期刊在线咨询服务,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

期刊咨询 杂志订阅 购物车(0)

分子影像学模板(10篇)

时间:2023-01-21 15:01:53

分子影像学

分子影像学例1

1.2超顺磁性氧化铁纳米颗粒超顺磁性氧化铁纳米颗粒(superparamagneticironoxidenanoparticles,SPIONs)是应用较广的磁性MRI探针,也是MRI分子影像学发展的新方向。SPIONs在生物体内主要分布于网状内皮细胞丰富的组织和器官,如肝、脾、淋巴结和骨髓等,有助于提高以上部位肿瘤与正常组织的MRI成像对比度,同时由于其高效、安全等特点,具有较强的临床转化潜力,可用于各种肿瘤及其他疾病的检测。但由于SPIONs本身没有特异性,因此有必要在SPIONs表面修饰靶向小分子、多肽或抗体等,从而达到靶向分子显影的目的。

1.3纳米金颗粒纳米金颗粒(goldnanoparticles,AuNPs)具有形态及尺寸可控、表面化学性质温和以及生物相容性好等特点,加上其独特的等离子表面吸收和光散射等物理特性在分子成像方面引起广泛关注。与传统的CT对比剂比较,AuNPs具有以下优点:①较高的原子序数、电子密度以及X线吸收系数,理论上能够提供更加优越的CT对比性能;②无细胞毒性;③表面容易被靶向蛋白、特异性生物标志物等修饰,从而设计一系列能够被不同成像设备显像的分子探针;④正常人或动物体内几乎不含金元素,且金元素容易通过电感耦合等离子体质谱这一常用的元素分析法进行定量和表征,从而更好地与影像学结果进行验证。这些特点使AuNPs日益成为最具潜能的CT分子成像对比剂[6]。

2多模态分子影像的意义

分子影像技术包括放射性核素显像,如正电子发射断层扫描(positronemissiontomography,PET)和单光子发射计算机断层扫描(singlephotonemissioncomputedtomography,SPECT)、MRI、磁共振频谱成像(magneticresonanceimaging,MRS)、光学成像(opticalimaging,OI)和超声等。每种显像方法都有各自的优点和缺陷,如PET和SPECT具有高敏感性和可定量分析的优点,但空间分辨率较差;MRI的空间分辨率高,尤其是软组织分辨率好,但敏感性相对减低;OI可以敏感、实时观察活体内的细胞和分子功能,但其采用的近红外光组织穿透性较差,适用于小动物或浅表器官的显像,难以向临床转化[7]。多模态显像是通过对多种成像技术的联合应用实现优势互补,同时提供高特异性的功能成像信息和高灵敏度、高对比度的解剖成像信息,能够为早期诊断肿瘤提供更加精确、全面的信息。多模态显像是目前分子影像学的研究热点,其中PET/CT和SPECT/CT已经广泛用于临床,PET/MRI也已经面世。多模态分子影像成像的发展对分子探针的设计制备提出了更高的要求,需要构建多靶点、多功能分子探针,以实现多个靶点的同时识别及多种成像技术的联合应用,从而提高肿瘤影像诊断的准确度和灵敏度[8]。多模态分子探针的基本要求包括:①与靶分子具有高度的特异性与亲和力;②具有良好的通透性,能够穿过生物屏障,如血管、细胞膜等,高效、高浓度到达靶细胞;③具有良好的生物相容性,不会引起机体明显的免疫反应,在活体内保持相对稳定,在血液循环中有适当的清除期;④能与多种影像信号分子耦联,并在一定程度上将需要探测的信号进行放大便于成像。

3放射性核素标记纳米探针在多模态显像中的应用

用于多模态肿瘤显像的放射性核素标记纳米探针由3个主要部分组成:纳米颗粒核心,放射性核素及生物靶向分子。其中放射性核素可以直接标记在纳米颗粒的表面,也可以通过链接物间接标记在纳米颗粒上。链接物可以是一个羟链、一段多肽或一个聚乙二醇单位。纳米颗粒还可以通过螯合剂,如1,4,7-三氮环壬烷-1,4,7-三乙酸(1,4,7-triazacyclononane-1,4,7-triaceticacid,NOTA)、1,4,7,10-四氮杂环十二烷-1,4,7,10-四羧酸(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaceticacid,DOTA)、二乙撑三胺五乙酸(diethylenetriaminepentaaceticacid,DTPA)等与64Cu、89Zr、111In等放射性核素进行标记[9-10]。纳米颗粒由于其独特的优势已广泛用于肿瘤的分子影像学研究,随着各种融合影像设备的发展,多模态纳米探针近年来也得到突飞猛进的发展。

3.1PET/近红外荧光显像(near-infraredfluorescence,NIRF)与SPECT/NIRF双模态显像NIRF可以在活体内实时、无创地监测疾病的分子变化水平[11]。NIRF的优点包括空间分辨率高、敏感性高、对活体生物没有电离辐射。但是由于NIRF采用的近红外光组织穿透性差,难以用于临床,PET和SPECT可以提供组织穿透性强和可定量分析的图像,因此将PET或SPECT与NIRF显像融合可以弥补各自的缺陷。Cai等[12]将能够靶向结合肿瘤细胞及新生血管表皮整合素αVβ3的精氨酸-甘氨酸-天冬氨酸(arginine-glycine-asparticacid,RGD)多肽与螯合剂DOTA连接在QD表面,并用正电子核素64Cu标记DOTA-QD-RGD,然后用PET/NIRF显像对荷人胶质瘤U87MG裸鼠进行显像和定量分析。结果显示,在注射显像剂后1~25h,U87MG肿瘤对64Cu-DOTA-QD-RGD都有良好的摄取,PET和NIRF显像的定量研究也显示出良好的线性相关。在随后的另一项研究中,Chen等[13]用靶向肿瘤新生血管的血管内皮生长因子(vascularendothelialgrowthfactor,VEGF)取代RGD肽,构建了另一种双模态纳米探针64Cu-DOTA-QD-VEGF,PET和NIRF显像都显示出U87MG肿瘤对64Cu-DOTA-QD-VEGF的摄取明显高于对64Cu-DOTA-QD的摄取。在另一项研究中,Zhang等[14]用聚乙二醇包裹的交联聚合物胶团(corecross-linkedpolymericmicelles,CCPM)与111In标记的膜联蛋白A5(annexinA5)结合,合成SPECT/NIRFIRF双模态纳米显像剂111In-DTPA-A5-CCPM。活体显像显示在化疗诱导凋亡的荷瘤动物组中,肿瘤对显像剂的摄取明显高于未经治疗的对照组。此外肿瘤对111In-DTPA-A5-CCPM的摄取也显著高于111In-DTPA-CCPM。放射自显影和免疫组化证实了111In-DTPA-A5-CCPM的摄取与肿瘤切片中半胱天冬酶-3(caspase-3)分布的位置一致。Liang等[15]用链霉亲和素纳米颗粒为载体合成SPECT/NIRF双模态探针,这个新型纳米探针由3个生物素化的部分组成,包括靶向肿瘤细胞的抗人表皮生长因子受体-2(humanepithelialgrowthfactorreceptor2,HER2)的抗体赫赛汀(Herceptin),用于111In放射性标记的螯合剂DOTA以及用于NIRF显像的荧光基团Cy5.5,通过链霉亲和素载体将这3部分组装在一起。SPECT和NIRF显像结果均显示111In-DOTA/Cy5.5/Herceptin纳米颗粒具有良好的生物体内分布,肿瘤/正常组织比值很高,在注射后40h,肿瘤的放射性摄取达到21ID%/g,明显高于肝脏、心脏、肾脏、脾脏和肌肉等正常组织。因此推测链霉亲和素作为构建肿瘤多模态显像探针的载体具有巨大的潜力。

3.2PET/MRI与SPECT/MRI双模态显像MRI的时间分辨率和空间分辨率很高,尤其是软组织分辨率高,因此在神经、骨骼、肌肉以及其他系统肿瘤的诊断方面具有优势,然而MRI的敏感性比放射性核素显像的敏感性低,因此近年来,PET或SPECT与MRI融合显像也得到越来越多的关注。有研究者将RGD肽和DOTA螯合剂联接在氧化铁(ironoxide,IO)纳米颗粒上,然后用64Cu进行标记,将新合成的纳米探针64Cu-DOTA-IO-c(RGDyK)用于荷U87MG裸鼠的PET/MRI显像,结果发现在尾静脉注射显像剂后1~21h,肿瘤对64Cu-DOTA-IO-c(RGDyK)的摄取都明显高于未联接RGD肽的64Cu-DOTA-IO;将RGD肽与64Cu-DOTA-IO-c(RGDyK)同时注射于动物体内,发现肿瘤的放射性摄取显著减低,提示64Cu-DOTA-IO-c(RGDyK)是特异性结合于肿瘤细胞的。同时T2WI显示,在注射显像剂后4h,肿瘤部位的信号明显减低,肿瘤的病理切片也显示MRI上的低信号部位有铁染色,进一步证实了MRI与PET显像结果的一致性[16]。在另一项研究中,Kim等[17]用一种肿瘤靶向分子齐墩果酸(oleanolicacid,OA)与螯合剂NOTA、氧化铁纳米颗粒(IONP)联接,并用68Ga进行标记,制成PET/MRI双模态分子探针68Ga-NOTA-OA-IONA。体外实验显示结肠癌HT29细胞能特异性摄取68Ga-NOTA-OA-IONA,同时68Ga-NOTA-OA-IONA对HT29还有一定的抑制作用。随后对荷结肠癌HT29裸鼠模型进行活体内PET和MRI显像,结果进一步证实肿瘤部位能够摄取显像剂68Ga-NOTA-OA-IONA,并且PET与MRI显像结果一致。Misri等[18]将111In标记的抗间皮素抗体(111In-mAbMB)与SPIONs结合起来,形成SPECT/MRI的双模态纳米探针。生物分布实验结果提示,内皮素阳性的A431K5肿瘤能够特异性摄取111In-mAbMB-SPIONs;MRI显像与生物分布实验结果一致,注射显像剂后肿瘤部位的信号发生了明显变化。4.3PET/MRI/NIRF与SPECT/MRI/NIRF多模态显像Xie等[19]用多巴胺修饰氧化铁纳米颗粒表面,并与人血清白蛋白相联接,然后分别用放射性核素64Cu和荧光染料Cy5.5进行标记,从而形成一种新型PET/MRI/NIFR多模态分子探针,并且用荷U87MG瘤裸鼠模型进行PET/MRI/NIFR多模态显像。NIRF显像结果显示,在注射显像剂后1h就可以清楚看到肿瘤显影,并且肿瘤的荧光强度随时间延长而增高。1h的肿瘤/肌肉比值为1.98±0.20,4h升至2.52±0.27,18h继续升高至3.08±0.28。PET显像也显示在注射后不同时间点肿瘤的摄取逐步上升;与NIRF相比,根据PET图像定量分析计算的肿瘤/肌肉比值更高,这主要是因为PET图像上的本底更低。MRI图像显示在注射显像剂后18h,肿瘤部位的信号明显下降,而且MRI显示肿瘤部位的显像剂分布不均匀。此外,在肝脏中也发现大量的显像剂聚集。Hwang等[20]报道了用钴-铁素体纳米颗粒联接AS1411适配子制备多模态纳米探针MFR-AS1411,其中AS1411能靶向定位于肿瘤细胞膜表面高度表达的核仁蛋白,用红色荧光染料罗丹明包裹该纳米颗粒,并通过螯合剂与放射性核素67Ga标记。该纳米颗粒在核仁蛋白表达阳性的C6细胞中表现出特异性的荧光信号,随着MFR-AS1411纳米颗粒浓度的增加,细胞中罗丹明荧光强度及67Ga放射性活度都随之增高。活体SPECT显像提示注射显像剂后,肿瘤部位出现特异性的摄取。活体MRI显像及离体光学显像的结果与SPECT显像结果匹配良好,在注射纳米探针前后分别对荷瘤鼠进行MRI扫描,显示肿瘤部位的信号显著增高。

分子影像学例2

[中图分类号]R737.33[文献标识码]C [文章编号]1673-7210(2008)06(a)-154-01

子宫内膜癌是女性生殖道常见的肿瘤之一,80%发生于绝经年龄妇女。以前对内膜癌术前影像检查主要依靠诊刮和B超 ,随着高场强MRI 扫描仪的出现,内膜癌的术前诊断与分期准确率有了很大提高。本研究探讨子宫内膜癌的MRI 与B超影像学特点,同时评价MRI 及B超对其的诊断价值。

1 资料与方法

1.1临床资料

14例患者均已婚,12例生育,年龄38~40岁,患者宫内无节育环且均为月经后第3~4天做MRI检查。检查前经诊刮病理为内膜癌的有9例。临床主要症状: ①持续或间歇性阴道出血。②2例阴道液为脓液。③下腹痛。1例患者在体检时偶然发现,所有患者的诊断均经子宫全切术后病理最终证实。

1.2 方法

采用SIEMENS 公司生产1.5TMR 机型行T1WI、T2WI及脂肪抑制成像,层厚5 mm,层间距 2 mm。10例行增强扫描。采用ACCUSON 公司生产的ASPEN 彩超仪经阴道途径多方位实时动态扫描。

2 结果

2.1 MRI影像学特点

全部患者均表现为子宫内膜增厚,信号不均,其中2例表现为局部增厚;子宫肌层侵犯<1/2 者6例,其中,结合带部分断裂4例,完全断裂2例;肌层侵犯>1/2者5例,其中子宫颈受侵3例;1例肿物穿过子宫浆膜外,阴道受侵,盆腔淋巴结转移。

2.2 B超影像学特点

内膜增厚、局限增厚2例;回声不均匀、子宫肌层内膜基底线消失受累5例;深肌层受侵3例;宫颈受累2例;盆腔肿物1例。

2.3 术后病理表现

14例患者中12例为内膜样腺癌,Ⅰ期为10例,Ⅱ期为3例,Ⅲ期为1例。2例为内膜肉瘤。

3讨论

子宫内膜癌的病因尚不详,主要观点有:①长期应用雌激素刺激,使本病的危险性增加2~8倍;②子宫上皮肉瘤样变,包括子宫内膜腺瘤型增生、过长及子宫内膜原位癌;③肥胖、高血压、糖尿病患者易发生内膜癌;④遗传因素。患者临床多表现为不同程度的阴道出血,临床多用有创性诊刮诊断内膜癌。

3.1子宫内膜癌的MRI与B超影像学特点

3.1.1 MRI影像学特点T2WI子宫内膜厚超过5 mm,或内膜在正常范围内,癌破坏内膜形成局限性、弥漫性缺损。若肌层受侵,结合带断裂,肌层内异常信号;若向下侵及宫颈,宫颈变为高信号;若穿过浆膜,浆膜不完整,正常低信号被肿瘤代替,同时盆腔内淋巴结肿大,邻近脏器侵犯等。

3.1.2 B超影像表现内膜增厚,局限性或弥漫性不均匀回声;当病变侵及肌层时,局部内膜基底线消失,肌层病变区域内见片状或不规则回声;当宫颈受累时,宫颈肥大、变形,宫颈回声明显增强或结构不清;当肿瘤侵犯宫体外时,宫旁出现低回声块影。

3.2 子宫内膜癌的MRI与B超影像比较分析

子宫内膜癌及其病理分期制定,要求影像能清晰地分辨子宫各层结构,B超分辨不出结合带,子宫与周围组织界限不如MRI分辨明了,对判断肌层浸润程度和宫颈受累的有无容易受主观因素影响,不能作出子宫内膜癌分期的较好指标。 而MRI是目前分辨子宫内膜内外各组织、结构最为清晰的影像检查,且分辨肿瘤与组织差异敏感度最好,是目前对临床提供病理分期最为准确、全面的影像检查。

3.3 临床评价

对于子宫内膜癌影像诊断,MRI及B超均有较高的特异性。但MRI有着比B超更高的敏感性和准确性。尤其对临床诊刮及宫颈检查不能判断内膜癌肌层浸润情况及病变侵犯范围时,基于简便,应首先做超声检查,根据超声提供结果,选择再做MRI扫描,进一步明确诊断及术前病理分期。

综上所述,如条件许可,MRI检查可更全面、细致地显示病灶,为临床提供可靠的术前分期,MRI对子宫内膜癌的诊断精确度更高,特异性更好。

[参考文献]

[1]周康荣. 体部磁共振成像[M].上海:上海医科大学出版社,2000.1147-1150.

分子影像学例3

随着社会的发展与进步,我们的生活方式在不断的发生着改变,在此背景下,各种肿瘤、意外事故引发的骨折、骨痛病例也在不断的增多,加上我国人口老龄化的加快,其骨质疏松案例也越来越多。随着科学水平和医疗技术水平的提高,对于各种疾病的诊断技术也越来越先进。尤其是随着计算机技术和分子技术的进步发展,使得影像技术及分子技术在骨科检验和诊断中的应用越来越广泛[1]。为了进一步探讨骨科核医学分子影像的临床应用,本文选取我院2010年10月——2011年10月间收治的80名骨痛或病理性骨折患者的临床资料进行回顾性分析,现报道如下。

1资料与方法

1.1一般资料我院2010年10月——2011年10月间收治的80名骨痛或病理性骨折患者,本组患者中有53名为男性,27名为女性,最大年龄为74岁,最小年龄为29岁,平均年龄(54.56±3.11),43名患者由于交通事故、摔伤、坠落等造成骨折,37名患者通过体检或因骨痛进行检查初步诊断为骨肿瘤。及其他骨科性疾病。

1.2方法通过查询相关资料,并结合着现代医学影像诊断,对由于交通事故、摔伤、坠落等造成的骨折患者进行X线平片,对由于存在骨科性疾病的患者进行99mTc-MDP全身骨扫描,检查骨骼病变的部位、程度、范围、性质等等,综合对患者骨折和病理性骨痛的原因进行分析,并通过核医学分子影像技术观察患者的病理变化[2]。

2结果

经过通过核医学分子影像检验发现,本组患者的病因主要包括22例原发性甲旁亢代谢性骨病,10例原发良、恶性肿瘤和骨痛,25例骨软化和肾性骨病,7例关节问题和代谢性骨病,13例骨软化和肾性骨病,其余3例患者无严重疾病。对于原发性甲旁亢代谢性骨病的患者则通过外科手术切除治疗,对于原发良、恶性肿瘤和骨痛的患者则通过骨肿瘤科或小儿骨科治疗,对于骨软化和肾性骨病的患者则通过内科医师进行治疗,对于关节问题和代谢性骨病的患者则通过矫形骨科或风湿科的医师治疗,对于疑为骨髓瘤的患者则通过血液科医师进行确诊治疗,对于本组中的3例无严重疾病的患者进行常规止痛药物进行治疗,并与患者沟通,为患者讲解病情的原因,消除思想负担,帮助患者恢复愉快的生活[3]。

3讨论

根据骨折的病因,骨折可以分为病理性骨折和应力性骨折。所谓的病理性骨折主要是指患者的骨折是由于本身的疾病而引起的骨折,比如说肿瘤或感染病灶往往会引起骨折,该类型便属于病理性骨折。利用核医学分子影像技术在病理性骨折患者的检验中要进行全身性扫描,以掌握病变的部位、程度、范围、性质等等;应力性骨折主要是指由于受到外界损伤或者局部负荷增大而导致的骨折,它可以根据发生部位不同而分为不同的类型[4]。比如发生在正常骨则成为疲劳骨,成为功能不全性骨折,我们常见的老年患者由于骨质疏松引起的骨折便属于这种类型。应力性骨折也是所有骨折中发生率最高的类型,尤其多发于老年群体、运动员、舞蹈员、士兵等等,其发生部分主要是跖骨、趾骨和胫骨、跖骨、跳腓骨等等。在对活动量较大并且反复应力但X线显示为阴性的患者应考虑应力性骨折的可能,对于患者的诊断主要依靠99mTc-MDP骨显像,并配合核磁共振可以将其剖面清晰的显示出来。

对于骨痛与不明原因骨折病因的鉴别诊断,目前主要的方式是应用核医学分子影像对患者进行全身骨扫描。这种方式在最初主要应用于骨肿瘤的诊断,然而随着这一方式的优势逐渐突显,加上核医学分子影像技术在临床医学中的应用越来越广泛,全身性骨扫描的应用范围也逐渐扩大,其扫描技术也在不断的发展与更新,能够更详细的将患者病变的原因、部位、性质、范围清晰的显示出来,从而为临床诊断和治疗提供重要的依据。比如通过全身性扫描检测显示为原发性甲旁亢代谢性骨病的患者则通过外科手术切除治疗,诊断为原发良、恶性肿瘤和骨痛的患者则通过骨肿瘤科或小儿骨科治疗,诊断为骨软化和肾性骨病的患者则通过内科医师进行治疗,诊断为关节问题和代谢性骨病的患者则通过矫形骨科或风湿科的医师治疗,以此准确的判断患者的病因并采取对症的方式治疗,可以有效的避免误诊发生,同时为患者争取宝贵的治疗黄金时间,避免造成最佳治疗时机被耽误发生,确保患者的健康。通过本次研究发现,在骨科疾病诊断中应用核医学分子影像技术具有良好的临床效果,可以提高疾病诊断的准确率,从而为患者提供更合理的治疗方案,值得在临床应用上推广。

参考文献

[1]朱朝晖.2012年度中国核医学和分子影像学科技发展[J].协和医学杂志,2013,(03):233-237.

分子影像学例4

【中图分类号】R737 【文献标识码】A 【文章编号】1004-7484(2013)11-0786-01

子宫肌瘤主要由平滑肌增生形成,故称子宫平滑肌瘤,多发生于育龄期妇女,是女性生殖系统中最常见的良性肿瘤,其原因不明,可能与长期过度的雌激素刺激有关。本文对26例经临床手术和病理证实的子宫肌瘤的动态增强CT的特点进行分析,现报告如下。

1 资料与方法

1.1 一般资料

搜集我院2007年2月-2009年8月行动态增强CT检查并经手术及病理证实的子宫肌瘤26例。年龄28-57岁,平均41.8岁。临床以月经过多、经期延长且间隔短者18例,不孕和习惯性流产者3例,无症状者5例。

1.2 扫描方法

所选病例均有盆腔B超检查资料。CT检查前患者均清洁灌肠,适量憋尿。CT检查采用Neusoft双排螺旋CT机,层厚5.0mm、7.0mm、10.0mm,层距5.0-10.0 mm。平扫后经静脉注射碘海醇80-100ml,行动脉期、门脉期扫描后, 2-5分钟后再作延时 扫描,然后对平扫、动态增强及延时扫描的结果进行综合分析。

2 结果

子宫肌瘤在CT平扫、动态增强扫描、延时扫描的检出率分别为42.6%、91.8%、36.7%。26例病例中9例子宫弥漫性增大,11例子宫外形不规则,呈浅分叶状,6例子宫形态大小正常。其中6例合并子宫直肠窝积液,4例合并卵巢囊肿,1例合并宫颈纳氏囊肿,1例因病灶囊变呈低密度灶,1例因病灶脂肪变性呈更低密度灶。

CT动态增强扫描和B检查结果中,CT扫描较B检查发现的肌瘤的个数为多,CT图像能够准确表达特定层面的详细内容,图像结构互不重叠,直观并易于观察。可清楚显示盆腔淋巴结情况,还可显示盆腔血管情况。术中所见情况与CT检查结果相一致。

3 讨论

3.1 临床与病理表现

子宫肌瘤好发于30-50岁,约占绝经前妇女的70%-80%。常见症状是月经过多、经期长且间隔短、不孕和习惯性流产等。肌瘤常为多发,大小不等,发生部位以子宫体最常见;可分为粘膜下、肌层内和浆膜下肌瘤;也可发生在宫颈部位。较大的子宫肌瘤由于血供障碍可发生多种变性,包括玻璃样变性、脂肪变性,也可发生坏死、出血、钙化。子宫肌瘤的恶变率不足1%。⑴ 直径大于4cm的子宫肌瘤最容易变性。超声作为子宫肌瘤的首选筛查手段,能发现大多数子宫肌瘤,然而不能准确定位,也难以识别小的肌瘤,尤其对于直径小于1cm的肌瘤;动态增强CT能准确定位,且提高肌瘤的检出率,有助于选择术式。

3.2 CT表现

3.2.1 肌层内肌瘤14例,表现为子宫增大,表面凸隆,多发子宫肌瘤子宫轮廓可呈浅分叶状,平扫为等密度或略低密度,动态增强后可显示肿瘤与正常子宫肌的强化相一致,可见其内有旋涡状和分层结构,透明变性者见片状低密度区,囊变者呈低密度囊状表现度。(2)此型子宫肌瘤体积较大,宫腔多受压移位或变形。本组中最大瘤体13.9x15.6cm,其内合并囊性变。

3.2.2 粘膜下肌瘤9例,4例平扫表现为宫腔内卵圆占位性肿块,与肌层等密度,增强扫描肿块强化显著,与肌层有明显分界,周边见浅环形低密度影。另5例平扫及增强均表现为低密度影,边界清楚。

3.2.3 浆膜下肌瘤3例,主要征象是:子宫明显呈分叶状及子宫边缘的类圆形肿块,平扫及增强扫描其密度与子宫肌大致相同,边缘光整,最大者直径约6.0cm。1例其内可见钙化斑。只有通过动态增强才能显示肌瘤的边界,而且可以辨别肌瘤的数量。

3.3 鉴别诊断

子宫肌瘤的CT诊断,结合临床症状和B超资料,一般比较准确,但需与卵巢实性肿瘤相鉴别,后者肿块不与子宫相连,增强扫描不与子宫肌层同步强化。与子宫内膜癌鉴别,子宫内膜癌好发于50岁以上中老年妇女,CT表现为子宫不规则增大,宫腔内肿块呈不规则低密度,与正常子宫肌层分界不清,有周围浸润征象。此外还需与子宫腺肌病鉴别,子宫腺肌病CT表现为子宫轻度增大,MRI对其最具有诊断价值。

分子影像学例5

    2.方法 所有检查均在数字化胃肠机或电视透视下进行,通常选择在月经干净后3~7天进行,术前常规进行碘过敏试验,试验结果呈阴性患者可进行造影检查。术前排空膀胱,取膀胱截石位,常规消毒外阴、阴道和宫颈,将导管插入宫颈内口,向气囊注气,使气囊封住宫颈内口,阻止对比剂外溢。对比剂采用60%泛影葡胺或碘海醇10~20 ml,以10 ml/min的速度推注,同时在电视透视下观察,并摄子宫输卵管充盈像3张,撤管后患者如无不适可步行至观察室。30分钟后摄片观察对比剂在盆腔内的弥散情况。

    结 果 1.子宫、输卵管情况 本组56例有逆流征象的病例中,54例子宫大小形态均未发现明显异常;2例为单角子宫;双侧输卵管伞端不通27例,单侧通而不畅22例,双侧输卵管间质部梗阻5例,单侧输卵管峡部梗阻2例。术中均出现逆流现象,对比剂逆流表现分三种[1]:其中静脉逆流14例,间质淋巴逆流24例,混合性逆流18例。病因以炎性病变最多见(47例)。

    2.逆流的X线表现 ①间质淋巴逆流:对比剂进入子宫间质淋巴网,于宫腔或输卵管周围形成云雾状、网状、斑点状阴影(见封三图1);或进入淋巴管及淋巴结,在盆腔内出现线条、斑点状影,斑点状影位于中央,线条状影呈放射状分布,呈现出“辐射征”(见封三图2),这是碘水造影时发生淋巴逆流的特殊表现,在碘油逆流中未见此征象报道。②静脉逆流:对比剂进入子宫壁基底细小静脉、弓状静脉丛,可显示为宫腔周围细小网状影;卵巢周围静脉及髂内静脉的各分支,通常是位于相应部位出现条带状、蚓状或树枝状影(见封三图3)。③混合逆流:X线表现颇为复杂,通常是间质淋巴逆流和静脉逆流X线征象同时出现(见封三图4),但程度通常不一致。

    讨 论 子宫输卵管造影可以清楚显示子宫腔的大小、形态,可以准确对输卵管梗阻部位进行定位,是正确评价输卵管通畅性的首选方法。刘惕生等[2]行数字减影快速子宫输卵管造影,研究表明,数字减影快速子宫输卵管造影与传统方法比较,造影质量与效率方面明显提高,患者依从性显着改善,但该检查方法对仪器要求较高,基层医院尚无法普及。1929年Pujol等首次提出静脉逆流问题之后,国内相继有多篇文献报道,韩丽萍等报道其发生率为0.82%[3]。以碘水作为对比剂,明显降低了检查的风险,同时获取更多的信息量,能对诊断提供更多的帮助。

    1.逆流的病理生理 ①子宫输卵管感染性病变,如炎症、结核等,病变引起血管通透性增高,增加逆流发生的机会;②感染性病变引发宫腔的粘连、缩小、输卵管梗阻,积水不通或通而不畅,加大压力以确保子宫输卵管充盈,亦增加了逆流发生概率;③造影检查时间把控,月经干净后过早行子宫输卵管造影,由于子宫内膜尚未完全修复,血管暴露,逆流机会较高;④子宫发育异常,宫腔较小或输卵管先天发育异常患者,易出现逆流征象;⑤各类流产术,流产时子宫内膜损伤、清宫不全、消毒不严、吸宫负压过大等多种因素,均可引发子宫内膜损伤,也常导致子宫输卵管的梗阻性病变,增加了逆流的发生机率;⑥医源性因素,器械损伤、插管过深、过快造成内膜损伤等。

    2.碘水造影的优势 子宫输卵管碘油造影中并发造影剂逆流并非少见,由于碘油逆流引发肺动脉碘油栓塞曾有报道。现临床上常使用碘水作为对比剂,以泛影葡胺较为常见,其黏稠度较小,流动较快,吸收快,能有效避免静脉逆流后发生血管栓塞,不仅能显示子宫输卵管的大体解剖和输卵管的梗阻情况及性质,而且显示子宫输卵管细微结构明显优于碘油,有利于发现较小病变,且副作用少,是一种理想的子宫输卵管造影剂[4]。许承志等[5]利用低浓度复方泛影葡胺行子宫输卵管造影,均获得满意效果,对比剂进入人体内30分钟后即被吸收,检查时间短,不引起异物性肉芽肿,逆流后不发生栓塞,不良反应发生率低。但笔者发现,泛影葡胺碘过敏反应较高,碘过敏试验呈阴性者亦可发生过敏反应。使用非离子型对比剂碘海醇作为常规对比剂,仍出现轻度过敏反应者,但未发现中重度过敏反应病例。由于安全性能良好,剂量可适量加大,检查中压力可以适度增高,对于输卵管粘连者,能起到一定通液的效果,即便发生逆流,也不必担心并发症的出现。但也应注意因为逆流造成的阴道、子宫、输卵管内病原菌胞,因为逆流而引发其他组织器官蔓延。

    综上所述,用碘水作为对比剂,即便是在造影术中发生对比剂逆流现象,由于无动脉栓塞之虞,同时能获取更多的影像学信息,完成造影检查的同时,兼备一定的治疗作用,使该项检查具有了更大的价值,值得临床推广。

    参考文献[1]郑玄中.子宫输卵管造影术中造影剂逆流分析[J].医学影像杂志,1997,1(2):2021.

    [2]刘惕生,黄彦妮,杨宁涛,等.数字减影快速子宫输卵管造影的应用价值[J].广西医学,2008,30(3):350351.

分子影像学例6

2.方法 所有检查均在数字化胃肠机或电视透视下进行,通常选择在月经干净后3~7天进行,术前常规进行碘过敏试验,试验结果呈阴性患者可进行造影检查。术前排空膀胱,取膀胱截石位,常规消毒外阴、阴道和宫颈,将导管插入宫颈内口,向气囊注气,使气囊封住宫颈内口,阻止对比剂外溢。对比剂采用60%泛影葡胺或碘海醇10~20 ml,以10 ml/min的速度推注,同时在电视透视下观察,并摄子宫输卵管充盈像3张,撤管后患者如无不适可步行至观察室。30分钟后摄片观察对比剂在盆腔内的弥散情况。

结 果 1.子宫、输卵管情况 本组56例有逆流征象的病例中,54例子宫大小形态均未发现明显异常;2例为单角子宫;双侧输卵管伞端不通27例,单侧通而不畅22例,双侧输卵管间质部梗阻5例,单侧输卵管峡部梗阻2例。术中均出现逆流现象,对比剂逆流表现分三种[1]:其中静脉逆流14例,间质淋巴逆流24例,混合性逆流18例。病因以炎性病变最多见(47例)。

2.逆流的X线表现 ①间质淋巴逆流:对比剂进入子宫间质淋巴网,于宫腔或输卵管周围形成云雾状、网状、斑点状阴影(见封三图1);或进入淋巴管及淋巴结,在盆腔内出现线条、斑点状影,斑点状影位于中央,线条状影呈放射状分布,呈现出“辐射征”(见封三图2),这是碘水造影时发生淋巴逆流的特殊表现,在碘油逆流中未见此征象报道。②静脉逆流:对比剂进入子宫壁基底细小静脉、弓状静脉丛,可显示为宫腔周围细小网状影;卵巢周围静脉及髂内静脉的各分支,通常是位于相应部位出现条带状、蚓状或树枝状影(见封三图3)。③混合逆流:X线表现颇为复杂,通常是间质淋巴逆流和静脉逆流X线征象同时出现(见封三图4),但程度通常不一致。

讨 论 子宫输卵管造影可以清楚显示子宫腔的大小、形态,可以准确对输卵管梗阻部位进行定位,是正确评价输卵管通畅性的首选方法。刘惕生等[2]行数字减影快速子宫输卵管造影,研究表明,数字减影快速子宫输卵管造影与传统方法比较,造影质量与效率方面明显提高,患者依从性显着改善,但该检查方法对仪器要求较高,基层医院尚无法普及。1929年Pujol等首次提出静脉逆流问题之后,国内相继有多篇文献报道,韩丽萍等报道其发生率为0.82%[3]。以碘水作为对比剂,明显降低了检查的风险,同时获取更多的信息量,能对诊断提供更多的帮助。

1.逆流的病理生理 ①子宫输卵管感染性病变,如炎症、结核等,病变引起血管通透性增高,增加逆流发生的机会;②感染性病变引发宫腔的粘连、缩小、输卵管梗阻,积水不通或通而不畅,加大压力以确保子宫输卵管充盈,亦增加了逆流发生概率;③造影检查时间把控,月经干净后过早行子宫输卵管造影,由于子宫内膜尚未完全修复,血管暴露,逆流机会较高;④子宫发育异常,宫腔较小或输卵管先天发育异常患者,易出现逆流征象;⑤各类流产术,流产时子宫内膜损伤、清宫不全、消毒不严、吸宫负压过大等多种因素,均可引发子宫内膜损伤,也常导致子宫输卵管的梗阻性病变,增加了逆流的发生机率;⑥医源性因素,器械损伤、插管过深、过快造成内膜损伤等。

2.碘水造影的优势 子宫输卵管碘油造影中并发造影剂逆流并非少见,由于碘油逆流引发肺动脉碘油栓塞曾有报道。现临床上常使用碘水作为对比剂,以泛影葡胺较为常见,其黏稠度较小,流动较快,吸收快,能有效避免静脉逆流后发生血管栓塞,不仅能显示子宫输卵管的大体解剖和输卵管的梗阻情况及性质,而且显示子宫输卵管细微结构明显优于碘油,有利于发现较小病变,且副作用少,是一种理想的子宫输卵管造影剂[4]。许承志等[5]利用低浓度复方泛影葡胺行子宫输卵管造影,均获得满意效果,对比剂进入人体内30分钟后即被吸收,检查时间短,不引起异物性肉芽肿,逆流后不发生栓塞,不良反应发生率低。但笔者发现,泛影葡胺碘过敏反应较高,碘过敏试验呈阴性者亦可发生过敏反应。使用非离子型对比剂碘海醇作为常规对比剂,仍出现轻度过敏反应者,但未发现中重度过敏反应病例。由于安全性能良好,剂量可适量加大,检查中压力可以适度增高,对于输卵管粘连者,能起到一定通液的效果,即便发生逆流,也不必担心并发症的出现。但也应注意因为逆流造成的阴道、子宫、输卵管内病原菌胞,因为逆流而引发其他组织器官蔓延。

综上所述,用碘水作为对比剂,即便是在造影术中发生对比剂逆流现象,由于无动脉栓塞之虞,同时能获取更多的影像学信息,完成造影检查的同时,兼备一定的治疗作用,使该项检查具有了更大的价值,值得临床推广。

参考文献[1]郑玄中.子宫输卵管造影术中造影剂逆流分析[J].医学影像杂志,1997,1(2):2021.

[2]刘惕生,黄彦妮,杨宁涛,等.数字减影快速子宫输卵管造影的应用价值[J].广西医学,2008,30(3):350351.

分子影像学例7

医学影像技术主要是应用工程学的概念及方法,并基于工程学原理发展起来的一种技术,其实医学影像技术还是医学物理的重要组成部分,它是用物理学的概念和方法及物理原理发展起来的先进技术手段。医学影像信息包括传统X线、CT、MRI、超声、同位素、电子内窥镜和手术摄影等影像信息。它们是窥测人体内部各组织,脏器的形态,功能及诊断疾病的重要方法。随着医疗卫生事业的发展,以胶片为主要方式的显示、存储、传递X-ray摄像技术已不能满足临床诊断和治疗发展的需求,医疗设备的数字化要求日益强烈,全数字化放射学、图像导引和远程放射医学将是放射医学影像发展的必然趋势。

1 传统摄影技术在摸索中进行

1.1 计算机X线摄影

X射线是发展最早的图像装置。它在医学上的应用使医生能观察到人体内部结构,这为医生进行疾病诊断提供了重要的信息。在1895年后的几十年中,X射线摄影技术有不少的发展,包括使用影像增强管、增感屏、旋转阳极X射线管及断层摄影等。但是,由于这种常规X射线成像技术是将三维人体结构显示在二维平面上,加之其对软组织的诊断能力差,使整个成像系统的性能受到限制。从50年代开始,医学成像技术进入一个革命性的发展时期,新的成像系统相继出现。70年代早期,由于计算机断层技术的出现使飞速发展的医学成像技术达到了一个高峰。到整个80年代,除了X射线以外,超声、磁共振、单光子、正电子等的断层成像技术和系统大量出现。这些方法各有所长,互相补充,能为医生做出确切诊断,提供愈来愈详细和精确的信息。在医院全部图像中X射线图像占80%,是目前医院图像的主要来源。在本世纪50年代以前,X射线机的结构简单,图像分辨率也较低。在50年代以后, 分辨率与清晰度得到了改善,而病人受照射剂量却减小了。时至今日,各种专用X射线机不断出现,X光电视设备正在逐步代替常规的X射线透视设备,它既减轻了医务人员的劳动强度,降低了病人的X线剂量;又为数字图像处理技术的应用创造了条件。随着计算机的发展数字成像技术越来越广泛地代替传统的屏片摄影现阶段,用于数字摄影的探测系统有以下几种: (1)存储荧光体增感屏[计算机X射线摄影系统(computer Radiography.CR)]。

(2)硒鼓探测器。(3)以电荷耦合技术(charge Coupled Derices.CCD)为基础的探测器 。(4)平板探测器(Flat panel Detector)a:直接转换(非晶体硒)b:非直接转换(闪烁晶体)。这些系统实现了自动化、遥控化和明室化,减少了操作者的辐射损伤。

1.2 X-CT

CT的问世被公认为伦琴发现X射线以来的重大突破,因为他标志了医学影像设备与计算机相结合的里程碑。这种技术有两种模式,一种是所谓“先到断层成像”(FAT),另一种模式是“光子迁移成像”(PMI)。

1.3 磁共振成像

核磁共振成像,现称为磁共振成像。它无放射线损害,无骨性伪影,能多方面、多参数成像,有高度的软组织分辨能力,不需使用对比剂即可显示血管结构等独特的优点。

1.4 数字减影血管造影

它是利用计算机系统将造影部位注射造影剂的透视影像转换成数字形式贮存于记忆盘中,称作蒙片。然后将注入造影剂后的造影区的透视影像也转换成数字,并减去蒙片的数字,将剩余数字再转换成图像,即成为除去了注射造影剂前透视图像上所见的骨骼和软组织影像,剩下的只是清晰的纯血管造影像。

2 数字化摄影技术

数字X射线摄影的成像技术包括成像板技术、平行板检测技术和采用电荷耦合器或CMOS器件以及线扫描等技术。成像板技术是代替传统的胶片增感屏来照相,然后记录于胶片的一种方法。平行板检测技术又可分为直接和间接两种结构类型。直接FPT结构主要是由非品硒和薄膜半导体阵列构成的平板检测器。间接FPT结构主要是由闪烁体或荧光体层加具有光电二极管作用的非品硅层在加TFT阵列构成的平板检测器。电荷耦合器或CMOS器件以及线扫描等技术结构上包括可见光转换屏,光学系统和CCD或CMOS。

3 成像的快捷阅读

由于成像方法的改进,除了在成像质量方面有明显提高外,图像数量也急剧增加。例如随着多层CT的问世,每次CT检查的图像可多达千幅以上,因此,无法想象用传统方法能读取这些图像中蕴含的动态信息。这时在显示器上进行的“软阅读”正在逐渐显示出其无可比拟的优越性。软拷贝阅读是指在工作站图像显示屏上观察影像,就X线摄影而言这种阅读方式能充分利用数字影像大得多的动态范围,获取丰富的诊断信息。

4 PACS的广阔发展空间

随着计算机和网络技术的飞速发展,现有医学影像设备延续了几十年的数据采集和成像方式,已经远远无法满足现代医学的发展和临床医生的需求。PACS系统应运而生。PACS系统是图像的存储、传输和通讯系统,主要应用于医学影像图像和病人信息的实时采集、处理、存储、传输,并且可以与医院的医院信息管理系统放射信息管理系统等系统相连,实现整个医院的无胶片化、无纸化和资源共享,还可以利用网络技术实现远程会诊,或国际间的信息交流。PACS系统的产生标志着网络影像学和无胶片时代的到来。完整的PACS系统应包含影像采集系统,数据的存储、管理,数据传输系统,影像的分析和处理系统。数据采集系统是整个PACS系统的核心,是决定系统质量的关键部分,可将各种不同成像系统生成的图象采入计算机网络。由于医学图像的数据量非常大,数据存储方法的选择至关重要。光盘塔、磁带库、磁盘陈列等都是目前较好的存储方法。数据传输主要用于院内的急救、会诊,还有可以通过互联网、微波等技术,以数据的远距离传输,实现远程诊断。影像的分析和处理系统是临床医生、放射科医生直接使用的工具,它的功能和质量对于医生利用临床影像资源的效率起了决定作用。综上所述,PACS技术可分为三个阶段,(1)用户查找数据库;(2)数据查找设备;(3)图像信息与文本信息主动寻找用户。

5 技术----分子影像

随着医学影像技术的飞速发展,在今天已具有显微分辨能力,其可视范围已扩展至细胞、分子水平,从而改变了传统医学影像学只能显示解剖学及病理学改变的形态显像能力。由于与分子生物学等基础学科相互交叉融合,奠定了分子影像学的物质基础。Weissleder氏于1999年提出了分子影像学的概念:活体状态下在细胞及分子水平应用影像学对生物过程进行定性和定量研究。

分子成像的出现,为新的医学影像时代到来带来曙光。基因表达、治疗则为彻底治愈某些疾病提供可能,因此目前全世界都在致力于研究、开创分子影像与基因治疗,这就是21世纪的影像学。 新的医学影像的观察要超出目前的解剖学、病理学概念,要深入到组织的分子、原子中去。其关键是借助神奇的探针--即分子探针。到目前为止,分子影像学的成像技术主要包括MRI、核医学及光学成像技术。一些有识之士认为;由于诊治兼备的介入放射学已深入至分子生物学的层面,因此,分子影像学应包括分子水平的介入放射学研究。

6 学科的交叉结合

交叉学科、边缘学科是当今科学发展的趋势。影像技术学最邻近的学科应为影像诊断学。前者致力于解决信息的获取、存储、传输、管理及研发新的技术方法;后者则将信息与知识、经验结合,着重于信息的内容,根据影像做出正常解剖结构的辨认及病变的诊断。两者相辅相成,互为依托。所以,影像技术学的发展离不开影像诊断学更密切地沟通与结合将为提高、拓展原有成像方式及开辟新的成像方式做出有益的贡献。医用影像诊断装置用于详细地观察人体内部各器官的结构,找出病灶的位置毫克大小,有的还可以进行器

官功能的判断 。还有医用影像诊断装备情况,已成了衡量医院现代化水平的标志。

7 浅谈医学影像技术的下一个热点

医疗保健事业在经济上的窘迫使得90年代以来,成为一个没有大规模推广一种新的影像技术的、相对沉寂的时期,延续了一些现有影像技术的发展,使得他们中至今还没有一种影像技术能对影像学产生巨大的影响。随着科技的发展,最近逐渐发展起来的一批有希望的影像技术。如:磁共振谱(MRS),正电子发射成像(PET)单光子发射成像(SPECT),阻抗成像(EIT)和光学成像(OCT或NRI)。他们有可能很快成为大规模应用的影像技术,将为脑、肺、及其他部位的成像提供新的信息。

7.1 磁源成像

人体体内细胞膜内外的离子运动可形成生物电流。这种生物电流可产生磁现象,检测心脏或脑的生物电流产生的磁场可以得到心磁图或脑磁图。这类磁现象可反映出电子活动发生的深度,携带有人体组织和器官的大量信息。

7.2 PET和SPECT

单光子发射成像(SPECT)和正电子成像(PET)是核医学的两种CT技术。由于它们都是接受病人体内发射的射线成像,故统称为发射型计算机断层成像(ECT)。ECT依据核医学的放射性示踪原理进行体内诊断,要在人体中使用放射性核素。ECT存在的主要问题是空间分辨率低。最近的技术发展可能促进推广ECT的应用。

7.3 阻抗成像(EIT)

EIT是通过对人体加电压,测量在电极间流动的电流,得到组织电导率变化的图像。 目的在于形成对体内某点阻抗的估计。这种技术的优点是,所采用的电流对人体是无害的,因而对成像对象无任何限制。这种技术的时间分辨率很好,因而可连续监测实际的应用,已实现以视频帧速的医用EIT的实验样机。

7.4 光学成像(OTC或NIR)

近期的一些实质性的进展表明,光学成像有可能在最近几年内发展成为一种能真正用于临床的影像设备。它的优点是:光波长的辐射是非离子化的,因而对人体是无伤害的,可重复曝光;它们可区分那些在光波长下具有不同吸收与散射,但不能由其它技术识别的软组织;天然色团所特有的吸收使得能够获得功能信息。它正在开辟它的临床领域。

分子影像学例8

【关键词】:影像物理学;声学;核磁共振;放射性核素

物理学的很多新理论都为医学影像检查技术带来了革新,X射线、激光、电子显微镜、核磁共振等技术为医学研究及临床应用提供了新的方法和手段,对现代生命科学的发展作出了突出的贡献.借助于某种能量与生物体的相互作用,提取生物体内组织或器官的形态、结构以及某些生理功能的信息,为生物组织研究和临床诊断提供影像信息。

20世纪中叶,一批物理学工作者进入医学领域,从事肿瘤放射治疗及医学影像的研究.并于1958年成立了美国医学物理学家协会,1963年成立了国际医学物理学组织.并将具有定量特征的物理学思想和技术引入到临床的诊断和治疗中.物理学与医学的结合不仅促进了医学的发展,也对物理学的发展起了推动作用.

1 声学的应用

超声成像90年代以来,由于数字化处理的引入,高性能微电子器件及超声换能器的出现,以及各种图像处理技术的应用,超声成像的新技术、新设备层出不穷。超声不但能显示组织器官病变的解剖学改变,同时还可应用Dopper技术检查血流量、血流方向,从而辨别器官的病理生理受损性质与程度。超声诊断采用实时动态灰阶成像,在掌握正确剂量的前提下,可连续对器官的运动和功能实施动态观察,而不会产生像X射线成像那样的累积效应及危险的电离损害。由于超声诊断具有无损伤性、检查方便、诊断快速准确、价格便宜、适用范围广泛等优点,得以在临床中迅速推广。超声波成像的物理基础是超声医学的基础,超声成像是利用超声波遇到介质的不均匀界面时能发生发射的特性,根据检测到的回波信号的幅度、时问、频率、相位等,得到体内组织结构、血液流速等信息.

2 光学的应用X射线成像

X线实际上是一种波长极短、能量很大的电磁波。医学上应用的X线波长约在0.001--0.1nm之间。X射线穿透物质的能力与射线光子的能量有关,X线的 波长越短,光子的能量越大,穿透力越强。X显得穿透力也与物质密度有关,密度大的物质对X线的吸收多,透过少;密度小则吸收少,透过多。利用差别吸收这种性质可以把密度不同的骨骼与肌肉、脂肪等软组织区分开来,者正是X线透视和摄影的物理基础。X射线成像包括X射线透视和摄影、X射线计算机体层成像. X射线计算机体层成像是以测定人体内的衰减系数为基础,采用一定的数学方法,经计算机处理,重新建立断层图像的现代医学成像技术[1].X射线的几种特殊检查技术,分别是X射线的造影技术、X射线的断层摄影、数字减影.

3 电磁学的应用磁共振成像

MRI成像的先决条件MRI成像的先决条件是被成像样品中的原子核必须具有磁性,而这种磁性源于原子核本身的自旋运动.因此,对原子核等微观粒子的自旋属性进行的深入研究是量子力学取得的重要成果之一,客观上也是MRI得以产生的知识前提.磁共振成像利用了人体内水分子中的氢核在外磁场中产生核磁共振的原理.由于人体不同的正常组织、器官以及同一组织、器官的不同病理阶段氢核的弛豫时间有显著不同,利用梯度磁场进行层面选择和空间编码就可以获得以氢核的密度、纵向弛豫时间 、横向弛豫时间作为成像参数的体内各断层的结构图像.近年来产生很多新的成像序列和技术方法.如扩散加权成像是通过测量人脑中水分子扩散的特性来反映组织的生化特性及组织结构的改变,在临床上可用于急性脑梗塞的早期诊断[2].螺旋浆扫描技术,明显消除患者因运动或金属异物造成的伪影, 可生成高分辨率、无伪影、具有临床诊断意义的理想图像。

4 原子核物理学的应用放射性核素成像

放射性核素成像的物理基础放射性核素具有放射性,利用放射性核素作踪剂,结合药物在脏器选择性的聚集和参与生理、生化功能,达到诊断疾病的目的。检察方法 有4种:扫描机、照相机、单光子发射计算机体层和正电子发射计算机体层(PET).核素检查中产生的正电子只能存在极短的时间,当它被物质阻止而失去动能时,将和物质中的电子结合而转化成光子,即正负电子对湮没.转变为两个能量为0.551 MeV的光子,并反冲发出.放射性核素在正常组织和病变组织分布不同,产生的光子强弱也有不同,PET成像技术通过探测光子对的差别形成影像.

5 结语

影像物理学在影像检查技术中的意义非常重要,对影像检查技术的发展影像深远,随着影像物理学的不断发展,新的影像技术不断出现,必将对疾病的诊断总出更大的贡献。

分子影像学例9

[中图分类号]R445

[文献标识码]A

[文章编号]1006-1959(2009)11-0215-02

X线医学放射成像,一直是常规的内、外科检查诊断的主要手段,伴随计算机和电子技术的快速发展,包括计算机放射成像系统(CR)和数字放射成像系统(DR)数字X光线摄影替代胶片成像的屏――胶系统成为X线医学放射成像的主要技术手段,如何评价放射影像像的质量,建立客观、科学的放射医学影像质量检测评价方法,以期更好地应用于临床诊断,是放射医学影像专业领域的重要问题,本文将为此展开探讨。

1 材料与方法

选择乳腺肿瘤影像及掌指骨影像分别用主观评价法、方差、信息熵及拉普拉斯(8邻域微分)算子和方法分别进行计算。然后将结果进行比较、评价。采用的各种评价方法如下:

1.1 主观评价法:影像的观察者依据规定的评价尺度或自身经验对影像作质量判断,给出质量分数,之后对所有参与者给出的分数进行加权平均,所得结果为影像的主观质量评价。

表1为主观质量评分表,它含绝对性尺度和相对性尺度,绝对尺度是对影像给出绝对的质量评分,相对尺度是确定某影像在一批相比较的影像中的相对质量评分。评价流程是用原始标准影像建立起质量等级标准,而后由观察者观看被评价影像,与标准影像作质量等级比较,得出被评价影像的等级,最后对观察者的打分进行统一平均。

主观评价能较好地反映影像的直观质量,但没能用数学模型进行描述,此外易受观察者的知识背景、情绪和动机等因素影响,且费时费力,无法满足工程性的检测评价要求。

1.2 客观评价法:主要的客观评价方法有信息熵、方差法、平均梯度法等,其分别通过计算影像的信息熵、方差、和平均梯度的数值来评价影像的质量。列举如下:

1.2.1 信息熵:据香农信息论原理,一幅用8bit表示的影像的熵可表示为:

H(x)=-ΣLi=0Pilog2Pi

式中,L=255为影像的最大灰度等级, Pi为影像像素灰度值,i为出现的概率,信息熵有如下特点:①当像素在各个灰度级均匀分布,即各个灰度级所出现的频率均等时,Pi=1/L,则熵H(X)具有最大值log(L)。这时影像的信息量最丰富,灰度分布最均匀,层次最多。②影像中灰度级减少时,熵H(X)也减少。当影像中的所有像素只有某一灰度级,而没有其它灰度级时,熵H(X)具有最小值0。这时影像无信息。

1.2.2 方差:方差反映了影像整体灰度分布的统计量,方差越大,对比度越大;方差越小,对比度越小,其数学表达式为:

σ2=1M×N ΣM-1i=0ΣN-1j=0(f(i,j)-μ2

其中,M和N是影像的行、列数,f(i,j)是像点(i,j)处的灰度值,μ为整幅影像的灰度平均值。

1.2.3 拉普拉斯评价方法:拉普拉斯(8邻域微分)算子和方法是一种新的影像质量评价方法,它通过计算统计影像边缘的灰度变化情况来评价影像质量――即灰度变化越剧烈,边缘越清晰,影像也越清晰。

方法如下:①利用设计新边缘提取算法求出影像边缘。②把影像边缘的每一个像素在3*3领域内采用拉普拉斯梯度算子,得到8邻域微分值的统计值,其次为便于不同大小影像的对比,对第二步计算的结果按影像的大小进行规格化。具体算法如下:

P=Σ(M-1)*(N-1)i=1Σ8j=1df/dx(M-1)*(N-1)

上式中,M和N为影像的行数和列数,df为灰度变化幅值,dx为像素间的距离增量。公式可描述为:逐个对影像中的每点取8邻域点与之相减,求8个差值的加权和,再将所有点所得值相加除以像素总个数。

2 结果

三种评价方法的比较结果见表2。

表2 主观评价、客观评价和拉普拉斯评价比较表

影像

乳腺肿瘤 手骨

评价方法 Ma-1 Ma-2 Hand-1 Hand-2 Hand-3

主观评价(同类影像比较) 优 差 优 良 差

方差 1881.2 549.9618 4296.1 4660.8 5104.1

信息熵 4.3319 3.2417 3.7080 5.1870 5.3389

8邻域算子和算法 0.0902 0.2306 3.1779 2.1504 1.332

分子影像学例10

1.资料

1.1三维CT成像与医学影像信息学

医学放射成像技术能够简单、直观的反应患者身体内部脏器、骨头等病变情况,极大的提高了临床诊断准确度及精密度。20世纪80年代以来,计算机技术飞速发展,计算机存储量大、分析速度快等特点逐渐应用于医学放射成像技术,医学放射成像技术与医学影像信息技术的结合促进了医学放射成像信息的数字化转变,简化了医学影像分析难度,提高了图像分析的准确度,同时计算机技术的应用能够显著提高放射成像图片的质量,并且有助于医学影像图像数据的系统化管理,降低了工作人员劳动强度,同时有助于医学信息系统化管理[3]。

具体应用实例包括三维CT随着医学影像学的发展其图像分辨率、数据采集速度、射线利用率、人体射线吸收剂量分别向着更高、更快、更高、更低的方向发展,现代临床应用的锥型束螺旋CT即随着平板(2D)检测器的发展,影像学的发展逐渐解决了传统医学放射成像不能解决的全身或者较长身体部位的检查问题,锥型束螺旋CT重建算法极大的提高了医学影像质量[4]。20世纪90年代后期随着计算机技术在医学领域的应用与发展,实时X线平板(2D)检测器技术逐渐成熟,克服了传统组合断层成像数据采集速度慢、噪声干扰和几何失真等问题,获得高质量的实时数字X-线图像,丰富和发展了临床数字放射摄影和真三维CT图像信息采集[5]。

1.2多源螺旋CT成像检测技术与医学影像信息学

传统螺旋CT成像检测技术受信息采集时间、螺旋速度等限制,很难对运动心脏的临床数据进行采集。计算机软硬件、多媒体以及通信技术的高速发展促进人类生活方式及生活水平不断发展的今天,患者及临床医学对医学影像的需求及要求不断增长,这些均在极大的程度上促进了科学工作者对医学影像技术的改革,为了克服传统螺旋CT成像检测技术的上述不足,科学工作者逐渐将医学影像信息学技术应用于医学成像领域,2005年SOMATOM Definition双源螺旋CT检测器应用而生,该检测技术解决了单源螺旋CT检测器不能解决的心脏及冠状动脉情况的观察,但是双源螺旋CT则不存在精确重建的算法,为了克服这一技术问题,多源锥束成像装置应用而生,这一技术发展得益于医学影像信息学的发展实现了快速、精准控制多个X射线管,进而实现了同时获取多投影角下的投影数据信息,这重建[6]。医学影像信息学的发展促进了医学放射成像技术向着更加快速、精准、方便的方向发展,同时还增加了医学影像信息存储量,同时能够实现影像信息的远程分析。

1.3电子扫描CT与医学影像信息学

电子扫描CT是采用扫描电子束X射线进行医学影像信息采集的医疗器械,该设备依靠阴极X射线管发射的电子束沿轴线加速与聚焦进行的顺序触发式扫描,能够应用于动态心脏检查。但是传统电子扫描CT成像检测器上不能装防散射栅叶片,因此不能保证医学图像质量由于散射而受到影响,同时检测器上香蕉形的放射剖面严重降低了系统的几何剂量效率,此外传统X线管的功率比较低,一般不适用于大体形的病人应用,受环境影响较大[7]。随着医学影像学的发展,逐渐克服了电子扫描CT的上述不足,综合了锥束螺旋CT与电子扫描CT的共同优点,对电子扫描CT设备进行改造,设计了一个供小动物成像用的电子束微型,并改进了计算机数据处理系统,有效地克服了传统电子扫描CT图像质量差、几何效率低、信噪比大等缺点。电子扫描CT的发展同时刺激了椎束变螺旋CT理论的发展。

2.讨论

医学影像信息学的不断发展,实现了对医学放射图像的数字化分析与存储,这一改变在一定程度上极大的节省了医疗成本,同时数字化医学影像信息存储节省了存储空间,提高了临床工作效率,而且克服了传统图像储存存在的图片因长时间存放而褪色、失真等问题,降低了医院信息管理费用,而且医学影像学的发展导致了医学放射成像技术的发展导致的工作效率的提高,极大的增大了医院的经济收益。医学影像信息学的发展,简化了医生的工作内容,有助于提高医院的诊断水平及准确度的提高,而且有利于医院对典型病理信息的收集、存储及管理,同时实现了全面的医疗技术交流,有助于医学技术的成熟与发展。

综上所述,医学放射成像与医学影像信息学间相辅相承,共同发展。医学影像信息学的发展一方面无形的促进了医学放射成像技术的发展,进而促进了医学影像信息学的逐步完善;另一方面医学放射成像技术以及医学影像信息学的不断发展,促进了计算机技术在医学领域的广泛应用,实现了医学技术的快速、精准、方便、廉价发展。

参考文献

[1]张振国,徐崇强.数字化X线成像在临床中的应用[J].中国医学工程,2011,19(12):113-115.

[2]曹厚德.医学影像网格技术―医学影像数据共享的新动向[J].中华放射学杂志,2007,41(2):115-116.

[3]李小虎,束宏敏,李晓,等.医学影像学科学研究的特征及发展变化方向[J].中国医疗器械信息,2014,3(10):30-36.

[4]张建年.多层螺旋CT在鉴别新旧胸腰椎压缩骨折中的应用[J].实用放射学杂志,2011,27(1):142-143.