系统所作的非膨胀功等于吉布斯函数的减少。即在不可逆等温等压过程中,系统的吉布斯函数永不增加。其定义式为:G=U-TS+PV。

上面的框图就是朱教授教学用的热力学标尺,用来记忆特征函数定义式的,应该配上语句我觉得更容易记忆:焓在最高填满尺,内能紧跟加压体,温熵加自由能和压体充满尺,内减温熵是自由,再加压体成吉布斯,温熵加吉布斯又满尺。

二、热力学微分方程

内能作为基本特征函数,它对应的有基本热力学方程,其余的各个特征方程也相应的有热力学微分方程。如:

这些微分方程可以利用特征函数和热力学量组成的矩形框来帮助记忆:画这个矩形框,心中可以默念:微分方程靠矩形,左上吉布右上焓,中间夹着压强P,下方各置温和熵,左下自由右下内,其间夹上体积V。这种构造要记牢,关键还得会应用。

具体应用上述矩形框来列特征函数的全微分口诀是:四个顶角是函数变量,其邻近两个是自变量(或独立变量),自变量的对面是与之配对的量,其符号规定:当函数变量移到矩形框的中间时,如果自变量在上或右面符号取正,如果自变量在下或左面符号取负。如以G为例,其临近的量P、T为自变量,P和T对面的量V、S为与自变量配对的量。而把G移到矩形框中间时因T在其左取负,P在其上取正。从而有:。

如果是开放系统的热力学方程,其中包含质量作用项如:

上述方法推广后,还可以用在这些开放系统的方程,因为包含质量作用项的其它形式的功是这些方程所共有的,因此上述结果中都加一个项即可得到,也可以用久保亮五的热力学记忆图来记忆,还可以用H.B.Callen所著的教科书中的方法。

三、热力学量与偏导数关系

在热力学统计物理中,热力学量往往可以用一些特征函数的偏导数来表示,由于不同的热力学过程中需要的特征函数不同,从而偏导数关系非常繁杂,需要归纳出一个方法来帮助记忆,如以下的关系:

可以用两种方法记忆:一是从全微分式导出;另一是借助矩形框导出。

1.由全微分式导出

四、麦克斯韦关系

以上仅仅是笔者整理得一些记忆方法而已,任何方法的运用都是以娴熟的训练作为基础才能保障它的行之有效,如果死记硬背这些方法和口诀的话只能成为二次负担,不能提供帮助反成累赘,希望读者能够灵活应用,以便事半功倍。

参考文献:

[1]汪志诚.热力学•统计物理(第四版)[M].北京:高等教育出版社,2008.

热力学教学例5

作者简介:耿凡(1982-),女,江苏徐州人,中国矿业大学电力工程学院,讲师;王迎超(1982-),男,山东滨州人,中国矿业大学力学与建筑工程学院,讲师。(江苏 徐州 221116)

基金项目:本文系2012年中国矿业大学青年教师教学改革资助计划项目(项目编号:2001263)的研究成果。

中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)05-0076-02

工程热力学相关的热工技术和节能环保问题日益凸显,因此,“工程热力学”教学改革需要深入。那么,如何调动学生的学习兴趣,使其更清晰地理解并掌握抽象概念,把工程实际问题更形象地展示给学生并让学生应用所学知识去分析、解决实际问题,这对高校传统的教学方法和手段提出了挑战。因此,开展研讨式授课的教学模式改革被提上日程。[1,2]

一、研讨式教学改革的指导思想、原则及作用

1.指导思想

根据“工程热力学”课程的内容及特点,研讨式教学的指导思想是:以解决问题为中心,通过教师创设问题情境,学生按照课程要求在教师的教学指引下,对具体的热工理论及实际问题进行思考和研究,借助丰富的网络资源、必要的实验及模拟手段,探究其知识的发生过程、提出解决问题的方法。

2.实施原则

研讨式教学体现的主要教学原则是学生主体性原则、启发性原则、循序渐进原则及和谐性原则。

(1)学生主体性原则。学生在研讨式教学模式中成为学习行为的主人,始终处于稳定的自主地位,在教师的帮助下积极思考,多动手、多分析、多总结,积极发掘自己的创造潜力,有意识地占据课程学习的主体地位。

(2)启发性原则。教师在研讨式教学模式下以启发为主,设置贴近学生生活、富有吸引力的情境,提出有思考价值的问题,这要求教师有全面、深刻、独到的见解,了解学生原有知识基础和能力水平,并且有熟练利用现代化手段教学的能力。[3]如“门窗紧闭房间可否用电冰箱降温”,据笔者亲身授课经历,这一问题很能吸引学生的注意力,而且贴近生活。学生能够积极思考并能在教师的引导下用热力学第一定律进行分析得出结论。

(3)循序渐进原则。教师设计的问题要由易到难、由简到繁循序渐进地进行,便于让学生顺利进入状态,从而逐渐调动其积极性并提高其研讨的兴趣;另外,由于学生个体的差异,对设置问题的接受能力也有所不同,因此,教师也要针对学生个体的具体情况,对一个问题设置多个角度、多个层次、多个梯度便于学生理解,让学生由少到多、由个体到班级逐步理解问题。

(4)和谐性原则。研讨式教学过程中,教师通过设计的问题给学生指出方向,并适时启发学生思考,而学生在所设置的问题情境中要靠自己来解决问题,这种导与演的情境创设了师生之间、学生之间相互影响、共同进步的环境,呈现出平等和谐的教学氛围。

3.作用

研讨式教学包括对问题的认识、分析和解决各方面,主要或完全由学生自己来做,能够调动学生积极性,开阔其视野,有助于学生综合能力的提高。具体作用可分为以下几点:研讨式教学体现了以学为本的科学发展观,充分激发了学生的主体性;能够解决“工程热力学”理论与实践脱节的难题,能有效提高学生的实践能力;能够依托“工程热力学”课程设计,鼓励学生独立思考,着重培养其科研能力和创新精神。

二、研讨式教学改革可行性分析

从课程本身的性质和特点来看,研讨式教学方法和手段的改革是可行的。通过教学过程发现:学生能够通过课程教学了解和掌握了“工程热力学”的相关知识,但由于课堂及实验条件的限制,学生对于抽象概念认识模糊、对主要热工问题的认识不深,思路不清晰,解决问题能力十分有限,不少学生对此课程失去了学习兴趣。尽管引起该问题的原因很多,但教学方法和手段的局限是其重要原因。因此,教学方法和手段的改革十分重要。

“工程热力学”的研讨式教学打破讲授为主的模式,预期在教学过程中结合实际问题、以互动为主的方式使学生通过认识过程去掌握知识结构,从而掌握“工程热力学”的基本概念、理论和计算,并让其具有对各种“工程热力学”问题进行初步定性定量评价的能力和分析解决热工技术问题的能力。另外,在“工程热力学”研讨式教学初见成效后,可将其逐步推广到“工程流体力学”、“传热学”等课程中去。

三、研讨式教学改革具体内容

开展“工程热力学”研讨式教学的具体做法很多,本文拟采从以下几个方面进行分析:

1.常规教学为基础

教师应对当前典型热力学教材进行详细阅读,科学编辑,根据学科发展对课程内容进行部分更新和调整,优化课程内容。在已有的较扎实的“工程热力学”课程教案的基础上,制作与授课专业相符的具有较高专业水平的多媒体教学课件,采用图、文以及动画等形式为课程教学提供多样化、多视角、立体化的教学信息空间。[4]

2.实例研讨作穿插

教师在课堂讲述中适时引入工程和生活中常见的实例,如在讲“湿空气”时,让学生思考简单问题:“为何什么阴雨天晒衣服不易干,而晴天则容易干?”由此展开研讨式教学,通过教师对实例启发性的分析,把枯燥的理论变成具体的实际问题,开展课堂讨论,激发学生学习的兴趣。与此同时,教师启发学生独立思考,让学生以解决问题为目的,完成查资料、讨论、分析、提出整改措施、总结经验教训的一体化学习过程。

3.热点问题当点缀

教师结合当前的热工领域的热点问题,如提高热机效率、节能降耗、低碳环保以及日本核电事故等问题,开展课堂讨论调动学生积极性,在条件允许的情况下给学生课后试验的机会,让他们在动手过程中更深入地理解问题,或者借助模拟实验手段,鼓励学生多途径分析解决问题。最后总结、分析并撰写小论文。

4.课程本身问题

另外,在学生逐渐学会分析、解决、总结问题的同时,教师也要引导学生学会分析总结本门课程的学习,把课程本身作为一个问题去对待,学生要逐渐学会自己分析总结重点、难点和规律等,从宏观、微观两个角度认识课程。学生在学习过程中发现的疑点问题,在及时反映给教师的同时,要能够独立思考,并通过查资料、分析总结进而消除疑点问题。

通过研讨式教学,学生养成良好的思考习惯,从被动学习变为主动的学习,从而多角度地体会学习的过程。

四、实施方案

1.实时改进教学内容

教师要搜集“工程热力学”方面的教材、课件及教学改革论文,学习前人的教改思路和方法,深入分析兄弟院校的“工程热力学”课程建设经验及精品课程,取长补短。在大体保持传统内容及学时基础上,对教学体系和内容作进一步调整,适当增加与专业相关的内容,简化或删去部分比较陈旧的内容。

2.构建实例和热点问题资料集

教师搜集国内外“工程热力学”相关实例和典型热工问题,如针对性地引入日常生活常见的散热器管片、电冰箱和空调等生活中常见的电器循环、节能减排、低碳环保等热点问题,并运用“工程热力学”原理对具体热工过程、设备及工程热点问题进行深入剖析,形成与课程相配套的实例资料集。结合构建的实例集,增设课程实例研讨环节,激发学生的学习兴趣,提高学生自主学习和独立思考的能力。

3.重视交流

教师应根据“工程热力学”大纲,明确课程定位,在教学过程重视与学生交流,及时了解学生兴趣、理解与接受能力。根据教学过程中发现的难点及疑点问题,鼓励学生根据所学有针对地加强相应习题的训练以加深对这些问题的认识。

4.习题训练

教师针对每一章的重点难点,构建相应题型,通过课题提问形式进行课堂讲授,并针对性地布置习题让学生进行课后复习和课前预习,使其独立解决问题,让其在作业同时实现对重点难点的及时掌握和有效巩固。同时,在课后多布置一些和实际生活相关的或者没有唯一答案的题目,例如“试分别举例说明热力学第一定律和第二定律对生产活动或日常生活的指导作用”等,通过对这些题目的思考与分析,学生的综合思维能力得到了锻炼,也活跃了学习的气氛。[4]

五、总结

研讨式教学在“工程热力学”课程的应用,可以调动课堂授课的生动性,激发学生的学习兴趣,学生可以集思考、行动、分析、总结于一体,有利于学生认知能力的开发和对教学内容的理解,具体的实施细节还有待于在教学实践中进一步摸索和完善。研讨式教学不仅对“工程热力学”教学改革有积极作用,对其他课程的改革也有借鉴意义。

参考文献:

[1]龙文希.研讨式教学法的实践与体会[J].广西教育学院学,2002,

(5):116-117.

[2]王默晗.“工程热力学”教学方式探讨[J].中国电力教育,2010,

热力学教学例6

作者简介:裘薇(1976-),女,浙江临安人,上海电力学院能源与环境工程学院,讲师;朱群志(1972-),男,浙江台州人,上海电力学院能源与环境工程学院,教授。(上海?200090)

基金项目:本文系上海市教育委员会重点课程建设项目(编号:20105302)的研究成果。

中图分类号:G642?????文献标识码:A?????文章编号:1007-0079(2012)21-0062-02

工程热力学是研究热能和其它形式能量(特别是机械能)相互转换规律以及提高能量转换效率的一门学科,是热能与动力工程专业的一门必修的主干专业基础课程,也是学生开始接触的第一门和热能工程有关的课程。工程热力学不仅为学生学习相关的专业课程提供必要的基础理论知识和基本技能,也为学生日后从事热能利用、热设计、热管理和热控制等方面的专业技术和科学研究工作打下必要的理论基础。

近几年,随着学校的不断发展,上海电力学院先后开设了“热动卓越工程师班”、“电厂自动控制”、“电厂测控”、“电厂核电”新专业和获得了“热能工程”硕士点的授予权。为了适应新时期人才培养及“085工程”的需要,教师除了继续承担“热动专业”的“工程热力学”教学任务外,还将面向“电专业”和研究生开设不同层次内容的工程热力学课程,因此,为了提高本课程的教学质量,有必要对“工程热力学”课程教学方法及手段开展更高层次的研究工作。

一、教学目标

根据专业人才培养的需要,“工程热力学”课程的教学目标是通过本课程的学习,应使学生掌握工程热力学的基本理论和基本知识,受到较强的基本技能训练,能正确进行热力过程和热力循环的分析和计算。教学方向定位于基础科学理论与工程实际之间的桥梁,着重培养学生应用基础知识解决工程实践问题的能力,为后续专业课的学习奠定坚实的理论基础。课程的特点是:将工程热力学作为一个整体来组织教学,并借助于现代教育手段、密切结合实验与专业课程,进行完整、系统的教学。

二、教学改革采取的措施

教学方法和教学手段的改革是服务于课程体系和教学内容的改革,它是实现教学目标的重要措施。”工程热力学”课程的逻辑性很强,各部分内容又交叉渗透,一环扣一环,而且概念抽象,是一门难教难学的课程,所以在教学的过程中,需要注意教学的方法和手段,使学生能较好又容易地理解教学内容。

1.教学方法的改革

(1)开展教学研讨活动,理解教学思路。通过开展多次教师试讲活动,对本课程的教学目标、教学要求、教学方法等有比较清楚的认识。教学目标要从学生专业课的学习以及职业发展的需求考虑。基础课不只是为后续课程服务,为专业的学习服务,更重要的是培养学生的科学素质和科学思维方式,提高他们分析问题和解决问题的科学研究能力,使学生眼光远、层次高、后劲足。教学上需要控制教学内容的难度。注意将教学内容及习题的难度控制在适当的水平,难度太大的习题,会过度加大学生的负担,不提倡作为作业而布置。教学中需要清楚讲述知识点产生的背景和来龙去脉,争取用一条主线将各章节的内容穿起来,避免对知识点的孤立讲授,避免学生孤立地理解知识。教学中需要介绍本学科在工业、民用及高新技术领域的一些应用实例,加深学生对基础知识的理解,使学生充分认识本门课程的重要性,提高学习的兴趣和积极性。

(2)注重学生应用能力和创新能力培养。在课程教学过程中注意理论联系实际,注重工程应用。以往学生反映“孤立系统熵增原理和作功能力损失”这部分内容抽象难懂。在教学中可举一个工程实例:大气环境温度为-10℃,为保持计算机房内20℃,需每小时向机房供热7500kJ。若采用三种方式供热:(1)电热器;(2)电动机带动热泵;(3)温度为80℃的热水供暖,让学生分析三种情况的熵增和作功能力损失。使用这种工程例子好处是:学生接触的概念和原理不再枯燥空洞,而是富有工程背景和实用价值,可以使学生加深对这部分内容的理解。同时从实例的比较中,学生自己也可领悟出一个道理:对能量应从量和质两方面综合评价,才能真正找到节能途径。

讲述教材内容和工程实践有机联系。例如:制冷循环的原理与制冷装置、冷藏库、家用空调、电冰箱的联系,湿空气的相关知识在空气调节、电厂冷却塔中的应用,郎肯循环与火力发电厂实际循环等。通过介绍这种内在联系,使课堂教学内容生动,帮助学生理解所学知识和原理在实际中运用。

改变以往全部由教师做习题点评的方式,请学生上讲台讲演自己的解题方法,其他同学评判和讨论。通过各抒己见,对比分析,最后达到“明辩是非”。教学实验表明:采用这种做法,激发了学生学习兴趣,学生的解题方法明显增多,有些学生的解题思路相当活跃。

热力学教学例7

一、引言

热力学与统计物理是理论物理的五大分支之一,具有与其它四个分支(经典力学、电磁学、相对论、量子力学)同等重要的科学与工程地位。热力学与统计物理课程是本科教学中物理学及相关专业的一门重要基础理论课程,它以大量微观粒子组成的宏观物质系统为研究对象,基于热力学理论和统计物理理论,揭示热运动规律以及与热运动有关的物性及宏观物质系统的演化。许多工程科学都是由热力学所衍生的或与其密切关联,例如传热学、流体力学、材料科学等,该课程也是学习量子力学、固体物理的基础。热力学的应用范围很广,主要包括:引擎、涡轮机、压缩机、发电机、推进器、燃烧系统、冷冻空调系统、能源替代系统、生命支援系统及人工器官等。

通过热力学与统计物理课程的教学,可以培养学生的形象思维和逻辑思维能力,提高学生的物理修养,使学生深入认识热力学与统计物理理论,能从热力学和统计物理学角度阐述热运动的规律及热运动对物质宏观性质的影响,能基于热力学和统计物理学理论解决实际热力学问题。热力学理论和统计物理学理论的统一性的教学,可使学生树立物质世界是分层次的、宏观现象与微观本质紧密联系、量的积累引起质的变化等物理学基本观点。然而该门课程抽象性强,教学难度很大,因此教学过程中必须有针对性的采用科学的教学方法以保证良好的教学效果。

二、重点突出物理思想和物理方法教学

科学思想和方法是物理科学的重要内容。美国著名物理学家费恩曼曾经说过:对学习物理的人来说,重要的不是如何正规严格地解方程,而是能猜出它们的解并理解物理的意义。清华大学著名物理学家叶企孙教授也曾强调指出: 物理教学不仅要给学生以知识,更要给学生科学思想和方法。可见物理思想和物理方法在物理教学中的重要性。物理知识的认识和发展是依赖于物理思想的发展和建立于科学的物理方法的基础之上的。物理知识的传授是“授人以鱼”,物理思想和物理方法的传授则是“授人以渔”。仅仅传授物理知识容易使学生对掌握的结论确信无疑,这将限制学生的创造性和个性发展。而物理思想和物理方法的传授不仅是为学生提供必要的知识储备外,也是为他们提供能力储备。

在热力学统计物理课程的教学中,除了物理思想和物理方法自身具有的重要地位之外,授课学时少和授课内容多的矛盾、化繁为简提高教学效果的要求也需要将物理思想和物理方法的传授放在一个重要位置。把握该课程的物理思想和基本方法,对授课内容和知识结构进行优化和调整,是解决授课学时少和授课内容多的矛盾的根本方法。热力学统计物理课程对学生数学基础要求也较高,涉及到大量繁复的公式数学推导和变换,导致学生在学习该课程的过程中很容易将注意力停留在物理公式的数学形式上而忽略了其中的物理意义、物理思想和物理方法,最终结果是导致学生思维混乱、满头雾水。因此,在热力学统计物理课程中应该尽量简化物理公式的数学推导和数学变换方面的教学,而将教学的重点放在物理公式的物理意义、物理思想和物理方法方面,帮助学生从物理角度对授课内容进行深入理解。

三、排除学生心理障碍

热力学与统计物理课程的特点是比较抽象,学生理解困难和难以建立相应的物理图像。较大的学习阻力会影响学生学习该课程的兴趣和爱好,导致学生存在接受热力学与统计物理的物理思想和相关理论的心理障碍。上述在把握课程的物理思想和基本方法的基础上对授课知识结构进行优化调整和将授课内容化繁为简是排除学生心理障碍的一个有效方法,此外好的课题引入对于排除心理障碍从而激发学生学习兴趣也会起到十分重要的作用。如教学实践证明,课程绪论由热力学发展史引入,从“热”本质的争论到焦耳、克劳修斯、开尔文、能斯脱、麦克斯韦、玻尔兹曼、吉布斯等科学家的丰功伟绩进行逐步阐述,可以有效激发学生学习统计物理的兴趣和增强学生的学习信心。恰当地运用热力学统计物理发展史能够提高学生的创新思维水平,提高学生整合信息、发现问题的能力。[1]同时也有利于激发学生的自我意识[2]和有助于学生理解物理知识,有助于学生体验物理学的批判精神和形成整体性的物理知识观。[3]再如在统计理论部分的课题引入时,重点突出物理思想,突出宏观系统由大量微观粒子组成的特点,使学生真正清楚统计物理学的研究对象及方法,理解统计物理与热力学的不同之处和统一之处,也可以有效消除学生学习统计物理的形成心理障碍。总之,通过好的课题引入,激发学生的学习兴趣和调动学生的学习积极性,消除学生的畏难情绪,对排除学生学习热力学统计物理的心理障碍不无裨益,这也是保证学生在热力学统计物理课程学习过程中始终保持学习主动性的关键。

四、详细阐述热力学与统计物理两种方法的关系

热力学方法与统计物理方法是热力学与统计物理研究大量微观粒子组成的宏观物质系统的热现象的两种基本方法,两种方法的有机结合是热力学统计物理理论的一个基本特征,应帮助学生很好地把握该基本特征。热力学的基本任务是研究热运动的基本规律,是研究热现象的宏观理论,它不涉及物质的微观结构,而是从能量转化的观点出发,依据在大量实践中总结出来的几条基本宏观定律,运用严密的逻辑推理而形成的一整套完整的热现象理论。统计物理学的基本任务是揭示热现象的本质,是研究热运动的微观理论,它从物质的微观结构出发,依据微观粒子所遵循的力学规律,再用概率统计的方法求出系统的宏观性质及其变化规律。热力学理论的发展先于统计物理学的发展,其起源可追溯至十七世纪末开始的长期而激励的“热”本质争论,到19世纪中页在焦耳测定热功当量的工作基础上热力学第一定律得以建立了“热质学”,奠定了热力学的发展基础,并在克劳修斯、开尔文、能斯脱等人的进一步努力下建立了热力学第二定律和第三定律,使热力学理论更臻完善。热力学能解决宏观热现象的一些问题,但仍未能对热现象的本质作出解释。在热力学发展的同时,分子运动论也开始发展起来。克劳修斯从分子运动论的观点出发导出波意耳-马略特定律。麦克斯韦应用统计概念研究分子的运动,得到了分子运动的速度分布定律。玻尔兹曼给出了热力学第二定律的统计解释。最后吉布斯发展了麦克斯韦和玻尔兹曼的理论,建立了系综统计法。至此统计物理学形成了完整的理论。可见热力学理论和统计物理理论的发展虽有先后之分,但是发展过程却紧密联系,对应的两种研究方法各有优缺点又有机结合,二者的区别和联系如下表所示:

基础 方法 优点 不足

热力学方法 由大量现象总结归纳的热力学基本定律 数学演绎、逻辑推理 高度的普适性、可靠性 无法解释涨落现象、无法揭示热现象本质

基础 方法 优点 不足

统计物理方法 物质微观结构、宏观量与微观量的关系、等概率原理 概率统计方法 可求具体物质的热性质、解释涨落、揭示热现象本质 近似性

可见,热力学方法和统计物理方法共同来自于人们对宏观热现象的明确认识和微观热运动特征的准确把握,二者相辅相成,互为补充,是一个有机统一体,缺一不可。课程教学过程中,应在详细阐述热力学与统计物理学的概念定义、发展历史的基础上讲授二者的有机统一关系,使学生对两种方法有一个整体的认识,准确把握课程的基本特征,这有利于学生理解热力学统计物理的物理思想和建立相应的物理图像。

五、帮助学生建立课程理论框架

学生在学习热力学与统计物理的过程中,难以理解相关的物理思想、定理定律和无法建立清晰的物理图像,很大程度上是由于没有很好地把握课程的知识要点和理论主线。热力学与统计物理课程有机结合思维方式截然不同的热力学和统计物理两种方法,分别从宏观和微观两个层面对物质系统的热运动规律进行研究,同时数学推导和变换繁复,因此学生在学习的过程很难捕捉到课程的知识要点和提炼出课程的理论主线,这就要求教师有意识的帮助学生把握课程的整体理论框架。

汪志诚的《热力学·统计物理》教材为例,[4]可以建立如下课程基本理论框架:课程分为热力学和统计物理两个部分。热力学部分包括热力学基本定律部分(核心)、均匀热力学系统的热力学公式、热力学基本定律和热力学公式的应用三部分,前两部分为热力学的基础理论,第三部分包括基础理论在均匀单元系、均匀多元系以及非均匀系中的应用。统计物理部分包括平衡态统计理论、涨落理论和非平衡态理论,平衡态统计理论为核心部分,又包括最概然统计理论和系综理论。在授课学时日渐缩减的情况下,可将最概然统计理论作为本科教学中统计物理部分的讲授主体。该部分可以分为系统微观构成的描述和基本统计规律、基本统计规律在不同微观系统中的应用两部分,后者包括了基本统计规律在玻尔兹曼系统、波色系统和费米系统中的应用。这样的一个简明的整体理论框架的建立,有助于学生对相关定理定律的融会贯通和对课程的物理思想和物理方法的整体理解,从而帮助学生建立完整的热力学统计物理图像,达到该课程的最终教学目的。

六、结论

热力学统计物理是本科物理学及相关专业的一门重要基础理论课程,具有抽象且数学知识要求高的特点,教学难度很大。在该课程的教学过程中通过重点突出物理思想和物理方法教学、排除学生心理障碍、详细阐述热力学与统计物理两种方法的关系、帮助学生建立课程理论框架等科学的教学方法的应用,可以有效提高教学质量,帮助学生深入理解相关的物理思想和掌握相关的物理方法,建立完整的热力学统计物理图像。

【参考文献】

[1] 周诗文.运用物理学史培养学生的创新思维[J].物理教学探讨,2005.9.15-16.

[2] 陈运保.物理学史对于培养学生自我意识的重要作用[J].物理教学探讨,2005.2.28-29.

[3] 赵长林,赵汝木.物理学史的课程价值[J].物理教学, 2005.2.32-35.

热力学教学例8

化工热力学是化学工程与工艺专业一门重要的专业基础课,是化学工程学的一个重要分支。该课程把热力学原理应用于化学工程之中,要求学生掌握根据热力学原理求取化工基础数据和计算热量衡算的计算方法,分析和解决化工生产、工程设计和科学研究中有关的实际问题,为今后学习分离工程等后续课程打下坚实的理论基础[1-2]。通过化工热力学的学习,培养学生在化工生产、设计和科学研究中运用相应的的热力学理论知识[3],提高分析能力和解决化工实际问题的能力,同时树立工程观念[4]。

1 《化工热力学》课程教学过程中存在的问题

虽然该课程起着承上启下的作用,但在教学过程中发现,学生的学习热情并不高,两级分化严重。学生普遍反映课程概念抽象难懂、推导公式多且复杂、内容杂乱,在实际环境中难以应用。其次是认为化工热力学里的的部分内容与物理化学的内容重复,是浪费时间。由于上述原因导致学习困难,有较大的畏难情绪。

化工热力学课程教学的特点是:内容抽象、逻辑性强、概念严谨、公式推导较难且较多地应用高等数学知识。例如气体逸度的求取,可用三种方法求取,分别是从实验数据、用状态方程和用对应态原理计算,每一类方法下面还可分别采用其它方法,如从实验数据求取下还可采用P-V-T数据和焓熵计算;用状态方程法当选用的状态方程不同时,公式结果不同,结果需要用试差和迭代法反复试算;对应态原理可有对比态双参数法和三参数法。这一部分内容看似不多,实际上是将前面所讲述的实际气体状态方程、逸度概念等相关内容都进行了串联。如果学生对前述知识没有熟练掌握,则会认为公式繁琐、各项内容相关性差,抓不住重点,造成学习困难,产生厌学情绪。导致这种现象的出现,主要是学生认为化工热力学知识与工业实际相差太远,实际中不会出现这样的问题,认为知识理论上的推导,从而失去学习兴趣。

课堂教学的主要任务是培养学生的理论思维能力,采用热力学严谨的逻辑思维方式去分析和解决化学工程中的实际问题,这就要求学生深入了解并掌握有关涉及理想系统的概念和模型,并能够去繁从简地建立实际模型。教师作为课堂教学的主体,主要擅长于理论教学,讲授大量抽象的概念和繁杂的公式,采用的是灌输式教学。从知识传授方向看是知识传授的单方向,缺乏互动。唯一的互动就是课堂提问和课后练习习题。这种方式还是以教师为主导,从理论到理论,被迫学习,激发不起学习的积极性[5-6]。

2 《化工热力学》课程教学改革采取的方法

作为教师,如何改变这种不利的教学状态,使学生能够明白学有所用的道理。就要求授课教师理顺教学思路、优化教学内容、改变授课方式,调动学生学习积极性。由注重基本理论、公式推导,转变为解决工程实际问题和综合素质的培养,转变为强调综合素质的提高、工程实际的训练和解决问题能力的提高。笔者结合多年的教学经验,并借鉴同行教学经验,对化工热力学进行了改革和实践。

2.1 注重绪论

一般情况下教师认为绪论是对整门课程的初步了解,只需要简单介绍发展过程和研究内容即可。但实践中发现学生即使有了初步了解,还是一头雾水,不明白所学的内容与化学工程直接的联系。一个好的绪论内容,可以使学生详细了解化工热力学的发展历程、热力学的体系和学科意义,从整体上把握课程的内容和特点。这就要求授课教师对热力学的发展和典型过程、事件和人物有较清楚的了解,对基础课程与热力学的衔接有深刻的认识,对课程中讲述的内容条理清晰。

在讲授过程中,应充分利用现代多媒体技术,将著名人物、实验过程和工艺流程以图片和动画的形式表现出来,让学生有直观的认识。讲清楚化工热力学的内容不是物理化学等课程的重复,而是在理想模型的基础上不断加入实际因素,不断得到与实际接近的模型,说明理想方程与实际方程的差别。例如实际气体状态方程的获取,首先有理想气体模型,才得到理想气体状态方程,而实际气体不具备理想气体的特性,对理想气体状态方程进行改进,得到范德华方程。状态方程的发展方向是普遍化,基础是对比态定律,又可得到多个如R-K等方程,分别有有各自的优缺点。通过该例子,说明化工热力学课程的研究特点、方法和课程的框架,采用由易到难、由简到繁的思路,理解从纯物质转换到利用混合规则求取混合物的热力学数据。从而让学生将后续的学习重点转移到更接近实际的系统上,明确目的是为解决工厂中的能量利用和平衡问题。此外还应介绍化工热力学研究的三大类:过程进行的可行性分析和能量有效利用、平衡问题和平衡状态下的热力学性质计算,使学生有一个系统总体的认识。

2.2 重视热力学概念教学和思路的引导

化工热力学中重要的基本概念很多,每一个概念都有其严格的定义和适用范围,这些概念对课程的学习极为重要,是推理和演绎的基础。讲清这些概念的背景、内涵和意义,多讲为什么和用途,对于理解化工热力学的基本内容,掌握其精华都极为重要。在教学过程中,对经验或半理论、半经验的公式可采取只讲解不推导的办法,避免重要的概念和从事被大量的推导所掩盖,防止学生本末倒置、眼花缭乱。例如在流体的P-V-T关系一章中,首先讲述三次方方程和多常数状态方程,讲清不同气体的特性可用临界状态参数进行描述,接着可直接讲述Z-pr图中,当pr=1、Tr=1时Z与pr曲线的斜率接近无穷,当pr有微小变化时Z难以准确确定,从而引出另一个比较容易测定的参数—偏心因子ω的概念,再讲述偏心因子的求取,然后顺理成章的直接给出Pitzer提出的三参数对应态方程。这样就使学生不至于感到偏心因子概念的引出过于唐突,认为不过是一个新概念的出现而已,被动吸收。这样可明显提高理论教学的效果,对学生搭建热力学知识框架十分有益。

引导学生思路对于教学效果有重要的影响。如讲解流体混合物的热力学性质时,先说明在实际的化工生产中极少有纯物质,大部分的工作都是在进行性物质的分离,当纯物质中添加摩尔某物质时则引起总体系热力学性质的变化,热力学性质与所添加物质的量的偏摩尔关系就可得到偏摩尔性质,如果计算出偏摩尔性质就可得到溶液的性质M。这样一步一步的深入,由纯物质引入到实际混合物的热力学性质,进而提出偏摩尔性质的计算,使学生感觉到内容的顺理成章,学习思路清晰。当然这样的方式还要在课堂教学中不断地给学生提示,理清思路,加深印象。

2.3结合例题,注重理论联系实际,与工程实际应用相结合

化工热力学是一门理论性很强的学科,如何让学生能够意识到化工热力学可以解决许多工程实际问题,是解决问题的有效工具,这要求教师结合各章节的特点,通过适当的工程应用举例加以说明。通过实例能够使学生加深对所学理论知识的理解消化,学会分析实际问题的方法,为将来在工作中解决问题打下良好的基础。

例如卡诺循环在朗肯循环中的应用。由于学生的工程实际经验少,如果不把二者结合起来讲清楚之间的关系和存在的问题,学生认为这是两个孤立的内容,没有直接关系,而且卡诺循环十分抽象,在工程中没有模型。授课教师应指出在实际中若采用卡诺循环,下述问题无法解决:(1)若在单相区,等温传热无法实现;(2)蒸汽比体积比水大上千倍,压缩的设备体积和功耗过大,生产成本不经济;(3)等熵膨胀末期,蒸汽湿度大,对高速运转的汽轮机不利;(4)在湿蒸汽区上限温度受限于临界温度,热效率不高。如何解决这些问题,可逐步讲解在实际中的改进,然后引出现在蒸汽动力循环所使用的模型—朗肯循环。这样就可帮助学生将抽象的问题转化为实际的问题。

此外,在教学过程中,经常采用的方式是由浅入深、从简单到复杂的处理问题模式[3]。化工热力学中存在着大量从一些简单现象出发,建立理想数据模型,然后对其修正,再解决复杂问题。例如在讲授透平机理想功和损失功的时候,往往只画出透平机的模型,使学生难以有直观的意识。但如果先介绍多种具体设备的内外部和外部结构,分析各部分对简化模型的影响、哪些因素是主要因素、为什么要采用可逆过程的概念,经过简化以后得到模型。理解这些理论和方法的来龙去脉, 使学生能够触类旁通、举一反三地学习其它知识,针对实际设备得到可进行计算并接近实际的模型,从而实现知识传授和能力培养的有机结合,解决“学无所用”的尴尬局面。

2.4 采用讨论启发式教学

在常规课堂教学中教师为主体,学生被动学习,教学效果差。采用讨论启发式教学方式,让学生参与教学过程,调动学生的积极性和主动性,积极思考,发表自己的见解,活跃课堂气氛。通过讨论,可以突出重点和难点,巩固和消化所学习的热力学知识,培养学生应用所学知识对新内容提出问题和见解,并解决问题。鉴于国内学生参与讨论意识差的问题,讨论可采用两种方式,一种是由教师带领学生讨论,教师在授课过程中,不断“抛出”问题,启发学生采用什么样的内容去解决问题。另一种方式还可采用学生在教学内容允许范围内自行设计问题,指定学生分成小组讨论,教师启发指出问题的关键所在,最后将结论进行比较。通过充分的讨论解答问题和教师进行指引、归纳总结,指出问题所在,可使学生从不同角度对自己设计的问题进行分析,最后得出结论。同时教师应根据学生提出的问题和讨论了解其对课程内容的理解和掌握等情况,不断调整思路,灵活改进教学过程中的不足之处,引导学生朝着积极的方向发展。

为了调动学生参与讨论的积极性,对参与讨论的同学和讨论内容正确的同学,应根据不同情况分别在最后考试成绩中占有一定比例,给予奖励。通过讨论启发式教学方式,可加深学生对前后化工热力学基本知识的综合运用,培养学生独立查找问题、分析问题和解决问题的能力。例如对逸度推导过程中,给出适用于理想气体的dGi=RTdlnp(等温),给学生提问如果该式用于真实气体,是否仍然是这种写法,继续使用压力p。引导学生回顾在真实气体状态方程中,p的概念。讨论p在理想气体中是指分子对器壁的撞击力,但对于真实气体由于多分子之间作用力的情况,对器壁的撞击力与理想气体的p肯定不相同,所以采用逸度fi代替压力p,看作是校正压力或有效压力,二者单位相同。通过讨论,学生就会理解为什么对于真实压力要采用逸度的原因,使学生能够很自然地转到逸度的学习内容上去。

2.5 适度引入多媒体教学,提高课堂教学效果

多媒体辅助教学,具有直观、生动、形象和及时的声像效果,能够吸引学生的注意力,将课堂上一些抽象、难以用图或板书形式表现出来的内容以直观地表现出来,激发学生的学习兴趣,获得较为深刻的感性认识,有利于理解和记忆所学内容。同时多媒体辅助教学还减轻了板书工作量,提高了教学效率。所以,许多高校都在大面积推广多媒体教学方式。但在实际应用中发现,多媒体辅助教学也有缺点,主要是房间昏暗和密闭,空气不流畅,学生易瞌睡;由于幻灯片的知识量丰富,画面切换过快导致学生无法及时记笔记,过慢又会影响教师的思路;对于化工热力学中大量的公式推导显得呆板,缺乏灵活性;如果学生课前不预习,课上就像看电影。正因为多媒体有这些不足之处,多媒体教学只能是辅助手段,不能成为教学的主体形式。

根据笔者的教学经验,对化工热力学中流体的P-V-T关系、化工过程能量分析和蒸汽动力循环与制冷循环等与实际生产联系紧密章节,可采用对媒体教学为主体,对气体的状态参数坐标图有很好地表现,用图片和动画形象生动地描述蒸汽动力循环和制冷循环的设备和工艺流程。对纯流体和流体混合物热力学性质、相平衡等大量推导公式的章节,要充分利用板书的灵活性,发挥教师推导公式的强项,在推导过程中根据课堂情况的需要,穿插一些额外的有助于理解或是即兴的内容。灵活地调动学生的积极性,让学生部分参与公式的推导。此时,多媒体是作为辅助教学手段,以弥补如对一些性能图、汽液平衡图等板书无法表现的不足之处。

再者,虽然多媒体课件的使用,能够提高课堂效率,但教师不应该把课件拷贝给学生,可把总结性的课件复制给学生。防止学生课上产生依赖和偷懒行为,课上不记笔记,上课就像看电影,强迫学生手脑并用,加强学习内容的理解和印象。所以,化工热力学应采用多媒体与板书相结合的方式,才能提高课堂教学的灵活性和学生的学习兴趣,更好地理解化工热力学的内容。

2.6 引入科研内容,激发学生学习兴趣

化工热力学课程的理论性和逻辑性比较强,当学生学习了一段时间后,会觉得这些理论无非就是一些推导公式的组合,在实践中难以应用。有些文献提出让学生参与教师科研中,但在实际中发现除非有极个别优秀的学生,领悟能力和自学能力较强,能够很好地深入到课题中,大部分人由于知识背景和个人的因素,仅仅是名义上的参加而已,达不到“学有所用”的目的。并且,就全班整体而言,参与课题的人只能是各别人,达不到以点带动面、大部分人受教育的结果,也达不到化工热力学教学改革的初衷。

故为了提高学生的学习兴趣,在适当的章节学习完后,从教师的科研项目中选择与教学相关内容引入课堂,让学生真正理解和掌握相关知识。例如在我院教师有关无机盐相图的国家自然科学基金项目工作中,选取二元和三元体系相图,结合生产实践,向学生介绍并展开讨论;引入我院超临界流体分离天然产物的研究项目内容,配合流体PVT关系的教学;结合我院教师有关太阳能空调的课题,丰富制冷部分的教学内容等。

2.7 循序渐进,加强外语教学

近些年随着国家经济的不断发展,化工企业在经济发展中占据越来越重要的地位。随着与技术先进国家交往的不断增加,我国科技和化学工程中外来成分越来越多。学生作为未来的科技主力军,在学习和工作中需要不断掌握来自国内外的新知识和新技术,专业英语是交流的主要工具,英语水平和能力对学生未来的发展具有重要的意义[7]。

经过调查发现,现在学生大部分学生都考有国家大学英语四六级证书,但若阅读专业英语文献还是有一定的困难,主要面临的是专业词汇缺乏。虽然在专业后续课程中有专业英语课程,但通过一学期的学习还是达不到满意的教学效果。作为英语的学习,是一个长期积累的过程,需要在平时课程学习中不断接触相应的专业词汇和简短文章,锻炼阅读能力。笔者曾在早期的班级中做过相应的试验,把整个学期大致分为三个时间段,在教学初期不断给出专业词汇的中英文对照,一是学生加强词汇量和加强印象;中期对已给出的词汇只写英文,对新出现的词汇仍然给出中英文对照;末期给出前面相关内容的小短文,并要求学生用英文计算相关的计算题,不断锻炼学生的读写能力。通过练习,学生反映阅读能力提高,在后续学习专业英语课程时能够较快地进行学习。目前在前期的基础上,实行平行班教学制,采取自愿报名的方式,形成汉语和双语两种类型的班级,错时授课,学生可以利用课余互相听课,经过不断的实践,每年报双语教学班的人数不断增加,总体反映效果良好。

但对于双语班,还采用了以下激励措施,鼓励学生更多地优先选择双语班:(1)对学生设立成绩奖励,在学院组织的一些活动中优先选拔;(2)学生成绩有平时成绩和期末成绩综合评定。平时成绩包括作业、提问、讨论发言等,用英语表达的同学视其完成的比例给予不同的奖励;(3)期末考试卷中除有一定难度的概念题用中文表达外,其余均采用英文出题;(3)采用英文答题的学生,根据答题程度的不同,给予奖励分数。

总之,化工热力学作为专业基础课在整个化工类课程体系中起着重要的作用。作为授课教师,只有在平时的教学工作中不断总结经验、开发出新的教学思路,把课程讲活、讲顺、讲精,才能更好地引导和促进学生积极地学习,培养出能力强、素质高、能适应现代化工业生产需要的科技人才。

[参考文献]

[1]冯新,陆小华.以学生为本的化工热力学课程教学改革[J] .化工高等教育, 2006, 87(4) : 30- 34.

[2]景晓辉,丁欣宇,王树清,高崇. 化工热力学教学改革研究与实践[J] .化工高等教育,2008,1(99):81-84.

[3]王晋黄,李忠铭,林俊杰.化工热力学课程教学改革与实践[J].化工高等教育,2005,12(4) : 19- 22.

[4]马沛生.化工热力学[M].北京:化学工业出版社,2005, 42- 251.

热力学教学例9

作者简介:江海斌(1975-),男,浙江温岭人,嘉兴学院建筑工程学院,实验师;吴晓艳(1980-),女,山东莱西人,嘉兴学院建筑工程学院,讲师。(浙江 嘉兴 314001)

中图分类号:G642.423 文献标识码:A 文章编号:1007-0079(2013)34-0152-02

当前就业形势较为严峻,就业市场竞争很激烈,用人单位对大学生的素质要求越来越高,导致越来越注重学生的理论与实践相结合的综合能力。[1]嘉兴学院作为一所应用型本科院校,其教育是以培养高级应用本科人才为目标,这既不同于以侧重研究能力培养为目标的重点高校本科生教育,又与以单纯的技能培养为目标的高职院校教育有所区别,而是在强调基本理论知识重要性的同时,加强知识的应用和基本技能的培养。

“工程热力学”课程是工科热能动力类专业的一门重要的专业基础课,其实验教学作为理论联系实际的主要环节,是实践教学的重要内容,是学生巩固和深化理解理论知识的重要途径,也是学生掌握基本实验方法,养成实事求是、严谨的科学作风的重要途径。[2,3]因此,为适应人才培养的要求,应重视工程热力学的实验教学,积极探索和改革该课程的实验教学。

一、以往工程热力学实验教学中存在的问题

1.对实验课程重视不够

在中学阶段,很多初、高中学校为了提高学校的升学率,对理论课的重视程度远远超过实践课程,往往将实验课占用来上理论课,无形中使学生养成了重理论轻实践的习惯。进入大学后,学生本应该充分发挥自己的想象力和创新力,利用学到的知识,验证、设计和创新各种实验。然而受错误习惯的影响,很多学生轻视教学实验,认为实验课可上可不上,认为实验教学的作用最多只是帮助了解理论知识。也有一些教师对实验课程的重要性认识不足,特别是对验证型实验,认为在指导书上已经有了实验结果,只要记住结果就行,做不做以及如何做对学生掌握知识帮助不大。

2.实验教学内容不合理

“工程热力学”课程是一门专业基础课,理论概念复杂,公式繁多,要掌握这些概念与公式,非常需要通过实验来加深理解和巩固,但在教学过程中,该课程的实验课时设置较少,实验教学内容不合理。以嘉兴学院为例,设置了气体定压比热测定、二氧化碳临界状态观测及P-V-T关系测定以及喷管实验等三个实验,共六个课时,实验的课时数较少,涉及的知识点较少,不能涵盖本课程的重点内容,并且这些实验大多是验证性实验,实验结论在相关资料中就能查到,不能充分激发学生探索创新的兴趣。

3.实验教学方法不合理

实验教学方法比较单调,实验教学时教师通常先讲解实验目的和原理,介绍实验设备以及实验步骤和实验过程中的注意事项,再演示实验过程,然后再让学生自己动手实验。在此过程中,学生被动地学习、模仿教师做实验,对实验过程中出现的各种疑问没有兴趣,往往是人在心不在。[4]当他们动手做实验时,还是不能独立进行实验,要么参考实验指导书做,要么请教教师。对于实验步骤只知道要如何做,不知道为什么要这样做,所以实验效果大打折扣,难以较快地提高学生的动手能力和创新能力。学生的实验数据经常出现错误,却不知道错在什么地方,数据处理的方法也不够科学严谨,而实验报告也常有抄袭现象。

4.实验考核方式不全面

“工程热力学”课程的成绩包括实验成绩和理论课成绩,通常实验成绩只占该课程成绩的20%左右。实验成绩通常由出勤纪律(10%)、实验操作(50%)、实验报告(40%)三部分组成。实验成绩占总成绩的分值较低,使很多学生认为只要学好理论课就能使课程成绩及格,甚至还可能拿到高分。由于过于强调实验操作与实验报告的重要性,学生在实验过程中因怕实验错误而被扣分,就会按部就班地按照教师讲解的或指导书上的步骤进行,不思考、探索和创新;为获得较好的实验报告成绩,个别同学抄袭其他学生的数据和问题讨论,甚至修改实验数据,以达到理论分析的预期结果。因此,现有的考核方式不能很好地促进学生的实践能力和创新能力的培养。

二、工程热力学实验教学改革的探索

1.重视实验教学

教师和学生都要将实验教学环节作为工程热力学教学中的重要环节来对待。实验教学的效果取决于能否激发学生对实验的强烈兴趣,实验教师和理论课教师需要认真细致地准备实验的各个环节,正确引导学生动手做实验。学生也要养成良好的实验习惯,实验前要预习实验目的、实验原理等,了解实验装置,以及查找相关资料,对本次实验的目的、原理、如何设计和进行实验以及可能得到的结果要有充分的认识。实验时要专心致志,边动手做边思考问题。实验结束时先整理和分析实验数据,再清理实验台,发现实验数据异常时能及时重做。做完实验后,要认真填写实验报告,进行必要的探讨和总结。对每个实验都要总结出实验成功之处和不足之处,使下次实验能做到扬长避短,得到满意的实验效果。

2.改革实验教学内容

原有工程热力学实验只有气体定压比热测定、二氧化碳临界状态观测及P-V-T关系测定以及喷管实验三个实验,实验数量较少,实验时间较短,仅有一个综合型实验。在实验教学过程中发现,学生对实验的积极性不高,对学生加深掌握理论知识的帮助不明显。因此,需要增加实验课时数,优化实验教学内容,使实验目的、内容能覆盖重要知识点。实验教学内容应主要改革以下两方面:

一是增加一些设计型、综合型的实验项目。比如为加深对气体热力过程的理解,可以让学生设计一个闭口系统的实验,进行气体的定容、定压、定温以及定熵等基本热力过程,测量有关参数,掌握这些热力工程的变化规律。还可以增加热力学第一定律、热力学第二定律、动力循环和制冷循环等重要知识点的设计型、综合型实验。

二是将原来验证型实验改成设计型实验。比如将定压比热实验中的测温元件由温度计改成热电偶或热电阻元件,将采集到的数据输入到巡检仪中,应用VC或VB语言编写一个应用软件,将巡检仪上的测量数据输入到电脑中并显示这些数据,同时计算并显示出空气的定压含湿量、质量流量、水蒸气流量、水蒸气吸收的热量、干空气的定压比热等值,且画出比热随温度变化的曲线。学生在该过程中加深了对实验原理及方法的掌握,在学习中激发了学习兴趣,并且学会了使用VC或VB语言来解决专业知识的有关问题,提高了自己学习和解决问题的能力。

3.改革实验教学方法

(1)采用“启发式”实验教学,激发学生的发散性思维。不采用传统的教师讲解、演示实验,然后学生进行实验的方法,而是告诉学生实验的目的和原理,让学生自己探索合理的实验方案和步骤。学生可以以小组为单位开讨论会,根据实验的目的和原理提出几种实验方案,比较各种方案的优缺点,然后确定最优方案,根据最优方案讨论并确定实验的步骤。在小组确定最优方案和步骤后,再在班级里进行讨论,小组成员对教师和班级其他同学提出的问题进行解答,采纳建设性的建议,进一步完善实验方案和步骤。对于设计型实验,还要先进行可行性论证,再进行方案设计和步骤设计。实验过程中,学生是“主角”,自主进行讨论和设计,教师是“配角”,只对整个过程进行监控,对学生遇到的困难问题进行启发性指导。

(2)应用现代科学技术辅助实验教学,使学生加深对相关理论和实验知识的了解。主要采用以下两种方法:

一是制作实验视频。将每次的实验制作成视频,实验开始前播放相关视频内容,指导学生进行实验。视频内容可以涉及安全教育和实验注意事项、实验内容、问题与解答以及实验经验与教训等方面。安全教育和实验注意事项主要包括实验人身安全、设备安全和实验的相关注意事项等内容,比如在二氧化碳临界状态观测及P-V-T关系测定实验中,要注意用电安全以防触电、压力的间隔为0.2~0.5MPa、加压过程要缓慢进行,施加的压力不得超过10MPa等内容。实验内容可以包括实验目的、原理、方案设计、步骤设计、实验结果等,也可以是以往学长们的实验内容,包括以往实验过程中出现的问题、讨论过程、问题的解答、实验结果等,以及评价他们的实验效果。最后将成功的实验成果和失败的实验结果显示出来,总结出经验和教训。

二是运用专业CFD软件,对部分实验进行数值模拟。工程热力学实验中气体定压比热测定实验、喷管实验和定容、定压、定温以及定熵等基本热力过程实验等可以进行数值模拟。将数值模拟的初始参数设置成与实验的参数相同后进行数值模拟,得出的模拟结果与实验结果进行比较,以检验数值模拟方法的正确性。改变不同的初始参数,然后使用验证后的数值模拟方法,可以方便地预测实验结果,获得比真实实验更丰富的结果,比如可以用动画形象地演示实验过程,帮助学生理解实验,还可以得到真实实验难以得到的数据,比如温度场、速度场、压力场、流线等。使用CFD软件进行数值模拟实验拓宽了学生的知识面,学生既学会了软件的使用,学到了研究问题的新方法,又初步掌握了专业理论知识的运用,加深了对专业理论和实验知识的理解。

4.完善实验考核方式

重视实验考核,建立更科学的考核体系。提高实验成绩在“工程热力学”课程成绩中的比重,并实现实验成绩“一票否决”,也就是说如果实验成绩不合格,“工程热力学”课程成绩也不合格。实验过程既是个人运用专业理论知识的过程,更是小组共同合作与创新的过程,因此以小组为单位进行考核比较合理。实验考核成绩由专业理论知识、实验过程中的问题回答、实验操作、实验设计以及实验创新、实验报告等几部分成绩组成。实验成绩要充分体现学生的动手能力和创新能力等,这有利于激发学生的学习兴趣、提高自己的能力。

三、结语

工程热力学实验是“工程热力学”课程教学的重要组成部分,也是“工程热力学”课程教学非常重要的实践性环节。实验教学应理论与实践相结合,引导学生拓展知识面,充分激发学生的学习兴趣,努力提高学生的动手能力和创新能力。培养学生养成实事求是、科学严谨的作风,提高独立分析问题、解决问题的能力。实验指导教师要完善知识结构,提高专业水平,转变教学观念,更新实验教学内容,改革实验教学方法和考核方式,切实提高实验教学质量,培养适应社会需求的专业人才。

参考文献:

[1]刘升,林希峰.实验教学改革中的创新项目[J].中国冶金教育,2012,(1):57-59.

热力学教学例10

中图分类号:G642.0?摇 文献标志码:A 文章编号:1674-9324(2013)33-0053-02

《工程热力学》、《传热学》和《流体力学》是建筑环境与设备工程专业的必修基础课,在这三门课的授课与学习中,《工程热力学》被反映既难教又难学。针对这个现象,我们进行了初步研究。

一、课程教学的现状及普遍的问题

1.学生对概念模糊,核心理论掌握的不透彻。课程的特点可用“概念抽象、公式多、内容复杂”加以概括。例如,就功的概念来讲,分为膨胀功、流动功、推动功、技术功、轴功和容积功等,每个相关概念都有计算公式,在不同的条件下又有着相互的联系,掌握起来极易混淆。同时,许多抽象概念,学生不易接受,很难深入理解。如“焓”、“熵”、“干空气”、“湿空气的含湿量”等。

2.公式繁多,不好记忆。由于与工程实际紧密结合,同时又有多种表达式,使一个公式在不同的使用工况下,就可以衍生出多个公式。仅热力学第一定律的开口系统能量方程,就分为非稳定流动的微分表达式、非稳定流动的过程表达式、稳定流动的微分表达式、稳定流动的过程的表达式、对于单位工质的稳定流动的微元表达式和对于单位工质的稳定流动的过程表达式。很难死记硬背来记住这些公式,更不能熟练的应用了。

3.内容较多,对理论知识的理解难以深入《工程热力学》主要内容大致可以分为两个方面:基本理论部分及基本理论应用部分。基本理论部分包括:工质的性质、热力学第一定律及热力学第二定律等内容。基本理论的应用部分主要是将热力学的基本理论应用于各种热力装置的工作过程并对气体和蒸汽循环、制冷循环、热泵循环、喷管及扩压管等进行热力分析及计算,探讨能量转换效果的因素以及提高转换效率的途径与方法等。

二、针对问题进行的尝试

1.合理选择教材和教材的重点,对教学内容优化。要针对学生的接受能力,及教材涉及的基本内容。选择科学性、先进性、启发性、实用性和对我国教学的适用性的教材。同时,对课堂教学内容进行整合与优化。在课堂的短时间内,主要讲授基本理论部分及基本理论应用部分中的水蒸汽、湿空气、制冷循环等内容。余下的内容选择介绍基本知识点,对于有兴趣的同学课下给予详细的点拨。

2.通过理论联系实际,使抽象的问题转化为形象的问题引起同学的兴趣。学生理解抽象思维的巨大作用,可以提起学生使用抽象思维的兴趣和习惯。抽象的思维永远是源于形象的实物的,因此介绍抽象思维时一定交代抽象的源头,进而阐明抽象的意义。比如湿空气的含湿量的概念是含有1千克干空气的湿空气中所含有的水蒸气的质量。实际1千克是一个定语,真正含有水蒸气的是干空气和水蒸气混合气体。含湿量之所以没有规定成为1千克湿空气含有的水蒸气的质量,理解清楚,便可以更好的应用在将来的湿空气的相关计算上。这正是用抽象思维来分析和解决问题的优势,进而使解决的问题简单直观。

3.合理安排和及时调整课堂进程和内容,增强课堂教学的逻辑性。首先,回顾学过的相关知识点,为本次课堂内容做铺垫。一般以提问结合总结的方式进行,时间控制在5~10分钟左右。其次,交代本次课程知识点能够解决的而以前没有解决的问题,简单介绍具有思维挑战的难点问题。这样学生会有目的的带着兴趣来参与到课堂的互动中。每节课上讲新课程的时间控制在25~30分钟,余下10分钟左右的时间让学生进行总结和问题讨论,使学生解决可以马上理解的实际问题和现象,进而使学生得到成就感。最后,抛出相关难点问题,激起学生在课下进一步学习的兴趣。

4.师生的互动,调动学生的积极性。课堂的主体是学生,中心是教师。教师可以使复杂的问题简单化;抽象的问题直观化;枯燥的问题生动化。这就需要吸引学生的注意力,吸引注意力的方法一种是教师的课堂强制力,一种是教师的授课魅力。课堂的强制力则需要进行课堂互动进行保障,紧紧抓住同学的注意力。当学生注意力被课堂内容深深吸引时,教师的课堂魅力自然就不断提升,并且良性循环。

5.有效的利用多媒体的授课手段。多媒体教学能提供丰富多彩的图文声像,可以将多种教材和参考书上的知识结合在一起,提高学生学习兴趣,集中课堂的注意力,培养学生分析解决实际工程问题的能力。例如,压气机的工作过程,做成动画进行演示,学生不但可以深刻理解压气机的工作过程由三个不同的过程组成,还可以在演示的同时看到气体状态在P-V图上的位置。演示使问题直观和简单,难点将不是难点。

6.提高学生快速掌握和运用图表解决问题的能力。图表的作用就是使复杂的问题简单化。本专业的学生参加工作后需要的一项重要技能就是应用图表。所以快速准确的认识、掌握和运用图表是本专业教师需要培养学生的一项重要技能。《工程热力学》中涉及的图有:理想气体的P-V图、T-S图;水蒸气的P-T图、P-V图、T-S图、H-S图;湿空气的H-D图;动力循环的P-V图、T-S图、H-S图;制冷循环的P-V图、T-S图、和P-V图lgP-H图等。其中图中的参数最多的可同时达到6种。这些复杂的内容靠死记硬背是不可能记住的,就更谈不上运用了。这需要同学对书里的知识点深刻理解并能联系成为有机的整体,进而理解图表的每个参数之间的关系,最终准确的应用。

7.引导学生严谨的表达。《工程热力学》课程的特点可用“概念抽象、公式多、内容复杂”加以概括。先解决基础的问题才能合理的利用到实际中去,解决基础的问题就需要要求学生科学的、详细的、清晰的书写解题的过程,使自己的思路以书面的形式严谨的表达。

对于《工程热力学》的课程,我们应该结合实际情况,适时更新和调整,使学生在课程中得到锻炼,逐渐学会抽象思维,喜爱抽象思维;学会联系地看待问题,联系地解决问题,提高理解和运用图表的能力;养成清晰的解题过程,严谨的做事习惯;最后,善于把复杂抽象的问题简单化。

参考文献:

[1]毛前军.对《工程热力学》课堂教学的几点看法[J].制冷与空调,2007,(2):124-125.

[2]何宏舟,邹峥,丁小映.提高《工程热力学》课程教学质量的方法研究[J].中国电力教育,2002,(4):65-69.

[3]邵丽颖,李昌平,蒋东霖.《工程热力学》教学方法初探[J].吉林省教育学院学报,2009,6(25):151-152.

[4]廉乐明,谭羽非,吴家正,等.工程热力学[M].第五版.北京:中国建筑出版社,2007.