期刊在线咨询服务,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

期刊咨询 杂志订阅 购物车(0)

重金属污染危害模板(10篇)

时间:2023-12-16 16:22:16

重金属污染危害

重金属污染危害例1

中图分类号:F840.61 文献标识码:A 文章编号:1009-914X(2015)40-0268-02

[Abstract]Heavy metal, a serious threat to the environment, is becoming a global issue. The problem of heavy metal pollution in water environment has been very popular.This paper analyses the sources and caracreristics of the heavy metal pollution and its harm to living things, especially the harm to human health caused by the heavy metal mercury, cadmium, lead, chromium and metalloid arsenic(Hg、Cd、Pb、Cr and As), which have significant biotoxicity.

[Key words]heavy metal pollution; biotoxicity; harm

1、引言

密度在5 g/cm3(克/立方厘米)以上的金属统称为重金属,如金、银、铜、铅、锌、镍、钴、镉、铬和汞等,环境污染方面所说的重金属,主要是指生物毒性显著的重金属如汞、镉、铅、铬以及类金属砷等,也指具有一定毒性的一般重金属如锌、铜、钴、镍、锡等。由重金属造成的环境污染称为重金属污染。

目前重金属对环境的严重威胁正逐渐成为全球性问题,水环境重金属污染问题已十分普遍,水体又是人类赖以生存的最重要的自然资源之一,是人类生态环境的重要组成部分。文章介绍了地表水中重金属污染及其危害,并重点阐述了生物毒性显著的汞、镉、铅、铬以及类金属砷(Hg、Cd、Pb、Cr和As )对人体健康的危害,对人们进行环境管理、污染防治及健康知识普及具有很好的参考意义。

2、重金属污染物来源

重金属污染物主要来源于采矿、冶炼、化工、电镀、电子、制革、石油、金属加工、机械制造、电解、农药、医药、油漆、染料等行业排放的废水,以及民用固体废弃物不合理填埋和堆放,重金属污染物事故性排放,大量化肥、农药的施用,使得各种重金属污染物进入水体〔1-2〕。

3、重金属污染的特点

重金属污染物在水体中具有相当高的稳定性和难降解性,随废水排出时,即使浓度很小,也可能造成危害。

重金属污染物进入水生生态系统后,分布于水生生态系统的各个组分中,并发生一系列的物理化学反应,如氧化、还原、沉淀与溶解、吸附与解吸、络合作用及生物甲基化等〔1〕,对生态系统各组分产生影响。重金属污染物被生物体吸收后,在组织中不断蓄积和浓集,通过食物链逐级传递,使污染物浓度逐级提高,生物体内的污染物浓度较水中原有浓度提高几倍至几十万倍〔3〕。当生物体内重金属积累到一定数量后,就会出现受害症状,生理受阻,发育停滞,甚至死亡,并使整个水生生态系统结构和功能受损、崩溃。通过食物链的富集,使重金属污染物从低等的原生物、植物逐步到高等动物。人类处于食物链的顶端,通过直接饮水、食用被污染的水生动植物、污水灌溉过的蔬菜和粮食等途径直接或间接受到重金属污染,对人们的身体健康产生严重危害〔4〕。常见水生生物对重金属的富集系数〔1〕见表3-1。

4、影响重金属毒性的因素

重金属污染物的毒性,主要取决于金属的性质和水体环境的性质。汞在环境中非常稳定,在微生物作用下,甲基化后毒性加大;金属镉毒性很小,但镉的化合物毒性较大,尤其是镉的氧化物;元素砷不溶于水和强酸,几乎没有毒性,但其化合物毒性较大,特别是三氧化二砷,是剧毒物质。水环境的温度、pH值、作用时间、溶解氧的饱和度、硬度、水中的其他有毒物质等等都对重金属的毒性有较大影响,如在低温下比在高温下毒性小;pH值降低毒性增大;在硬水中比在软水中毒性小,这是由于重金属离子与其他盐类金属离子之间的拮抗作用所至;把强酸加到硬度高的水中,水中的碳酸盐和酸式碳酸盐便生成大量的游离的CO2,不溶性重金属转变为可溶性盐,使重金属毒性增大;两种以上金属离子同时存在时,由于它们之间的增效作用而使毒性增大〔4〕等等。

5、重金属污染对生物的危害

5.1、对水生植物的危害

藻类是水体的初级生产者,在水生生态系统的食物链中起着十分重要的作用。藻类对重金属污染物很敏感,当藻类中毒后,首先是叶绿体受到破坏,由绿变黄,最后死亡〔4〕。重金属通过各种途径进入水体后,一旦被藻类吸收,将引起藻类生长代谢与生理功能紊乱,抑制光合作用,减少细胞色素导致细胞畸变、组织坏死,甚至使藻类中毒死亡,改变天然环境中藻类的种类组成。人们利用藻类及水生生物的敏感性来监控水体的重金属污染。

5.2、对水生动物的危害

重金属进入水体后,会对水生动物的生长发育、生理代谢等过程产生一系列的影响。重金属离子对鱼类的毒性,主要是外部作用,尤其是使鳃表面的粘液沉淀或凝固,从而影响到呼吸机能,造成鱼类死亡〔4〕。重金属Cd对碱性磷酸酶的活性有明显抑制作用,对鱼大脑乙酰胆碱酯酶活性有影响。Cu、Zn、Pb、Cd 复合污染会影响鱼类胚胎发育并可能导致胚胎畸变。海水重金属离子含量超过一定浓度会引起文昌鱼中毒,使其身体渐成弯曲状而死亡。罗非鱼暴露于重金属离子中,鳃和肝脏中金属硫蛋白mRNA 的表达受到显着影响。

5.3 对人体健康的危害

重金属进入人体后,不易排泄,逐渐蓄积,对人体健康的危害是多方面、多层次的。重金属在人体内能和蛋白质及酶等发生强烈的相互作用,使它们失去活性,造成急性中毒,也可能在人体的某些器官中累积,造成慢性中毒。其毒理作用主要表现在影响胎儿正常发育、造成生殖障碍、降低人体素质等。重金属通过水体直接或间接进入食物链后,能严重地耗尽体内贮存的Fe、维生素C 和其他必需的营养物质,导致免疫系统防御能力的下降,子宫内的胚胎生长停滞和其他一些残疾。重金属能抑制人体化学反应酶的活动,使细胞质中毒,从而伤害神经组织,还可导致直接的组织中毒,损害人体解毒功能的关键器官肝、肾等组织。

6、生物毒性显著的重金属对人体的常见危害

重金属汞Hg:环境中汞污染对人体健康的危害最根本的是甲基汞对人的危害,主要危害神经系统,使脑部受损,造成四肢末端或口周围麻木、动作障碍、运动失调、感觉障碍、视野变窄、听力困难、小脑性语言障碍等;中毒较重者可以出现口腔病变、恶心、沤吐、腹痛、腹泻等症状,可对皮肤粘膜及泌尿、生殖等系统造成损害。各种症状逐步加重,最后可导致全身瘫痪、吞咽困难、心力衰竭而死亡〔3〕。长期食用含有微量汞的饮用水,会引起蓄积性中毒。

重金属镉Cd:镉进入人体后可分布到全身各个器官,主要与富含半胱氨酸的胞浆蛋白相结合形成金属硫蛋白而存在,对镉在人体内的分布、代谢起着重要作用〔3〕。

镉在人体中积累可引起慢性中毒,导致痛痛病,依其病程可分为五期:①潜伏期:过劳后可出现腰背痛,休息后可恢复,最短可为2-8年;②警戒期:疼痛较前加重,牙根处出现黄色镉环,尿中有时出现蛋白;③疼痛期:全身各部位出现明显疼痛,尤其是耻骨部,全身出来骨委缩,脱钙,X线表现骨质疏松,尿蛋白阳性,并可出来糖尿;④骨胳变形期:全身剧烈疼痛,不能自由行走,由于脊椎压迫而身长缩短,骨弯曲,骨盆变形,尿蛋白及尿糖阳性;⑤骨折期:骨呈高度委缩、脱钙,很容易引起全身各部的自然骨折〔3〕。

重金属铅Pb: 在人体内吸收-蓄积-排出之间维持着动态平衡,进入和排出平衡时不产生危害;进入大于排出时,可在体内积蓄,主要蓄积在肝、肾、脾、肺、脑中,达到一定程度后导致生理功能的改变而危害。对神经系统主要是使大脑皮质的兴奋和抑制过程发生紊乱,表现为神经衰弱症候群、中毒性多发性神经炎及中毒性脑病。对肾脏的危害主要表现为间质性肾炎及肾委缩〔3〕。

铅中毒主要症状是食欲不振、口有金属味、失眠、头痛、头昏、肌肉关节酸痛、腹痛、便秘、嗳气等等。

重金属铬Cr:铬化合物可通过消化道、呼吸道、皮肤和粘膜进入人体,主要积聚在内分泌腺、心、胰、肺中,三价铬对生物体具有有益的作用,当铬进入人体过多时,可对健康带来危害,特别是六价铬,可引起铬中毒或其他慢性毒害。六价铬在人体内能与核酸和蛋白质结合,主要是影响物质的氧化、还原和水解过程〔3〕。由于侵入途径不同,中毒表现不同,经消化道进入,可引起恶心、呕吐、腹痛、腹泻、血便,同时有头痛、头晕、烦躁不安、呼吸急促、四肢发凉等;经呼吸道吸入可引起鼻炎、咽炎、支气管炎、支气管哮喘等;有报道六价铬及三价铬均有致癌作用,六价铬可诱发支气管肺癌。经皮肤接触,可引起接触性皮炎和湿疹,并反复发作,不易痊愈。

类金属砷As:在人体内蓄积性很强,除表皮组织外,还能在肝、肾、肺、子宫、胎盘、骨骼等处蓄积,还能透过胎盘影响到胎儿。急性中毒主要损害胃肠道系统、呼吸系统、皮肤和神经系统。主要表现为剧列腹痛、腹泻、恶心、呕吐,还伴有头晕、头痛、血压降低等症状,甚至引起昏迷,严重者表现为神经异常、呼吸困难、心脏衰竭而死亡。亚急性中毒除的消化道或呼呼道的局部炎症外,末梢神经炎明显,四肢疼痛,肝、肾可出现中毒症状,皮肤可有色素沉着和白斑等;慢性中毒主要表现在末梢神经炎症状,早期有蚁走感,四肢疼痛,行走困难,皮肤色素高度沉着,行动困难,肌肉萎缩,头发脆而易脱落、手掌脚趾皮肤高度角质化等〔3〕。

7、结束语

本文介绍了地表水中重金属污染物来源、污染特点、影响重金属毒性的因素及其对生物的危害,并重点阐述了生物毒性显著的汞、镉、铅、铬以及类金属砷(Hg、Cd、Pb、Cr和As )对人体健康的危害。

参考文献:

[1] 国家环境保护总局.水和废水监测分析方法编委会.《水和废水监测分析方法》(第五版).北京:中国环境科学出版社,2011.

[2] 马少健、李长平、莫伟.《重金属废水处理技术进展》.昆明:云南环境科学,2004,3(23):54

[3] 上海第一医学院主编.《环境卫生学》,北京:人民卫生出版社,1981.

重金属污染危害例2

中图分类号:X53 文献标识码:A 文章编号:1009-914X(2015)43-0341-01

引 言:重金属污染物会长时间停留在土壤中,且隐蔽性较强,毒性大,很容易通过不同的形式,转化为其它危害人体健康的因素,所以在城市建设和发展的过程中,应该充分明确治理重金属污染问题的严峻性。

1 土壤重金属污染的来源

土壤重金属污染的来源主要包括工业,农业和交通过程所产生污染。

1.1 农业污染

农业生产过程中农药、化肥和有机肥的不合理使用以及使用污水灌溉农田的行为都会造成土壤的重金属污染。在现代农业过程中,许多农药,如杀虫剂、杀菌剂、杀鼠剂、除学剂的大量使用引起土壤中As,Cu等污染。

1.2 交通污染

随着城市化发展,交通工具的数量急剧增加,汽车轮胎及排放的废气中含有Pb,Zn,Cu等多种重金属元素,进入周围的土壤环境,成为土壤重金属污染的主要来源之一。

1.3 工业污染

矿产冶炼加工、电镀、塑料、电池、化工等行业是排放重金属的主要工业源,其排放的重金属可以气溶胶形式进入到大气,经过干湿沉降进入土壤;另一方面,含有重金属的工业废渣随意堆放或直接混入土壤,潜在地危害着土壤环境。随着城市化发展,大量污染企业搬出城区,原有的企业污染用地成为城市土壤重金属污染的突出问题。

2 重金属污染物及其危害

土壤的主要金属污染物为铅(Pb)、汞(Hg)、镉(Cd)、铬(Cr)和类金属砷(As)。

2.1 铅(Pb)

铅是重金属污染土壤中分布较广、具强蓄积性的环境污染物。土壤中的铅主要来源于频繁的人类活动。虽然世界各国和地区都开始认识到铅已成为土壤污染的主要成份之一,并开始有组织的治理。但随着采矿业、冶金业、IT业、农业、汽车产业的不断发展和各种污水的排放,铅污染的情况并没有得到好转,更有愈演愈烈的趋势。

在进入土壤后,铅大部分只停留在土壤表层,与土壤中的有机物结合,极难溶解。过量的铅会导致植物的叶绿素含量降低,光合作用速率下降,造成植物生长发育停滞。大田表现为植株矮小,叶片偏黄,产量明显降低。铅的富集性很强,当人食用带有过量铅的食物后,体内的铅会不断富集,然后与人体内的多种酶结合,从而破坏正常的人体机能。

2.2 汞(Hg)

汞,又名水银,在自然界的存在形式极其丰富,大气、水体和土壤中都存在着不同形式的汞并可相互传播。人类排放汞的形式主要是燃烧,包括生活垃圾、医疗垃圾、石化燃料等,其燃烧过程中产生大量的含汞化合物,已占人类汞排放的80%。绝大部分的汞在进入土壤后都会很快的被固定,积累在表层土壤和耕层中,不再向下迁移。

对动植物及人体构成直接威胁的通常是甲基汞(MeHg),其不仅可以造成作物产量降低甚至死亡、造成皮肤灼痛、肌肉运动失调、神经损伤,还可以造成胎儿出现严重的缺陷,如失明、大脑性麻痹、智力迟钝等症状。历史上汞中毒的事件已经屡见不鲜,必须予以足够的重视。

2.3 砷(As)

砷元素的毒性极低,但含砷的化合物均有毒性,土壤中的砷除了来自工业生产的废渣外,含砷农药的使用也是主要的来源。砷在自然条件下可以被作物吸收,而进入人体。日本历史上曾发生过砷中毒的恶性事件,当时有12100多人中毒,130人因脑麻痹而死亡。

3 传统的土壤重金属污染修复技术

3.1 农业化学修复技术

农业化学修复技术就是采用大面积种植一些可以对重金属物质进行有利吸收的农作物,从而利用植物自身的吸收作用将土壤中的一些化合态和游离态的重金属离子进行吸收或者进行有利的化学转化,从而降低重金属离子对周围环境的污染。植物吸收重金属物质的过程大致是,首先植物利用自身的根系和植物根尖部分的内外层水分平衡的作用来吸收土壤中的水分,其次由根尖生长区和分生区向上将水分运输,从而将水分中含有的重金属离子运走,是根尖部分内侧始终保持较低的重金属离子浓度,从而使根尖内外产生浓度差,使根尖继续大量吸收重金属离子。

3.2 物理化学修复技术

物理化学修复过程即通过各种物理和化学手段从土壤中除去或者分离含重金属的污染物,比如利用淋洗液将土壤中的固相重金属转移到土壤的液相中,再利用络合或者沉淀的方法使土壤富集,然后将富集液中含重金属的沉淀进行过滤并除去。在进行淋洗时,淋洗剂的选择是非常关键的问题。除此之外,可以用电动修复的方法,就是在固液相的土壤中插入电极,利用重金属导电性的原理,充分在电场的作用下引导并从土壤中移动出。然后进行筛选和过滤。也可以利用重金属与某些非金属阴离子在土壤中化合形成化合物的方法,在土壤中掺入适量的含有非金属阴离子的物质,使重金属阳离子和非金属阴离子不易分解的无害的化合物,或者可直接分离提取的化合物[2]。

3.3 有机物吸收重金属离子作用

有机物吸收重金属离子作用就是利用某些有机物或者是有机物的堆肥可以与重金属离子产生一定的反应,从而使重金属物质失去对生物和其他环境破坏性的原理,对被重金属污染的土壤进行修复。一些有机物如动物的粪便、植物的秸秆堆肥产物等可以与土壤中的重金属离子产生非常强烈的络合作用或者螯合作用,通过这些作用可以使重金属离子大大减小甚至失去一些本身的性质,比如对周围环境的生物毒性和破坏性,从而降低重金属危害。比如蚯蚓粪或者奶牛的粪便可以有效减少周围环境中的铅的毒性效果,而咖啡豆的果皮和果肉对于降低铅的生物毒性作用具有更好的效果。

4 新型的重金属污染修复技术

4.1 化学淋洗和化学固定

化学淋洗和化学固定的方法都是单纯利用化学技术对土壤中的重金属物质进行固定和分离。化学淋洗是通过化学洗脱作用将重金属物质从土壤中洗脱出去,从而达到清洁土壤的作用。采用这种化学洗脱的方法即相当于利用另一种化学试剂将原本土壤中的许多种金属物质进行替换和洗脱,从而将重金属物分离出来。近几年的实验证明这种方法非常有效,可以大量的洗脱出一些重金属物质,但由于洗脱作用,也是的土壤中原本有的一些金属离子一同被洗脱出来,所以经过洗脱后的土壤一般不能在种植任何农作物。化学固定就是在土壤中加入适当的化学试剂使土壤中的重金属离子的迁移性降低,或者直接由游离态转变为固定的化合态。在转变的过程中,就会使重金属离子的生物毒性大大降低。

4.2 微生物修复技术

微生物修复技术是指某些微生物在进行自身新陈代谢过程中,需要吸收一些特定的重金属离子并将其转化为自身所需化合物的方法,利用这种方法可以有效针对土壤中的一些特定的重金属离子进行修复和处理。微生物的金属离子吸收过程基本就是利用重金属离子完成自身的氧化和代谢作用。通过微生物体内代谢作用的一系列转变,使得重金属游离态物质转变为对周围环境毒害作用减小的次级代谢化合产物。

5 结束语

总之,随着土壤重金属污染日益加剧,土壤重金属污染的治理已成为当前研究的热点。土壤重金属污染具有高累积性和不可逆转性,污染一旦发生,仅依靠切断污染源的方法难以进行彻底恢复。目前,己有一些污染土壤治理的方法,但从其发展和需求来看,还须发展更加有效的治理技术。

参考文献

重金属污染危害例3

土壤重金属污染是指由于人类活动,土壤中的微量金属元素在土壤中的含量超过背景值,过量沉积而引起的含量过高,统称为土壤重金属污染。土壤重金属是指由于人类活动将金属加入到土壤中,致使土壤中重金属明显高于原生含量、并造成生态环境质量恶化的现象。

土壤重金属危害有:

影响植物根和叶的发育;破坏人体神经系统、免疫系统、骨骼系统等,如水俣病等;污染饮用水。

(来源:文章屋网 )

重金属污染危害例4

中图分类号:X75; TQ170.9 文献标识码:A

一、引言

随着社会的不断发展,人们比以往任何时候都更加崇尚工业与自然环境的和谐发展,这种理念已不断渗透到各学科之中,在治理污染技术的开发上也应该寻求这种绿色产业。充分发挥自然界的天然自净化功能,是在污染治理与环境修复领域开发绿色环保技术的体现,更是完整地利用天然自净化功能的反应。本文阐述了重金属的危害、来源及其存在形式,并重点论述了处理重金属污染物的方法。

二、废水中重金属污染物的来源

1.铅的来源。铅常被用作原料应用于蓄电池、电镀、颜料、橡胶、农药、燃料等制造业。铅板制作工艺中排放的酸性废水(pH

2.镉的来源。镉是一种灰白色的金属,自然界中主要以二价形式存在。镉电镀可以为钢、铁等提供一种抗腐蚀性的保护层,具有吸附性好且镀层均匀光洁等特点,因此工业上90%的福用于电镀、颜料、塑料稳定剂、合金及电池等行业,含镉废水的来源还包括金属矿山的采选、冶炼、电解、农药、医药、电镀、纺织印染等行业的生产过程中。

3.镍的来源。废水中镍的来源废水中的镍主要以二价离子存在,比如硫酸镍、硝酸镍以及与许多无机和有机络合物生成的镍盐。含镍废水的工业来源很多,其中主要是电镀业,此外,采矿、冶金、石油化工、纺织等工业,以及钢铁厂、印刷等行业排放的废水中也含有镍。

4.银的来源。常见银盐中唯一可溶的是硝酸银,也是废水中含银的主要成分。硝酸银广泛应用于无线电、化工、机器制造、陶瓷、照相、电镀以及油墨制造等行业,含银废水的主要来源是电镀业和照相业。

三、重金属污染物在环境中的存在形式

重金属污染物在大气、水、沉积物、土壤、植物等体系中均有分布,在不同体系中的存在形式不同。重金属在土壤中的存在形式、土壤重金属污染主要是由于使用污泥和污水灌溉造成的,污水中工业废水占60%~80%,且成分复杂,都不同程度含有生物难以降解的重金属。

1.重金属在水中的存在形式。近年来,中科院等对长江水环境中重金属的背景值进行了较深入的考察,结果表明河水中大部分元素主要以悬浮颗粒态存在,而溶解部分的重金属浓度较低,并且总量越是偏高的元素,以悬浮颗粒态存在的比例也越高。这一特征与区域条件有密切联系,当地理风化强烈时,悬浮质含量直接影响水环境中元素浓度分布。同时,化学风化微弱使元素难以释放,河水碱性偏低更使溶解态重金属浓度偏低。

2.重金属在沉积物中的存在形式。通过各种途径进入水环境的重金属,绝大部分随物理、化学、生物及物理化学作用的进行,迅速转移到沉积物中或通过悬浮物转移到沉积物中。沉积物中重金属赋存状态及特征为:Pb主要趋向于同Fe/Mn水合氧化物、碳酸盐相结合,Cu主要形成残渣相和有机质相,而Zn易同Fe/Mn水合氧化物、碳酸盐相结合;Pb、Zn以非残渣相为主要成分,Cu以残渣相为主要成分。

四、常用的重金属废水处理方法

重金属废水处理的方法有很多,可分为两大类:一类是使溶解性的重金属转变为不溶或者难溶的金属化合物,从而将其从水中除去。另一类是在不改变重金属化学形态的情况下进行浓缩分离,例如反渗透法、电渗析法、离子交换法、蒸发浓缩法等。

1.氢氧化物沉淀法。该方法是通过向重金属废水投加碱性沉淀剂(如石灰乳、碳酸钠液碱等),使金属离子与轻基反应,生成难溶的金属氢氧化物沉淀,从而予以分离的方法。

2.硫化物沉淀法。该方法是通过向废水中投加硫化剂,使金属离子与硫化物反应,生成难溶的金属硫化物沉淀从而得以分离的方法。硫化剂可采用硫化钠、硫化氢或硫化亚铁等。此法的优点是生成的金属硫化物的溶解度比金属氢氧化物的溶解度小,处理效果比氢氧化物沉淀更好,而且残渣量少,含水率低,便于回收有用金属。缺点是硫化物价格高。

3.还原法。该方法是通过向废水中投加还原剂,使金属离子还原为金属或低价金属离子,再投加石灰使其成为金属氢氧化物沉淀从而得以分离的方法。还原法可用于铜、汞等金属离子的回收,常用于含铅废水的处理。

4.离子交换法。离子交换法是利用离于交换剂的交换基团,与废水中的金属离子进行交换反应,将金属离子置换到交换剂上予以除去的方法。用离子交换法处理重金属废水,如Cu2+、Zn2+、Cd2+等,可以采用阳离子交换树脂;而以阴离子形式存在的金属离子络合物或酸根 (HgCl2-、Cr2O72等),则需用阴离子交换树脂予以除去。

5.铁氧体法。铁氧体是由铁离子、氧离子以及其它金属离子所组成的氧化物,是一种具有铁磁性的半导体。采用铁氧体法处理重金属废水是根据铁氧体的制造原理,利用铁氧体反应,把废水中的二价或三价金属离子,充填到铁氧体尖晶石的晶格中去,从而得到沉淀分离的方法。

6.电解法。电解法是利用电极与重金属离子发生电化学作用而消除其毒性的方法。按照阳极类型不同,将电解法分为电解沉淀法和回收重金属电解法两类。电解法设备简单、占地小、操作管理方便、而且可以回收有价金属。但电耗大、出水水质差、废水处理量小。

7.膜分离方法。该方法是利用一种特殊的半透膜,在外界压力的作用下,在不改变溶液中化学形态的基础上,将溶剂和溶质进行分离或浓缩的方法。膜分离法包括反渗透法、电渗析法、扩散渗折法、液膜法和超滤法等。

8.吸附法。该方法是利用吸附剂将废水中的重金属离子除去的方法。吸附法由于占地面积小、工艺简单、操作方便、无二次污染,特别适用于处理含低浓度金属离子的废水。

五、结语

重金属的污染问题已成为今世界各国共同关注的问题,国内外对重金属的处理方面的研究正在全面进行中。我国也在这方面取得了瞩目的成绩。

参考文献:

[1]任高平.化学法治理铜件酸洗废水并电解回收铜[J].工业水处理, 1986,(06).

[2]宋世林,赵玉娥.化学法处理含铬废水试验[J].电镀与环保, 1984,(02).

[3]顾雪芹,曹国良.槽边循环电解法从酸性镀铜废水中回收铜[J].电镀与环保, 1984,(02).

重金属污染危害例5

2.镉的来源。镉是一种灰白色的金属,自然界中主要以二价形式存在。镉电镀可以为钢、铁等提供一种抗腐蚀性的保护层,具有吸附性好且镀层均匀光洁等特点,因此工业上90%的福用于电镀、颜料、塑料稳定剂、合金及电池等行业,含镉废水的来源还包括金属矿山的采选、冶炼、电解、农药、医药、电镀、纺织印染等行业的生产过程中。

3.镍的来源。废水中镍的来源废水中的镍主要以二价离子存在,比如硫酸镍、硝酸镍以及与许多无机和有机络合物生成的镍盐。含镍废水的工业来源很多,其中主要是电镀业,此外,采矿、冶金、石油化工、纺织等工业,以及钢铁厂、印刷等行业排放的废水中也含有镍。

4.银的来源。常见银盐中唯一可溶的是硝酸银,也是废水中含银的主要成分。硝酸银广泛应用于无线电、化工、机器制造、陶瓷、照相、电镀以及油墨制造等行业,含银废水的主要来源是电镀业和照相业。

三、重金属污染物在环境中的存在形式

重金属污染物在大气、水、沉积物、土壤、植物等体系中均有分布,在不同体系中的存在形式不同。重金属在土壤中的存在形式、土壤重金属污染主要是由于使用污泥和污水灌溉造成的,污水中工业废水占60%~80%,且成分复杂,都不同程度含有生物难以降解的重金属。

1.重金属在水中的存在形式。近年来,中科院等对长江水环境中重金属的背景值进行了较深入的考察,结果表明河水中大部分元素主要以悬浮颗粒态存在,而溶解部分的重金属浓度较低,并且总量越是偏高的元素,以悬浮颗粒态存在的比例也越高。这一特征与区域条件有密切联系,当地理风化强烈时,悬浮质含量直接影响水环境中元素浓度分布。同时,化学风化微弱使元素难以释放,河水碱性偏低更使溶解态重金属浓度偏低。

2.重金属在沉积物中的存在形式。通过各种途径进入水环境的重金属,绝大部分随物理、化学、生物及物理化学作用的进行,迅速转移到沉积物中或通过悬浮物转移到沉积物中。沉积物中重金属赋存状态及特征为:Pb主要趋向于同Fe/Mn水合氧化物、碳酸盐相结合,Cu主要形成残渣相和有机质相,而Zn易同Fe/Mn水合氧化物、碳酸盐相结合;Pb、Zn以非残渣相为主要成分,Cu以残渣相为主要成分。

四、常用的重金属废水处理方法

重金属废水处理的方法有很多,可分为两大类:一类是使溶解性的重金属转变为不溶或者难溶的金属化合物,从而将其从水中除去。另一类是在不改变重金属化学形态的情况下进行浓缩分离,例如反渗透法、电渗析法、离子交换法、蒸发浓缩法等。

1.氢氧化物沉淀法。该方法是通过向重金属废水投加碱性沉淀剂(如石灰乳、碳酸钠液碱等),使金属离子与轻基反应,生成难溶的金属氢氧化物沉淀,从而予以分离的方法。

2.硫化物沉淀法。该方法是通过向废水中投加硫化剂,使金属离子与硫化物反应,生成难溶的金属硫化物沉淀从而得以分离的方法。硫化剂可采用硫化钠、硫化氢或硫化亚铁等。此法的优点是生成的金属硫化物的溶解度比金属氢氧化物的溶解度小,处理效果比氢氧化物沉淀更好,而且残渣量少,含水率低,便于回收有用金属。缺点是硫化物价格高。

3.还原法。该方法是通过向废水中投加还原剂,使金属离子还原为金属或低价金属离子,再投加石灰使其成为金属氢氧化物沉淀从而得以分离的方法。还原法可用于铜、汞等金属离子的回收,常用于含铅废水的处理。

4.离子交换法。离子交换法是利用离于交换剂的交换基团,与废水中的金属离子进行交换反应,将金属离子置换到交换剂上予以除去的方法。用离子交换法处理重金属废水,如Cu2+、Zn2+、Cd2+等,可以采用阳离子交换树脂;而以阴离子形式存在的金属离子络合物或酸根(HgCl2-、Cr2O72等),则需用阴离子交换树脂予以除去。

5.铁氧体法。铁氧体是由铁离子、氧离子以及其它金属离子所组成的氧化物,是一种具有铁磁性的半导体。采用铁氧体法处理重金属废水是根据铁氧体的制造原理,利用铁氧体反应,把废水中的二价或三价金属离子,充填到铁氧体尖晶石的晶格中去,从而得到沉淀分离的方法。

6.电解法。电解法是利用电极与重金属离子发生电化学作用而消除其毒性的方法。按照阳极类型不同,将电解法分为电解沉淀法和回收重金属电解法两类。电解法设备简单、占地小、操作管理方便、而且可以回收有价金属。但电耗大、出水水质差、废水处理量小。

7.膜分离方法。该方法是利用一种特殊的半透膜,在外界压力的作用下,在不改变溶液中化学形态的基础上,将溶剂和溶质进行分离或浓缩的方法。膜分离法包括反渗透法、电渗析法、扩散渗折法、液膜法和超滤法等。

8.吸附法。该方法是利用吸附剂将废水中的重金属离子除去的方法。吸附法由于占地面积小、工艺简单、操作方便、无二次污染,特别适用于处理含低浓度金属离子的废水。

五、结语

重金属的污染问题已成为今世界各国共同关注的问题,国内外对重金属的处理方面的研究正在全面进行中。我国也在这方面取得了瞩目的成绩。

[摘要]随着工业排污量急剧增加,大量重金属污染排向了物环境中。在一定条件下,某些重金属(例如汞)还能在某些微生物的作用下转化为毒性更大的有机物质。另外,有毒重金属可以长期停留与积累在环境中,通过食物链逐级富集,最终进入人体,甚至通过遗传或母乳使婴儿受害,主要表现为富集在人体某些器官内形成慢性中毒。因此,重金属污染物的处理技术成为一个研究的热点,其成果有着重大的现实意义。

[关键词]重金属工业污染离子交换电解吸附

参考文献:

[1]任高平.化学法治理铜件酸洗废水并电解回收铜[J].工业水处理,1986,(06).

重金属污染危害例6

1.1采集和制备

选择洽川湿地南到处女泉北到黄河魂入口之间湿地布点采样,共设置18个采样点,采样点位置见图1和图2。每个采样点同时采集3份样品,每份1kg左右,混匀作为一个采样点的样品。样品晾干后去除石子和动植物残体等异物,使之通过80目尼龙筛,利用四分法将采集的18个土壤样品分别缩分。准确称取1.00g土样置于100ml聚四氟乙烯烧杯中,用盐酸—硝酸—氢氟酸—高氯酸消解,定容于50ml容量瓶中。消解样品同时做空白1份。

1.2测定

1.2.1试剂各元素的分析纯试剂,用于配制储备液和标准溶液。盐酸、硝酸、高氯酸、氢氟酸均为分析纯,二次蒸馏水。

1.2.2样品测定采用WFX120原子吸收分光光度计(北京瑞利)测定试液中的Pb、Cd、Cr、Cu、Zn和Mn并根据回归方程计算含量。

1.2.3准确度实验选取2号土壤样品,加入一定量各元素标准溶液,消化后测定并计算加标回收率,平行测定3次。

1.2.4精密度实验选取消化后的2号样品,对各元素均连续进样5次,计算精密度。

1.3重金属污染危害评价方法本文采用瑞典科学家Hakanson提出的潜在生态危害指数法,对湿地土壤重金属累积程度和潜在危害进行评价。该指数法不仅反映了某一特定环境中各种污染的影响,也反映了多种污染物的综合影响,并以定量的方法划分出潜在生态危害的程度,是目前国内外土壤(沉积物)中重金属污染评价研究的先进方法之一。单项污染系数:Cif=Cisurface/Cin式中:Cif是某一重金属的污染系数,Cisurface是表层土壤重金属浓度实测值,Cin是参比值。文章采用陕西表层土壤背景值作为参比值。单项污染系数分级标准:Cif≤1为非污染,1≤Cif≤2为轻微污染,2≤Cif≤3为中度污染,Cif≥3为重度污染。潜在生态危害单项系数:Eir=Tir×Cif式中:Eir是某一重金属的潜在生态危害系数,Tir是某一种重金属的毒性响应系数,反映了重金属对人体和固体物质系统的危害,有关重金属的毒性系数为:Pb=5,Cd=30,Cr=2,Cu=5,Mn=1,Zn=1。潜在生态危害综合指数[3]:RI=Σni=1Eir。重金属污染潜在生态危害系数和潜在生态危害综合指数分级标准见表1。

2洽川湿地土壤中重金属污染情况及评价

2.1洽川土壤中重金属测定结果洽川湿地土壤重金属含量测定结果见表2,经准确性和精密度实验,回收率均高于90%,RSD均小于1%,测定结果可信。陕西省表层土壤重金属的背景值见表3。在18个采样点土样测定结果中,Pb的含量为74.3~405.5mg/kg,均高于该地区该元素背景值21.6mg/kg;Cd的含量为1.7~7.5mg/kg,均高于该地区该元素背景值0.094mg/kg;Cr的含量为46.9~115.6mg/kg,只有5、7、13和14号采样点低于该地区该元素背景值;Cu的含量为9.91~52.9mg/kg,其中1、5、9和14号采样点低于该地区该元素背景值;Mn的含量为283.7~743.3mg/kg,其中1、4、7、12、13、14、17和18号采样点低于该地区该元素背景值;Zn的含量为33.4~150.6mg/kg,6个采样点低于该地区该元素背景值。

2.2洽川湿地重金属污染评价评价结果见表4、表5,从两表可以分析得出:从单项污染系数看,Pb的单项污染系数均大于3,洽川湿地属于Pb重度污染;Cd的单项污染系数均大于3,洽川湿地属于Cd重度污染;Cr除5、7、13和14采样点单项污染系数小于1属于无污染,其余采样点均在1~2之间,属于轻微污染;各个采样点Cu的单项污染系数在0.46~2.47之间,处于无污染到中度污染;Mn的单项污染系数在0.51~1.36之间,湿地Mn污染处于无污染到轻度污染;Zn的单项污染系数在0.48~2.17之间,处于无污染到中度污染。从潜在生态危害单项系数分析,Pb的生态危害单项系数3号点处于中等生态危害,4号点处于强生态危害,其余点均属于轻微生态危害;对于Cd,各采样点均处于极强生态危害;对于Cr、Cu、Mn和Zn,各采样点均处于轻微生态危害。从潜在生态危害综合指数分析,11号点处于强生态危害,其余采样点均属于很强生态危害,主要是Cd的危害造成。从污染情况看分析,湿地重金属污染Cd最严重,Pb次之,Cu和Zn污染较弱,Cr和Mn的污染最轻。

重金属污染危害例7

中图分类号 X824 文献标识码 A 文章编号 1007-5739(2013)04-0233-02

随着经济发展和人口增多,环境日益恶化,海河也受到严重的污染,工业废水与生活废水的排放增多,为海河水体环境修复带来更严峻的问题。重金属因具有毒性、不易降解及生物富集效应而备受关注。水中的重金属离子在一定的物理化学作用下,最终大部分会进入沉积物中。河流沉积物中重金属污染物较为稳定,但也可通过生物、物理和化学作用再次释放到水体而造成二次污染。因此,对海河沉积物中重金属分析具有重要意义。

1 材料与方法

1.1 样品采集

分别于2010年5、7、9月采集沉积物样品,共3次。在海河流域上分别设置12个采样站位点。样品采集、固定、贮存及运输均按照国家相关检测标准执行。

1.2 样品分析

对所采集样品,分别测定汞、砷、铜、锌、铅、镉的含量,铜、锌、铅、镉均采用《原子吸收法(GB/T 17378.5-2007)》,砷、汞均采用《原子荧光法(GB/T 17378.5-2007)》。

2 结果与分析

2.1 重金属污染状况

共进行6种重金属检测,各重金属元素测定范围为汞0.02~0.95 mg/kg,砷2.7~21.3 mg/kg,铜12.44~95.24 mg/kg,铅6.241~42.560 mg/kg,锌48.6~415.5 mg/kg,镉0.060 2~0.552 2 mg/kg。

2.2 生态危害指数污染评价

潜在生态危害指数(Ri)[3,7-8](potential ecologicalrisk index)评价方法是瑞典学者Lars Hakanson 于1980 年建立的一套应用沉积学原理评价重金属污染及生态危害的方法。该方法作为国际上土壤(沉积物)中重金属研究的先进方法之一,不仅反映了某一特定环境中各种污染物的影响,也反映了多种污染物的综合影响,并以定量的方法划分出潜在危害程度,是目前应用很广的一种方法。该方法的计算公式为:

Cif=Ci/Cin

Eir=Tir×Cif

Ri=ΣEir=ΣTir×Cif=ΣTir×Ci/Cin

式中,Cif为某一金属的污染参数,根据其大小可将污染程度分为4 个级别:CifZn(1)。

由表2可以看出,海河流域沉积物重金属中锌的污染参数最大,平均为1.47,其次为汞和铜,铅砷镉富集系数较小,重金属的综合污染特征显示,锌和汞处于中污染水平,其他4项都处于低污染水平。通过对各点位的分析可以看出,月牙河节制闸站位汞为中污染,尤以春、夏2季为重。汉沽蓟运河大闸站位砷为中污染,其他均为轻污染。刘庄浮桥站位铜的污染高于其他站位,属中污染,且夏秋季节更严重。月牙河节制闸站位的铅为中污染,且春夏季节严重。其他站位均为轻污染。锌元素有75%的站位均为中污染,团泊大桥最为严重,富集系数达到4.354,为较高污染。镉元素各站位均为低污染。

由表3、4可以看出,海河流域各类重金属的潜在风险系数小于40,92%的站位潜在生态危害系数小于150,属于轻微生态危害。月牙河节制闸和宁河大薄前桥这2个站位属于中等危害水平,应加强治理。从各元素来看,汞的潜在风险参数相对较大,平均为30.21,其次为镉、砷、铜、铅、锌。而根据富集系数分析的污染程度从重到轻依次为锌>汞>铜>铅>砷>镉,这是由于各元素的毒性响应系数不同,即毒性响应程度不同,也与沉积物对重金属的吸附能力,迁移能力有关。如汞无论以何种形式存在都有不同程度的挥发性,所以虽然汞的富集程度不高,但潜在的生态危害却很大。海河流域汞的生态危害尤为突出,尤其以月牙河节制闸最为严重。锌的富集能力很强,且颗粒物对锌的吸附能力较强,共同沉淀到沉积物中,具有较高的稳定性,所以其潜在的生态危害最小。虽然所分析的6种元素的潜在生态危害都较小,但汞和镉相对其他元素较高,应作为治理重点。

3 参考文献

[1] 王秋莲,刘春光,关玉春,等.天津近岸海域表层沉积物中重金属的生态风险评价[J].南开大学学报:自然科学版,2010(4):61-66.

[2] 马德毅,王菊英.中国主要河口沉积物污染及潜在生态风险评价[J].中国环境科学,2003,23(5):521-525.

[3] 刘成,王兆印,何耘,等.环渤海湾诸河口潜在生态风险评价[J].环境科学研究,2002,15(5):33-37.

[4] 乔俊,邵德智,罗水明,等.天津滨海新区黑潴河沉积物中重金属污染特征及地区性重金属污染指标选择[J].环境科学研究,2011(11):1343-1350.

[5] 何孟常,王子健,汤鸿霄.乐安江沉积物中重金属污染及潜在生态风险性评价[J].环境科学,1999(1):8-11.

重金属污染危害例8

中图分类号:X522 文献标识码:A 文章编号:1674-0432(2010)-12-0239-2

0 引言

近些年,由于工业“三废”的排放和矿山的开采,同时伴随着污水灌溉、污泥农用和施含有重金属元素的肥料和使用农药等,我国土壤重金属污染越来越严重。重金属在土壤中一般不易随水淋失,不能被土壤微生物分解,相反生物体可以富集重金属,通过食物链传递危害人类健康旧。更为严重的是,土壤重金属污染具有隐蔽性、长期性和不可逆性的特点,进入土壤的重金属元素,但当其积累量超过土壤承受能力或土壤容量时,就会对作物和人体产生危害,从而导致严重的生态问题[1]。三峡库区总面积5.42万km2,其中主要是山地,其次是丘陵,平地很少。三峡库区由于直接大面积淹水,水土流失严重,和其他地方相比较,更容易形成重金属的污染[2]。

1 实验材料与方法

采样点布置在1:5万地形图上,以1km2采样大格,在三峡库区三汇场、石宝寨、响水滩和白石铺4个区域内,各采集160个土壤样品,每个采样点采集4处0-20cm厚的新鲜岩土,混合后按四分法取得1 kg样品。所有样品置于样品袋内带回实验室登记编号,然后风干、磨细、过筛、混匀。

2结果与分析

2.1 土壤重金属含量及分布特征

根据实验室测定的结果,分别计算出三汇场、石宝寨、响水滩和白石铺土壤中8种重金属元素的含量总平均值如表所示,见表1。

由表1可知,各地区的总平均值中,重金属元素砷(As)、铬(Cr)、铜(Cu)低于三峡库区重金属背景值,汞(Hg)和背景值相当,镍(Ni)和铅(Pb)含量略高于背景值,而隔(Cd)和锌(Zn)含量明显高于背景值。比较三汇场、石宝寨、响水滩和白石铺这4个地区的重金属元素,发现这四个地区8种重金属元素平均含量相差不多,只有白石铺地区的Hg元素含量和石宝寨地区的(Zn)含量略高于其他地区。

对于土壤重金属污染评价的方法讨论,目前国际上采用的比较先进的重金属污染评价的方法主要有Muller提出的地积累指数法,Tomlision提出的污染负荷指数法,Hakanson提出的潜在生态危害指数法,Hilton等提出的回归过量分析法等[3]。其中地积累指数法能够直观给出重金属的污染级别,明确体现出重金属的富集程度,但其侧重单一金属,未引入生物有效性和相对贡献比例及地理空间差异;而潜在生态危害指数法则弥补了上述不足,可综合反映出多种重金属对生态环境的影响,但其毒性响应系数带有主观性[4]。因此,本研究采用这两种方法来评价青城子铅锌矿区的土壤重金属污染,以便相互补充和参考。

2.2 地积累指数法评价

地积累指数法从环境地球化学角度出发评价土壤或沉积物中重金属的污染,除考虑到人为污染因素、环境地球化学背景值外,还考虑到由于自然成岩作用可能引起的背景值变动因素[5]。土壤或沉积物中元素i的地积累指数Igeo,i的计算公式为:Igeo,i=log[Ci/(kBi)],公式中Ci为元素i在土壤或沉积物中的含量;Bi为元素i的地球化学背景值;k为考虑各地岩石差异可能会引起背景值的变动而取的系数,用来表征沉积特征、岩石地质及其他影响,一般取值为1.5。地积累指数分为0-6共7个级别,表示污染程度由无至极强[6]。地积累指数分级标准与污染程度之间的相互关系,见表2。

由表1和上述公式得到各地区的地积累指数值,见表3。由表可知,三汇场、石宝寨、响水滩和白石铺这四个地区除了重金属元素Cd有轻度污染外,其他7种重金属元素都没有给4个地区造成污染,污染程度为清洁。

2.3 潜在生态危害指数法评价

潜在生态危害指数法从沉积学角度出发对土壤或沉积物中的重金属污染进行评价,不仅考虑土壤或沉积物中的重金属含量,而且将重金属的生态效应、环境效应与毒理学联系在一起,既反映了某一特定环境下土壤或沉积物中各种污染物对环境的影响,也反映了土壤或沉积物中多种污染物的综合效应,并用定量方法划分出潜在生态危害程度[7]。土壤或沉积物中重金属潜在生态危害指数的计算方法如下:(1)Cf,i= Cs,i/Cn,i ;(2)Er,i= Tr,i×Cf,I ;(3)R=Er,I;Cf,i为土壤或沉积物中重金属元素i相对于环境背景值的污染指数;Cs,i为土壤或沉积物中重金属元素i的实测值;Cn,i为重金属元素i的背景参考值; Tr,i为重金属元素i的毒性响应系数,按Hakanson制定的标准,Zn,Cr,Cu,Pb,Ni,As,Cd,Hg的毒性响应系数分别为1,2,5,5,5,10,30,40[8];Er,i为土壤或沉积物中重金属元素i的潜在生态危害指数;R为土壤或沉积物中多种重金属的综合潜在生态危害指数。根据潜在生态危害指数的大小,可将土壤中重金属的潜在生态危害程度分5个级别,见表4。

由表l以及Hakanson规定的毒性响应系数和公式得出各地区土壤中重金属的潜在生态危害指数,见表5。将表5与表4比较可知:总体来看,各地区的重金属元素的综合潜在生态危害指数R值都小于150,说明各地区综合污染程度为轻度。但论各地区单个重金属元素来看,重金属元素Cd 和Hg的潜在生态危害指数在40≤Er,i<80的范围内,所以这2个元素的潜在生态危害程度为中度。比较三汇场、石宝寨、响水滩和白石铺这四个地区,发现潜在生态危害程度都符合这样的强弱顺序:Cd>Hg>As>Pb>Ni>Cu>Cr>Zn,而从R值的大小可以看出,重金属综合污染的强弱顺序是:白石铺>石宝寨>响水滩>三汇场。

3 结论

(1)各地区重金属元素As、Cr、Cu低于三峡库区重金属背景值,Hg和背景值相当,Ni和Pb含量略高于背景值,而Cd和Zn含量明显高于背景值。比较三汇场、石宝寨、响水滩和白石铺这四个地区的重金属元素得出四个地区8种重金属元素平均含量没有明显的差异。

(2)As和Hg在各个地区变异系数大,说明这四个区域内As和Hg元素的污染程度有较大的差异,特别是白石铺地区的Hg元素,变异系数达到89.1%,变异系数最小的元素是Cr。

(3)地积累指数法评价结果显示:三汇场、石宝寨、响水滩和白石铺这四个地区除了重金属元素Cd有轻度污染外,其他重金属都没有造成污染。

(4)潜在生态危害指数法评价结果显示:各地区的重金属元素的综合污染潜在生态危害程度都为轻度,以单个元素进行分析表明,Cd和Hg的潜在生态危害度为中度。纵观这4个地区,发现潜在生态危害程度都符合这样的强弱顺序:Cd>Hg>As>Pb>Ni>Cu>Cr>Zn,而从R值的大小可以看出,重金属综合污染的强弱顺序是:白石铺>石宝寨>响水滩>三汇场。

参考文献

[1] 宋珍霞,等.三峡库区农业土壤重金属含量特征及污染评价――以Cu、Pb和Zn为例[J].农业环境科学学报,2008, 27(6):2189-2194.

[2] 许书军,等.三峡库区耕地重金属分布特征初步研究[J].水土保持学报,2003,17(4):64-66.

[3] 贾振邦,等.应用地积累指数法评价太子河沉积物中重金属污染[J].北京大学学报.2000.36(4):525-530.

[4] 杨丽原,等.南四湖表层底泥重金属污染及其风险性评价[J].湖泊科学,2003,15(3):252-256.

[5] 彭景,等.地积累指数法及生态危害指数评价法在土壤重金属污染中的应用及探讨[J].广东微量元素科学,2007, 14(8):13-17.

[6] 石平,等.青城子铅锌矿区土壤重金属污染评价[J].金属矿山,2010,(4):172-175.

[7] 李如忠,等.基于盲数的水体沉积物潜在生态风险评价方法[J].生态环境,2007,16(5):1346-1352.

重金属污染危害例9

1.1样品采集与处理2010年7月采集了路桥区38个农业表层土壤样品(0~10cm),采样点分布如图1(P295)所示.农业土壤既受到人类灌溉、施肥活动的影响,又可能受到大气沉降的影响,污染带有点源和面源结合的特征,具有一定复杂性.为使样品具有代表性,本次采样采用网格法布局,每个样品在100m×100m的采样范围内,取表层土3-5份样品经过均匀混合而成.将采集的样品用聚乙烯塑料袋密封后立刻送到实验室,在室温条件下风干,磨碎并过1mm的筛子,装入经过铬酸洗液清洗过的棕色广口瓶中,避光低温保存.

1.2样品处理与分析参照美国EPA的方法对样品进行消解[10]和仪器分析[11].准确称取0.2500g(精确至0.0001g)土壤样品于微波消解罐,分别加入4mL硝酸、5mL氢氟酸和2mL高氯酸,放入微波消解仪,先在50℃预消解30min,然后按设定的消解程序进行消解.消解结束后,将温度降至40℃以下后取出,放在电加热板上于180℃赶酸约1h.赶酸后,依据少量多次原则,用超纯水清洗消解罐,将样品转移至样品瓶内,定容至20mL.土壤样品中Cu、Pb、Ni、Ag、As、Cd、Zn、Sn、Sb和Hg用ICP-AES测定.所用仪器为PE7000DV型电感耦合等离子体发射光谱仪.仪器参数:雾化气15L•min-1;载气0.8L•min-1;辅助气0.2L•min-1;功率1300W;聚流速1.5mL•min-1.采用标准曲线法定量.在重金属的分析过程中采用土壤标准样品进行过程质量控制,10种元素的测定值均在国家标准参比物质的允许误差范围之内.元素检出限介于0.01~0.17mg•kg-1,加标回收率为73.1%~108.0%,平行样品精密度为0.45%~5.34%.

1.3评价方法

1.3.1内梅罗综合污染指数法内梅罗综合污染指数法能够全面、综合地反映受多种重金属污染的土壤污染状况,得到广泛的使用[3,。

1.3.2地积累指数法Muller提出的地积累指数法利用一种重金属的总含量与其地球化学背景值的关系,能够定量研究重金属的污染程度[14],能够直观反应外源重金属在土壤、沉积物中的富集程度,目前被广泛使用。

1.3.3潜在生态风险指数法Hakanson提出的潜在生态危害指数法[19].同时考虑了土壤中金属浓度、金属污染物的种类、金属毒性水平和水体对金属污染的敏感性四个影响因素.目前有较多的学者采用该方法进行土壤中重金属的生态危害评价。本文结合其他研究[23],将Ni也做了风险评价.参比值的选择是评价重金属生态风险的关键,不同的参比值会造成结果差异,本文参考荷兰土壤目标值作为参比值,评价路桥土壤中重金属的潜在生态危害指数.根据公式(3)计算土壤中重金属的生态危害指数,结合评价标准进行危害程度分析。.4数据分析与整理用SPSS13、Surfer8.0、origin8.0软件进行数据分析和整理.采用SPSS的主因子分析法做来源分析,Surfer的等高线功能绘制浓度分布,origin的作图分析金属生态风险水平.

2结果与讨论

2.1土壤中重金属的分布表3(P297)为路桥区土壤中重金属的统计结果,与《土壤环境质量标准》GB15618-1995二级标准相比[25],路桥区表层土壤中重金属Cd超标最严重,超标率为89.5%,其次是Hg和As,超标率分别为57.9%和39.5%,Pb没有超标.荷兰制定了规范的土壤中重金属的风险基准值[26],本文引用荷兰土壤标准中有关重金属控制水平的目标值和限值进行对比.与荷兰土壤中重金属目标值相比,台州土壤中所有重金属都超标,其中Sb超标最严重,超标率为92.1%,其次是Cd和Hg,超标率均为86.8%,Cu和Zn超标也较高,超标率分别为81.6%和71.1%,Pb、Ni和As超标率都在40%以内.当与荷兰土壤中重金属限值相比,As、Cu、Zn和Sb分别有18.4%、15.8%、13.2%和2.6%的超标率.以上结果表明,台州土壤已经受到普遍的人类活动干扰,其中As、Cu和Zn对环境可能造成影响.从表3中10种重金属的变异系数可知,Cu、Zn、As、Sb和Sn的值大于1,表明受到较强的人类活动干扰,其他5种金属的变异系数较小,受人类干扰较轻.本研究以《土壤环境质量标准》GB15618-1995二级标准值作为基准,按照公式(1)计算10种重金属的内梅罗综合指数,图2为根据计算结果制作的路桥土壤污染情况等高线图.路桥土壤只有2个采样点的P综<1,表明受重金属污染较轻,其他采样点的P综>1,表明已经受到重金属轻度污染以上.其中31.6%的采样点受到重金属轻度污染,26.3%的采样点受重金属中度污染,36.8%的采样点受到重金属严重污染,点7、22和32污染最严重,P综达到5以上.路桥地区63.2%的土壤受到重金属中度污染以上,因此,内梅罗综合污染指数评价再次表明路桥地区土壤已经广泛受到重金属的污染.

2.2重金属的来源分析土壤中重金属来源有地球化学成因、工业生产造成的大气和废水排放污染、交通燃煤排放污染.为了分析路桥土壤中重金属的来源,采用因子分析法进行源解析.表4是路桥土壤中10种重金属因子载荷.4个因子的累计方差为86.2%,第1和第2因子分别解释了总方差的33.5%和26.9%,第3和第4因子分别解释了总方差的17.2%和8.6%.Cu、Pb、Sn和Sb在第1因子上具有较高的载荷,研究表明,Cu主要来源于电子、冶金及工业废料,Pb是机动车污染源的标识元素[27],Sn和Sb及其化合物主要来源于各类制造业污水的排放[28-30].因此,因子1代表了工业污染.Ag、As和Zn在第2因子上具有较高的载荷.3种金属都是土壤中重要的重金属元素,含量及空间分布受成土母质及人类活动的影响[31],As主要存在于农药和工农业废水中[32],Zn的含量较高,且变异系数大,受工业污染较严重,因此,因子2代表了工业和农业复合污染影响.Ni和Cd在因子3上具有较高的载荷,两种金属的变异系数都小于1,Cd一般可作为使用农药和化肥等农业活动的标识元素[33-34],因此,因子3代表农业污染.Hg在因子4的载荷高,环境中的Hg主要来源于化石燃料297刘红等:台州市路桥农业土壤中重金属的污染分析煤和石油产品的燃烧[35],这些Hg主要从污染源释放于大气,然后沉降下来,路桥土壤各点之间Hg的变异系数较小,表明Hg主要来源于大气沉降.

2.3重金属的潜在生态风险毒性分析本研究选用全国土壤环境背景值调查中浙江省土壤背景值的几何均值作为参比值[36],根据计算路桥土壤中10种重金属的地积累指数如表3所示.由表可知,Cd、Hg、Sb的Igeo均大于0,污染最普遍.Cd平均Igeo为4.5,有78.9%的采样点为强污染以上;其次是Hg,平均Igeo为2.4,65.8%的采样点处于中-强污染;Ag、Cu、Zn和Sb的污染也较严重,平均Igeo分别为1.6、1.9、1.2和1.3,均为中等污染,44.7%的点Ag介于中-强污染;36.8%的点Cu介于中-强污染;15.8%的点Zn介于中-强污染;只有2个点的SbIgeo大于2,但有1个点达到极严重污染.As、Pb和Sn的污染较轻,平均Igeo均小于1,属轻度污染,只有少数点为中等污染.Ni的平均Igeo为0以下,基本对环境没有污染.综合分析上述重金属的地积累指数分级,路桥土壤中10种重金属的污染程度由强至弱依次为:Cd>Hg>Cu>Ag>Sb>Zn>As>Pb≈Sn>Ni.通过计算路桥土壤中7种金属的潜在生态危害系数(Ei)和潜在生态危害综合指数(RI),结果见图3和图4.由图3评价结果可知,路桥土壤中7种重金属生态危害系数均值为190.9,63.2%的点为中等生态危害,7.9%的点为强生态危害(点11、22和32),这与内梅罗综合污染指数法得到的结果较为一致.3个生态危害较高的采样点(点11、22和32的RI分别为:308.1,346.8和388.0)位于乡镇附近,这些地区以电子废物处理为主的小型加工活动较多,使得高毒性重金属直接或者间接地进入土壤.路桥土壤中Hg的生态危害最大,潜在生态危害系数平均值为85.1,为强生态危害.由图4可知,10.5%的点(点11、13、32、37)会对环境产生很强的生态危害,有39.5%的点对环境产生强的生态危害,有13.2%的点(点2、5、7、10、29)对环境产生轻微的生态危害.Cd的生态危害也较大,潜在生态危害系数平均值为70.2,为中等生态危害,其中,有5.3%的点(点22、32)会对环境产生很强的生态危害,有28.9%的点对环境产生强的生态危害,有15.8%的点(点1、5、8、10、13、21)对环境产生轻微的生态危害.综合路桥土壤38个采样点金属平均Ei值,可知各金属对路桥生态风险影响程度从高到低依次为Hg>Cd>Cu>As>Ni>Pb>Zn.Hg和Cd对路桥的生态影响应该受到重视.

重金属污染危害例10

土壤中的重金属污染已经成为当今环境科学中重要的研究内容,尤其是城市的土壤重金属污染越来越多的被人们关注。城市作为人们生活和生产高度聚集的场所,人口相对集中,种种人类活动都非常容易造成城市的污染。本文针对土壤重金属污染的来源及危害加以阐述,增加读者对土壤污染的重视。

1 土壤重金属污染概况

重金属指的是密度大于5.0g/cm3的45种化学元素,但是因为每一种重金属元素在土壤中的毒性区别很大,所以在环境科学中通常关注锌、铜、锡、钒、汞、镉、钴、镍、铅、铬、钴等。硒和砷两种非金属元素它们的毒性及某些性质与重金属相似,因此也将硒元素和砷元素列入重金属污染物的范围内[1]。由于土壤中本身含有的铁和锰含量较高,因而一般不太注意它们的污染问题,但在某些强还原条件下,铁和锰所引起的毒害却不能被忽视[2]。

中国作为发展中国家,工业科学上的发展越来越重要,但是由此造成的污染也在加剧。城市作为人口密集的区域,汽车尾气的排放成为了土壤中重金属污染的主要来源。吴学丽[3]等人运用地累积指数法研究了沈阳地区浑河、细河及周边农田的土壤中重金属污染状况,发现这些地区土壤中汞元素和锌元素含量较高。兰砥中[4]等人研究湘南某铅锌矿区事故之后导致周围土壤的重金属污染情况,运用单因子指数和潜在生态风险指数评价土壤污染状况,发现该地区土壤中铅、锌、铜、镉等重金属污染严重,其中镉的污染指数最高。

国外学者早在20世纪末就针对城市中土壤中重金属污染进行研究,在英国的几大城市中对土壤中的汞、铅等重金属元素进行调查,他们观察到这几个城市中的土壤重金属污染与英国的工业发展活动与周围居民区的繁荣与否有着直接的关系。世界各个国家正逐步开展城市中土壤中重金属污染的研究。在对葡萄牙、苏格兰、斯洛文尼亚、西班牙、意大利和瑞典这6个欧洲国家城市土壤中的重金属总浓度进行调查研究,发现葡萄牙地区中汞的浓度比苏格兰低,可能是由于燃煤发电和取暖导致的[5]。

2 土壤中重金属元素的污染来源

一般来说,城市中土壤重金属污染来源主要有两类:自然因素和人为外源输入。

2.1 自然因素:某些地区的土壤由于地壳运动导致本身就含有很多的重金属元素,成土母质是造成城市土壤中重金属含量高的重要原因。如陈雪龙[6]等对大庆龙凤湿地土壤中重金属元素的空间分布特征进行了研究,发现土壤中的铅和锌随着土壤深度的增加而增加,表明重金属在土壤中的含量与土壤的理化性质、成母土质和岩石风化有着极大的关系。

2.2 人为外源输入:这类污染为土壤中重金属元素污染的主要来源,包含三大类

2.2.1 工业污染源:为了提高经济水平,现代工业的开发越来越广泛,加上环保理念没有普及,金属冶金厂、化工厂、油漆厂的三废没有达到排放标准就流入到环境中,造成土壤中重金属元素的污染。

2.2.2 农业污染源:如今科学的发展,人们在种植农作物的时候为了提高庄稼的产量,施用了大量含有重金属的化肥,这些污染直接的作用到土壤中。

2.2.3 生活污染源:城市中交通高度发达,虽然给人们带来的便利,但是交通工具的尾气排放却给土壤中带来的很多的重金属元素[7]。另外,城市中人们的生活垃圾中常常含有各种重金属元素,加上固体废弃物处置不完善,这些垃圾也会流入到城市土壤中。

3 土壤中重金属污染的危害

3.1 土壤中重金属污染引起的直接危害

3.1.1 对土壤中的生态环境系统的稳定性造成破坏

土壤环境是一个很复杂的生态环境,其中包含这许多种类的微生物群落与蠕虫类动物,这些生物的存在保持了土壤环境的稳定也保证了土壤的活性,但是当过量的重金属被引入到土壤中时,会对这些生物带来毒害,大量研究证明:重金属污染的土壤中土壤微生物群落的多样性被严重减少[8]。

3.1.2 影响植物代谢循环和生长

据研究表明,重金属对植物形态、生殖、繁衍各方面都有影响。吸收到植物体内的重金属能诱导其产生某些对酶和代谢都有毒害作用和不利影响的物质,引起植物伤害。某些重金属在胁迫作用下有时会引起大量营养元素的缺失和有效性的降低,较高浓度的重金属含量有抑制植物体对镁元素的吸收和转运的能力。

3.2 土壤中重金属污染带来的间接危害

3.2.1 促使水体污染

土壤环境中遭受重金属污染时,污染浓度较高的表层土壤能在地表或地下径流作用下,进入水体环境,导致地下水的重金属污染。

3.2.2 导致大气环境污染加重

由于土壤环境与空气环境有着直接的联系,通过空气中的湍流交换作用,土壤颗粒能够被带入到大气中,使得空气中的污染物变得复杂,当土壤中含有重金属元素时,则可能导致大气污染和生态系统退化等等的环境问题[9]。

3.2.3 对人体和动物的健康影响

土壤中重金属元素通过植物由食物链逐级传递到人体中,城区内部种植的观赏和净化空气用的花草树木也能累积一定的重金属污染物,人们居住在这种环境中,经过皮肤接触和无意由口摄入这些被污染的土壤[10]。

结束语

土壤重金属污染逐渐被各个国家的环境科学工作者重视,由于土壤中含量复杂,修复将是一个复杂的系统工程,传统修复技术很难达到理想的预期效果,针对工业迅速发展,环保部门的管理力度也应该加强,从根本上减少重金属污染物的来源才是修复土壤的最有力的手段。■

参考文献

[1]贾广宁.重金属污染的危害与防治[J].有色矿冶,2004,1:39-42.

[2]刘昌岭,宋苏顷,夏宁,李学刚,林学辉,张红,张经,于志刚.青岛市区大气颗粒物中重金属的浓度及其来源研究[J].青岛大学学报(自然科学版),1998,03:44-48.

[3]吴学丽,杨永亮,徐清,黄园英,路国慧,何俊,刘晓端.沈阳地区河流灌渠沿岸农田表层土壤中重金属的污染现状评价[J].农业环境科学学报,2011,2:282-288.