期刊在线咨询服务,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

期刊咨询 杂志订阅 购物车(0)

对生物化学的理解模板(10篇)

时间:2023-06-22 09:15:23

对生物化学的理解

对生物化学的理解例1

文章编号:1005–6629(2013)9–0030–04 中图分类号:G633.8 文献标识码:B

在必修教材元素化合物性质教学中,往往重视化学实验的诠释或验证作用,却忽视了实验中物质间数量关系之于物质结构的意义,能否选取重要教学主题从定量角度帮助学生建立“性质-结构”对应关系,引导学生感悟这种“见著知微”的物质研究方法呢?本文通过“碳酸钠、碳酸氢钠与稀盐酸的实验”进行说明。

1 教学意图

“碳酸钠和碳酸氢钠的性质”是人教版《化学1》第56页[1]“科学探究”的内容。教材重点就二者外观、溶于水的热量变化、热稳定性及溶液碱性进行了探究,对于二者和稀盐酸的反应仅要求写出它们反应的离子方程式。

配套教师用书鼓励教师“积极开展科学探究活动,让学生体验科学探究的过程”,还指出“除作为科学探究的Na2CO3和NaHCO3分别溶于水和与酸的反应外,这些实验都是验证性的……[2]”。然而,对于如何组织“二者与稀盐酸的反应探究”,并未提出任何建议或指导。

在教学过程中,一般采用教师演示的方式。将等质量二者(约1 g)迅速加入等体积等浓度足量稀盐酸(2.0 mol/L)中,对比二者和稀盐酸反应的快慢,然后从微观角度大致解释其本质原因。学生基本上无法理解这种微观解释,仅能识记其现象差别。

碳酸钠过量,故,V(CO2 )=0.112 L。

[师]若按此计算,概括随HCl用量的增加依次出现的现象。

[生] 00.01 mol,HCl和Na2CO3反应,产生气泡。

[师]“量的节点揭示着质的变化”,那么“质变”确如我们的预设吗?比如,“NaOH和Na2CO3中滴加稀盐酸的反应顺序”是我们设定的那样吗?有办法考量吗?

[生]向其混合溶液中滴加稀盐酸,只要一开始无气泡,就表明稀盐酸先和氢氧化钠反应了。

[师]请各组实验后汇报实验过程、结果及分析。

[生]取3 mL混合溶液于15×150洁净试管中,用滴管逐滴滴加了5滴稀盐酸,几乎未看到气泡,说明稀盐酸先和氢氧化钠反应了;有小组反映滴加时看到了有少量气泡。

[师]两位学生登台演示操作(对比“逐滴加入”的操作要领:要慢且边加边振荡)。

[点拨]这个方案有没有不太严谨的地方,请大家思考。

[生]唯一要验证的是“碳酸钠是不是一遇到稀盐酸就会生成气体”。

[生](提示:加液时,滴管举高些)惊呼奇怪:“在3 mL碳酸钠溶液中,用滴管逐滴滴加了3滴稀盐酸,很少看到气泡”,“难道Na2CO3+2HCl=2NaCl+CO2+ H2O是错的”。

[师]看来又有新发现。有同学说看到了少量的气泡,那么生成CO2是不是该过程的主要反应呢,如何考量呢?

[点拨]能否用对比实验进行探究呢,想一想,试一试,然后交流过程、结果及分析。

[生](展台投影)我们分别取了3 mL NaHCO3溶液和Na2CO3溶液于两支15×150洁净试管中,然后先分别向其中逐滴滴加0.1 mol/L稀盐酸5滴,之后又向碳酸钠中继续滴加了稀盐酸。

我们的分析是:如果生成CO2是主要反应的话,那开始加(稀)盐酸也应该和碳酸氢钠的反应类似,说明一加入稀盐酸时生成CO2不是主要反应。

[师]你为什么要向碳酸钠溶液中继续滴加稀盐酸呢?

[生]我们组有同学认为,碳酸钠和稀盐酸应该是生成了碳酸氢钠,就想试试。

[师]你的意思是:如果猜测正确,那么后来的现象应该和碳酸氢钠开始的现象相似,对吗?你认为现象相似吗?

[师](针对为什么不相似)随溶液体积增大,过程中溶质的浓度是减小的,还有,难以确定碳酸钠何时恰好变成了碳酸氢钠呀。所以,现象很难达到预期。(实验过程方程式书写略)

[师]你能解释一下,为什么会有气泡吗(学生基础较好,故进行追问)?

[生]我认为是盐酸一下子电离出了较多氢离子,把碳酸根生成的碳酸氢根一下子又转变成了二氧化碳所致。

[师]很好。如果换个顺序,把碳酸钠溶液滴加到稀盐酸中,则碳酸根会迅速转变为CO2。实验中把滴管举高些就是想阻止氢离子局部过多,当然用管口较细的滴管(查看实验台)滴加,还可以将稀盐酸的浓度再配制小一些等,都是控制滴加量的常用手段。可见,碳酸钠溶液和稀盐酸的反应现象是有条件的。

2.3 探究氢氧化钠和碳酸钠与稀盐酸反应的先后

[师]下面我们继续设法考量“NaOH和Na2CO3中滴加稀盐酸的反应顺序”。大家为什么认定氢氧化钠会和稀盐酸先反应呢?

[生]因为氢氧化钠是强碱,而碳酸钠是盐,自然稀盐酸先和氢氧化钠反应。

[师]大家的意思是,碳酸钠溶液是中性的喽,是这样吗?能验证自己的猜想吗?

[生] ……(实验),发现碳酸钠溶液和碳酸氢钠溶液均呈碱性,且前者碱性较强。

[师]为什么它们会呈碱性?课本第57页告诉大家,“它们呈碱性的原因需要到选修模块找答案,实际生活中还常用碳酸钠的碱性去油污”,这些今天暂不讨论。

[生]我们小组有个考量方案,在3 mL混合溶液中逐滴滴加等体积的稀盐酸,然后再加入氯化钙溶液,如果出现白色沉淀,就说明稀盐酸先和氢氧化钠发生了反应。

[师]能说说原理吗?

3 教学反思

物质在变化中呈现出的现象,既是其结构的显性表达,又是对其性质的解释。如果说,现象是对微粒存在或变化的揭示,数量则隐含着对微粒存在及数量的确认,体现了自然科学对量变与质变关系的解读。本教学有效促进了学生对结构和性质间的依存关系的理解,如氢氧化钠和碳酸钠混合溶液中滴加稀盐酸反应顺序的实验设计,充分反映出学生真切地感受到了“微观粒子”的性质,从实验培养了其理性的思维。这为选修4将探究视角转向溶液pH打下了坚实的基础。同时,“一次性加入、逐滴滴加”,“细滴管”、“正滴、反滴”等实验手段(隐含)体现了对控制实验变量的操作意义。

宋心琦先生在“化学学科的现状及基础化学教育改革问题”[3]一文中明确提出:“要警惕化学教学和化学教材中的‘数学化’倾向”,主张“结合化学运动自身的更为基本的规律进行研究”,反对“化学实验只停留在对表面现象做一般性的观察”。上述实践就是在演示实验基础上(凸显学科特色),通过计算的工具理性聚焦物质的结构(学科研究领域),让计算过程融入了化学的学科意义,则有效回避了“泛数学化”现象。同时,对学生“微粒观、变化观和实验观”等基本化学观念的融合起到积极的推动作用。

对生物化学的理解例2

1 生物学自主性在以往理论结构上的表现

(1)生物学理论的公理化尝试

生物学具有独特的内容,可建立一个与物理科学并行的演绎体系,这种观念导致了对生物学进行公理化处理的尝试。伍德格尔(j.h.woodger)早在1937年就试图对孟德尔遗传学定律进行公理化处理,但未引起人们的注意、到七十年代,在生物哲学界发生了达尔文进化论是否属于科学理论的争论。在这种背景下,威廉斯(m.b.williams)在1970年给出了关于达尔文进化论的完整公理化模型理论〔1〕,它包括两个初始概念、进化的两个公理、有关适应和选择的五个公理、适应度的操作定义,由这些可推导出达尔文理论的一切概念和关系或定理〔2〕。

威廉斯的体系只是直接从宏观上对进化的原始概念和公理的认定,脱离了微观的遗传学机制。还原论者认为,仅仅将进化论改造为演绎体系是不够的,还应当在物理科学与这个演绎体系之间建立起逻辑演绎关系。因此,鲁斯(m.ruse)建议,群体遗传学应是进化论的演绎基础〔3〕,首先应阐明从群体遗传学到进化论的演绎关系,而公理化处理后的群体遗传学体系,其逻辑公理则是孟德尔遗传定律。然后,再将孟德尔定律作为演绎结果从分子生物学中导出。

在下文的分析中将会看到,分子生物学本身就不是一个纯粹的演绎体系,并且它与经典遗传学之间存在着逻辑蕴涵上的脱节。这是生物学自主性的一种表现,其根源来之于演绎体系的构建之始,即演绎的公理和原始概念直接来之于生命界,从而独立于或自主于以无机界为研究对象和直观经验来源的物理科学。这种构建过程的合理性在于,人类的直观经验有两大类或两个来源,除了无机界之外,还有生命世界的生命现象。人们无法漠视生命这一独立于无机界的现象或实体的存在,因而它们也成为人类直观经验的基础。

(2)分子生物学中的功能性解释

事实上,在诸如分子遗传对经典遗传学的还原,那一部分不能还原的独特内容,以功能预设或目的性预设的形式出现。

对孟德尔遗传学稍加考察,便可发现,它首先直接从遗传现象和数据中设定了一个生命实体即遗传因子(后来称为“基因”),接着给予了这一实体两个承诺:第一,它们既可以彼此分离,又可以再组合;第二,它们自身带有某种生物学性质,这种性质是使生物体显示某种性状的原因。在孟德尔遗传学或以此为基础的公理化体系中,不必给予这两个承诺以解释,因为遗传因子在此是最基本的实体。但是,当分子遗传学从实体上将基因与dna片段相对应,或者说将前者还原为后者,随之而来的则必须从dna分子行为上给予这两个承诺以解释,并且只有演绎的解释,才能达到理论还原的要求。

然而,分子生物学对经典遗传学的所谓还原,只达到了对第一个承诺的还原,可以从dna分子的性质和行为来解释遗传因子或基因的分离与组合。而关键是第二个承诺,无法对此给予从dna分子到遗传性状的上行演绎解释,例如,在将性性状与蛋白质相对应的解释中,dna碱基顺序代表了基因即遗传信息,而遗传信息是从生物学功能角度来定义(而不是从dna分子的性质及行为来定义),涉及到与细胞器和其他生物学成分的关系,涉及到与细胞器和其他生物学成分的关系,涉及到转录、合成、生长、发育等一系列过程,即它是从生命整体角度来定义的。dna分子的行为与性质并没有蕴涵遗传信息的概念,因此,dna决不等于基因。在这里,体现了功能性解释的特点;基因的含义有一部分是从这一实体或dna分子在生命整体中所具有的功能这一方面来定义的。人类直观经验之一的生命现象在此以功能预设的方式参预了理论的构建,所以,生物学在理论上的自主性,并没有由于分子生物学所谓的还原而消失。内格尔(e.nagel)、罗森伯格(a.rosenberg)等人把功能(或目的性)解释看成生物学自主性的依据和根源。

2功能性(目的性)、演绎性和理论构建

由于功能预设的存在,使得生物学解释框架不同于物理科学。那么,在生物学理论中,是否能实现一种从功能解释模式框架向演绎解释框架的模式转换,在消除功能预设的同时,又不破坏分子与生命之间的联系呢?模式的建立与科学理论的构建过程相关,通过其构建过程的分析,对于模式转换问题有着莫大的启示。

演绎性解释框架模式如下:

(1)l1,l2,……,lr

解释性陈述或前提

(2)c1,c2,……,ck

━━━━━━━━━━━━━━━━━━━━━━━━━━━━

(3)e

解释对象

其中,l1……lr是规律般的全称陈述,c1………ck是关于初始条件的特称陈述,e是描述单个事件的特称陈述,也就是对要给予解释的现象的陈述。如果e能够作(1)中的全称陈述和(2)中的初始条件的特称陈述的演绎结果,则它就得到了解释〔4〕。这种解释框架实际上就是要对自然现象寻求一种因果性解释:如果条件c1、c2…ck存在,则必有现象e出现。

一个严密的、完美的科学理论体系必须使用这种解释框架,这已成为一种模式。从物理学到化学,基本上已达到了这种要求。而生命现象的特殊性,如趋目的性,使我们在传统的生物学理论中仍到处采用目的性或功能性解释,特征是以未来的一种既定状态作为当下行为的依据,或以生命现象为整体背景,以组成部分(如分子)对整体所具有的功能作为组成部分的行为依据,因而我们常采用这样的语句:“为了达到某种目的而如何”,或“……具有使达到某种目的功能或作用”。功能的依据不能仅仅从组成部分本身的性质给出,必须依据整体的状态才能得以解释。〔5〕因此,这一框架与人们寻求自然界因果关系的精神不相吻合。

演绎体系的建立,主要在于规律性全称陈述的建立,即定律、原理建立。在这个过程中,解释的对象先是作为经验基础参预了定律的构建,例如,对无机界实体及其性质的认定,依据于宏观的经验现象和数据,然后,回过头来演绎解释其他现象。既使遇到新的观察事实,它与规律性的全称陈述的演绎结果不符甚至相反,也可以通过修正或证伪的途径,或修改、或重建规律性的全称陈述。证伪,也是“解释对象”参预构建“解释前提”的途径之一。由此保证了演绎性解释框架在物理科学中的有效性。

解释对象,将其看成一个集合,其中某些“元素”作为经验基础参预了理论构建,从而内化于解释的前提。这样的解释前提,再去解释其他“元素”时,可能会发生以下三种情况。第一,演绎的结果与新的解释对象相符,从而得以证实和支持;第二,演绎结果与新的解释对象不符,发生证伪,因而要对理论进行修正,新的解释对象就此参预了理论构建;第三,解释前提的演绎结果,与新的解释对象无关,既不证伪,也不证实。

第三种情况对于我们非常重要。在这种情况下,我们需要以此为经验基础,构建新的解释前提。这是物理科学体系中并非存在唯一的解释前提的原因。重要的是,生命现象对于物理科学中的解释前提来说,也正是处于既不证实、也不证伪的境遇。但,第一,它没有参预构建新的解释前提,第二,它也没有作为解释对象:生物大分子行为的结果,只局限于物理、化学领域内,生命的特性似乎游离于分子行为之外。作为解释对象和参预解释前提的构建,二方面具有潜在的统一性,而生命现象以另一种形式出现,即在解释之先作为一个其作用类似于解释前提的目的性或功能性预设。当然,它并不与解释前提等同。事实上,正是由于它的存在,才代表了与演绎框架不同的目的性或功能性解释框架。下图表示出分子生物学理论中同时采用的两种框架之间的关系:

━━━━━━━━━━━━━━━━━━━━━━━━━━

┃ 解

┃ 释 ━━━━━━━━ 物 ━━━━━━━━ 释

┃ 前 演绎或因果关系

大 演绎或因果关系

┃ 提

┃ c1

e

c2

━━━━━━━━━━━━━━━━━━━━━━━━━━

┃赋予生物学意义

整体的生命现象(目的性或功能预设)

方框内是演绎解释的框架,解释前提c1是指以微观实体为起点构成的物理科学解释前提,它来之于物理科学的理论构建过程;解释对象e是指用物理和化学手段将生物体进行处理后,形成的无机环境背景下所显示出的现象,如dna晶体的x射线衍射图、试管中的化学现象;生物大分子行为c2是指诸如dna、蛋白质等行为过程;目的性或功能性预设来之于对宏观生命现象的认定,它不是作为解释的对象,而是赋予生物大分子行为以生物学意义,赋予dna碱基变化以“变异”的意义,赋予血红蛋白与o2、co2的结合与分离以“呼吸”的意义,即生物大分子的活动或行为都必须指向生命整体,以其为最终目标。在这种框架中,生物大分子的行为只是一种形式或“载体”,负载着生命现象所赋予的意义,这是分子本身并不逻辑地蕴涵着有关生命特征的概念的原因。

人类对于生命现象的直观经验,在此以目的性或功能性预设的形式出现,这提示我们,生命现象要融于物理科学的演绎体系,其本身要参预物理科学的解释前提的构建,从而使其从这种预设的形式转换为某种内化于解释前提中的成分。

我们从化学还原为物理学的历程中受到一种虚幻的鼓舞,从而忙于将生命还原为已有的物理科学定律,这是一种狭隘的还原主义。化学现象之所以可以成为物理学解释前提的演绎结果,是因为物理学的解释前提不仅仅属于物理学,而是二门学科共同享有。

量子化学的诞生与发展,是化学从理论上成为物理学演绎体系的一部分的标志。这一度使人相信在生物学中也可以发生类似事件。但是,从理论构建历史中可以发现,生物学与化学,二者在同物理学的“亲缘”关系上存在着巨大差异。用来作为化学现象的解释前提的微观物理学同化学本身有着极深的渊源关系。只要罗列一下原子结构、量子力学的形成历史就足以说明这一点。

早期化学

原子论

元素论

量子化学 ──

元素周期律─电子运动理论

原子结构论─ 量子力学 ───

①道尔顿所创立的原子论,首先是化学理论,为近代化学奠定了理论基础,其动机则是期望用经典力学的观念来解释化学;

②元素及原子一开始是化学研究的对象,也是一个化学概念,以后成为物理学研究的对象;元素周期律是化学体系中举足轻重的理论;

③原子论、元素周期律导致了原子结构理论的诞生,以及成为电子运动理论诞生的契机;

④玻尔创立量子理论的基础是原子结构模型、氢光谱及巴尔末公式;而量子力学首先对分子最成功的解释正是对氢分子的说明,因而诞生了最子化学;

⑤量子力学、电子运动理论是量子化学的理论基础。

因此,用来演绎解释化学的那部分物理学理论,首先是从化学走出来的,微观物理学便“天生”具有了解释化学的胎记。这种历史性的构建过程,保证了它们的概念、命题、现象之间存在着天然的逻辑蕴涵关系和证伪、修正关系。

对于生物学来说,只需指出下面一点就足够了;物理学、化学的理论构没有采纳生命界的任何生命现象的特征,或者说生命现象没有参预物理学、化学的理论构建。至少在系统理论、耗散结构理论或自组织理论建立之前是这样的。

3广义还原与生物学自主性的新含义

在狭隘的还原主义看来,仅从无机界现象中构建起来的理论诸如实体的性质、行为、运动规律等,相对于生命世界来说,无可怀疑地有着先天的真理性,是永恒的基石,对它的证伪、修正或完备性的补充,只能在对无机界的研究中进行,而生物学、生命现象只能动地等待着解释和还原。针对于此,我们应持有一种广义的还原主义,将物理学理论或演绎的解释前提体系看成一个对生物学、生命现象开放的理论体系。系统理论的奠基人贝塔朗菲、控制论的创立者维纳无不受到生命现象的启迪。正如贝塔朗菲所建议:考虑到有机体具有整体性,会发育、变异、生长,为了描述它们,我们必须运用调节、控制、竞争这些传统自然科学(主要指物理学、化学)没有的新概念。〔6〕另一个著名事例是耗散结构理论诞生于热力学理论对于生命自组织性的不完备性。

生命界的各种现象中,是否存在着对现有物理学、化学定律证伪的事件,是否能象黑体辐射现象对经典物理学进行证伪从而赋予基本粒子以一种全新的行为和性质,到现在为止还不得而知。现在的情况是生命现象对正统的物理学既不证实也不证伪,而系统理论、耗散结构论、超循环论等新兴学科,正在吸收生命现象的特征,并与正统物理学相联系。

对于这个问题,如果认为“生物学能否还原为物理科学与能否用物质的原因阐释生命现象”是两个问题〔7〕,那是不妥的。将两个问题截然分开的根源在于把物理科学所研究的物质运动规律封闭于无机界,同时认为生物界中的物质运动规律独立于物理、化学规律,也就是独立于无机界。但是,只要承认生命来之于无机界,就无法把无机界的运动规律与生命界运动规律绝对地划界,因而也就不应在物理、化学与生物学理论之间人为地划出一条不可通约的鸿沟。物理学的还原地位是先天的,这是它所研究的对象决定的。即使生命界存在许多现有物理学所不能解释的现象,甚至出现与现有物理学规律相悖的现象,也不应成为生命运动规律独立于物理规律、生物学独立于物理学的理由。生命界存在物理学不能解释的现象(或与物理学定律无关),说明物理学的内容还不完备,有待于充实、丰富和发展;如果相悖,说明二者至少有一方是错误的,要么修正物理学,要么修正生物学规律,要么二都有待于修正,以达到逻辑上的统一。辩证唯物主义认为,物理学和化学规律在生命体中的作用的“范围被限制”了,物理和化学规律在生命体中并不具备发挥作用的充分条件。我们必须深化这一观念,对此做出更清晰的解释和理解,而不能在此止步不前,更不能将这种“范围被限制”作为生物学规律与物理学规律之间存在一条天然的逻辑鸿沟的理由。只要我们追究这种“限制”(即生命的有序性、组织性)是如何从无机界产生的,并将封闭于无机界领域的物理科学解放出来,那么生物学就可以广义地还原为物理科学。耗散结构论、协同学、超循环论等都是在这种背景下产生的新物理科学,所取得的成果使我们看到将生命现象纳入演绎框架体系的希望。这虽然只是初步,但科学的生命力在于不断引进新概念来解释不曾解释的现象。

在此,可以提出生物学自主性的新含义,这种自主性并非表现为生物学必须具有独立于物理学和化学、并且不能从后者获昨解释的规律,而是表现为生物学及生命现象作为物理科学的构建基础之一,参预物理科学的理论构建;物理科学自身也不应拘泥于无机界之中,只有如此,才能构建一个对于整个自然界是完备的物理科学体系。反过来说,仅将无机界作为理论构建的经验来源的物理学,其对于生命现象的不完备性,体现了生物学对这种物理学理论的那种过去所理解的自主性。

4 非线性还原

将物理科学与生命科学统一于一个演绎解释的框架之中,是还原的需要,因而也是广义还原的需要,以反映从分子到生命的逻辑过程。不过,这是一个非线性的逻辑过程。

辩证唯物主义所认为的“不能把高级运动形式归结为低级运动形式”中的“归结”一词,其意义是模糊的,含有“演绎解释、还原、简单地组合或机械地相加”等诸多含义。我们认为,“不能归结”的提出,有着历史背景,是针对十八、十九世纪机械的、线性的还原论进行的批判。机械自然观认为,生命运动是低级运动形式的机械组合,相应地,生命体是一种机械装置,用今天的术语说,生命是生物大分子及其行为的线性迭加,二者之间是一个线性的逻辑关系。现代自组织理论已揭示出,生命的自组织过程是一个从分子到生命的非线性动力过程。与理论之间的广义还原相应,本文提出实体上或本体论上的非线性还原。现代物理学发现,自然界普遍存在的是非线性关系,而线性关系极为少见。无机界同样存在着非线性的自组织过程,这说明自组织性并非为生命界所独有,而是生命界与无机界的桥梁,而物理学所研究的就是这种发展过程的动力学原因,描述它们的逻辑过程,无论是线性还是非线性的。这是物理学处于先天的还原地位的理由。如果说物理学内的演绎框架体系是由于对无机界运动或现象的统一解释的需要,那么,在物理科学与生命科学之间建立一种非线性逻辑演绎关系,则是对无机界与生命界统一解释的需要。因此,演绎框架的合理性并非只存在于物理科学与无机界之间的关系中,并不仅仅是建立物理科学体系的标准。这种合理性同样存在于物理科学、生命科学、无机界、生命界之间的关系中。

5 总结

生物学自主性的根源在于:生命现象是人类直观经验来源之一。它以不同的方式参预了理论的构建:在威廉斯、鲁斯那里,直接针对着生命世界构建一个公理化体系,如果将理论封闭于生命世界中而不向无机界拓展,可建立一个自足的演绎体系,与物理科学演绎体系相并列,这是自主性的一种表现;在以分子生物学还原经典遗传学的过程中,它以解释之先的目的性或功能预设的形式参预了生物学理论的构建;本文受到新兴学科的启示,提出生物学自主性表现为这种经验来源及理论(或陈述)直接参预物理科学的构建过程。

阿亚拉(f.j.ayala)曾提出,可以把还原论区分为三个层次:本体论还原、方法论还原,理论的还原。对此,本文提出了在理论之间的广义还原,本体上的非线性还原;方法论上,物理科学应是对生物学、生命现象开放的体系,生物学、生命现象应直接参预物理科学的理论构建,这并不是指利用物理、化学手段将生物体破坏,在试管中还原为无机背景,因为这已推动了生命现象作为直观经验的价值。生命现象参予物理科学理论构建的价值体现,离不开生物学理论作为必要的中介作用。

参考文献

〔1〕wiliams,m.b.(1970).deducing the consequence of evolution: a mathmatical model.journal of theoretical biology, 29:343-385。

〔2〕rosenberg.a.(1985)).the structure of biological science.(cambridge: cambrideg university press)

〔3〕董国安:论生物学自主性,《自然辩证法研究》,1992年第10期,第48页。

对生物化学的理解例3

化学基本概念是从大量实验事实中抽象概括出来的,如化学变化、物理变化、催化剂、质量守恒定律、饱和溶液等,对这些概念教师可加强直观教学,尽可能通过化学实验帮助学生感性认识并形成化学概念原理。

例如,在学习“化学变化”与“物理变化”概念时,除了做教材中的实验外,还可以补充一个对比实验,即用手撕碎一张纸和点燃一张纸的两个小实验,引导学生观察撕纸的过程中纸由大变小了,纸的形状变了,但纸还是纸,没有变成其他物质是物理变化;在纸燃烧的过程中,纸由白色变成灰黑色的灰,在这一变化中纸燃烧生成了不同于纸的灰,有了其他物质生成是化学变化。让学生从这两个对比实验中感性认识并形成了两种不同“变化”的概念。

再如,“饱和溶液”、“不饱和溶液”概念的形成,可以让学生动手,室温条件下,在一定量水中加入不同质量的NaCl至有固体NaCl剩余,然后在有固体NaCl剩余的烧杯中继续加水至固体NaCl溶解,通过对实验现象分析、归纳得出“饱和溶液”与“不饱和溶液”的概念。

通过化学实验事实,不仅使抽象概念具体化、简单化,还使学生由表及里、由浅入深,有层次性地由感性认识上升到理性认识理解了概念原理,印象深刻。

二、加强联系和对比,理解和记忆概念原理

化学概念和原理之间既有本质区别又有联系,学习时不要孤立地、机械地单一记忆,应将不同的概念进行比较,从中找出它们之间的不同点和内在联系。

例如,辨析“分子”与“原子”,不同点是在化学反应中分子可分,原子不可再分,原子可构成分子,分子是由原子构成的;相同点都是构成物质的微粒。

辨析“元素”与“原子”,元素是描述物质宏观组成的,而原子是描述物质微观构成的。使用时要注意物质是由元素组成的,分子是由原子构成的。

再如,物质类别的判断,首先要从所含物质的种类上是否单一判断是纯净物(含一种物质)还是混合物(含多种物质),然后再从元素的种类是否单一判断是单质(一种元素)还是化合物(多种元素),可用下图表示出来:

三、突出对概念原理中关键字、词的理解,加深记忆

每个概念在教材中都是用精炼的语言进行描述和表达的,在理解时不可顾名思义,更不可断章取义,要理解化学概念的关键词,把握特征信息,将有关信息抽象化。

例如,“溶解度”概念中的“一定温度下”、“100 g溶剂”、“饱和状态”、“所溶解的溶质质量”等关键词,就勾勒出溶解度概念的特征信息。因此在讲解过程中,应抓住这四个要素之间的关系:缺少任何一个要素谈溶解度都没有意义。

再如,“单质”的概念,其关键词为“纯净物”,不能将“纯净物”改为“物质”,因为物质包括纯净物和混合物,由同种元素组成的物质不一定就是单质,如金刚石与石墨。

又如,“氧化物”的概念,关键词为“两种元素,化合物,其一为氧元素”,掌握这些要素,书写和判断氧化物就很容易。如KMnO4虽然是化合物,也含氧元素,但不是由两种元素组成,所以它不是氧化物。

在学习每个基本概念时,教师都应突出对概念原理中关键字、词的理解,让学生理解基本概念,掌握基本概念,加深学生的记忆。

四、从正反两方面剖析概念原理,避免混淆

在概念原理教学中,在讲授某些对学生难以理解的概念时,需要运用较多的例子。举反例或分析概念的逆命题是否成立都是很有效的方法。在划分类别的界限中,正例和反例都是不可缺少的。正例传递的信息最有利于学生从事例中概括出共同研究的特征,而反例传递的信息最有利于学生辨别差异,适当运用反例,可帮助学生排除概念学习中无关特征的干扰,有助于加深对概念本质的认识。

例如,在学习“氧化物”的概念(由两种元素组成的化合物中,如果一种是氧元素,这种化合物叫做氧化物)之后,接着提出问题:“氧化物一定是含氧的化合物,那么含氧的化合物是否一定就是氧化物呢?”这样,可以启发学生积极思维,从而引导学生学会抓住概念中关键语句“由两种元素组成”来分析,由此加深对氧化物概念的理解。

在学习每个基本概念时,教师都应进行认真剖析,在剖析的过程中让学生理解基本概念,掌握基本概念。

五、通过模型或媒体动画模拟,直观理解概念原理

初中化学有些概念和基本原理,比较抽象。如分子、原子、化合价、原子内部结构、化学式等概念,它们都是无法用实验验证的,而学生对微观概念比较难以理解,这时借助多媒体动画来演示,形象逼真,生动易懂。

例如,在书写化学方程式时,必须遵守质量守恒定律,在配平时讲授遵守质量守恒定律,学生理解不是很深刻,我们可以用媒体动画模拟水电解时水分子分裂成氢原子、氧原子,氢原子、氧原子再重新组合成氢分子和氧分子的过程,使学生对抽象的化学变化过程有直观认识,从而领会为什么书写方程式时要使方程式两边的原子一定相等,让学生深刻理解化学变化都遵守质量守恒定律。

在平时的教学中,如果我们都重视从直观教学中帮助学生形成化学基本概念,引导学生把注意力放在观察现象上,那么学生形成概念时就会变得容易,使抽象问题具体化。

六、加强针对性练习,使学生巩固并应用化学概念

学习的最终目的在于应用,只有通过适当练习,才能达到巩固、深化概念原理的目的。对于一些重点、难点的概念原理,教师要设计一些针对性练习题,让学生思考回答,教师再讲评,对学生掌握、深化基本概念是行之有效的。应用所学知识来分析、解释一些实际问题,是强化对所学知识的理解和记忆、提高分析与解决问题能力的重要环节,让学生在习题训练中会应用化学概念原理,从而真正理解、掌握。为使学生运用知识达到触类旁通的效果,这类习题可以自行编制,但应循序渐进,适当设疑,这样既能激发学生学习情趣,又能巩固化学概念。

例如,学完“溶解度”概念后,可以设计如下针对性练习:

下列有关NaCl的溶解度,说法中正确的是( )。

A. 20 ℃时,18.0 g 的NaCl溶解在50 g水中达到饱和状态,则20 ℃时,NaCl的溶解度为18.0 g

B. 36.0 g NaCl溶解在100 g水中达到饱和状态,则NaCl溶解度为36.0 g

C. 20 ℃时,36.0 g NaCl溶解在100 g水中,则20 ℃时,NaCl溶解度为36.0 g

对生物化学的理解例4

化工业的迅速发展是推动经济发展的重点之一,它为其他行业的发展打下基础,是判断国家经济发展状况的指标。我国工业场所数量越来越多,然而在化工业的生产过程中会伴随着大量废水的排放,废水中常含着许多具有毒性的污染物质,若是缺乏处理或是处理不当就排放到环境中,对环境中的各类生物的生长会产生不良影响,危害到接触污染物的人类的健康甚至是生命。因此,要根据不同化工产业排放的不同废水污染物的特点,合理应用各类化工废水处理技术,将化工废水中的具有毒性的难以自然降解的物质进行处理,减少因化工废水排放造成的污染,避免产生社会危害。因此,人们都致力于开发出新的化工废水处理技术,处理效果好、成本低的化工废水处理技术的研究越来越多。

1. 现有常用化工废水处理技术

我国化工废水中,常常含有大量的有毒物质,不同的化工产业废水中的有毒物质不同,且一种废水中所含有毒物质有时不只一种,大多都是多环芳烃、有机物质、重金属化合物等不能自然降解的物质;废水中盐分含量一般大于1%,能抑制水中生物对有机物质的降解;废水排放的量及废水中有毒物质的量经常变化。为了将这些有毒物质除去,在废水处理中常常使用以下几种处理技术:

1.1物理法

滤过法、沉淀法、气浮法和吸附法等是常用的物理处理方法,主要是通过物理手段实现固液分离,从而去除废水中的颗粒性物质,操作比较简单,但是这种方法对于废水中的溶解性污染物无法清除,因此多用于预处理以及深处理当中。

1.2化学法

化学氧化法、混凝沉淀法、微电解技术等是常用的化学处理方法,是通过各类化学反应,达到清除废水中的各类杂质、解除或减小废水毒性的目的。化学氧化法是利用氧化反应,如利用氧化剂对废水中的污染物质进行氧化,使废水中的污染物质变成较易于降解的物质,解除或者减小污染物的毒性,这种方式适用于污染物为还原性强的废水的处理。氧化剂的氧化性强弱对废水处理的效果影响比较大,常用的较好的氧化剂有臭氧和氯气,处理废水污染物的能力较强,但是成本花费高。混凝沉淀法是利用化学投放具有凝聚作用的化学物质,对废水中的细小颗粒及胶体沉淀去除,同时对废水的颜色、微生物和较大分子有机物进行清除,然而这种方式对废水的pH值、温度、水量等要求较高,多用于预处理和深处理。微电解技术是利用原电池原理,对废水中的污染物质进行电化学作用,使污染物性质发生改变。电解过程中,同时会产生具有消毒作用的・OH和活性率,可进一步清除废水中的细菌。微电解技术多用于生物难降解的废水,而且利用了工业生产中的固体废弃物,实现了废物利用,但是微电解技术的研究还稍显不足,还只能对特殊类别的工业废水进行处理,还没形成一套完整的技术和理论。

1.3生物法

常用生物法有投放优势菌法、共代谢法、活性污泥法和生物膜法,是通过微生物的新陈代谢作用,对废水中的有机物进行生物转化,使有机物变性、失去毒性,从而达到去除污染物的目的。投放优势菌法是选用降解能力较高的菌株,将其投放到废水处理系统中,让其对废水中的污染物进行降解。共代谢法是利用微生物的协同代谢,使不能直接被微生物降解的污染物与微生物降解产物形成共基质条件,将不能直接被降解的物质降解,促进废水的处理效率。活性污泥法是利用微生物絮体形成的活性污泥,将废水中的污染物进行吸附和降解。生物膜法是利用生物膜,将废水中的污染物进行吸附和氧化,从而将废水进行处理。生物法的成本比较低,操作也比较简单。但是岁废水的pH值、温度、水量的要求较高,且单独使用生物法的技术处理难度较大,一般会将其与物理化学方法结合使用。

1.4综合技术

综合技术是多种技术的结合使用。生物法常常需要与其他方法结合使用,以提高化工废水处理的效果,这里主要探讨物理法和化学法的综合使用。萃取法、离子交换法和膜分离法等是常用的综合技术。萃取法是利用污染物在水中和萃取剂中的溶解度不同,使其从废水中分离,从而从废水中去除污染物。离子交换法利用水中的离子和离子交换剂相互反应,使有害离子物质从水中去除。膜分离法是利用半透膜,对废水中的分子进行过滤,进行反渗透,去除水中的固体物质和胶状物质,这种方法简单方便,但是选择性较强,花费较多,易于发生再次污染。

2.化工废水处理技术的进展

2.1物理法的进展

目前,人们研究用磁种的剩磁,将其与混凝剂一起使用,增强混凝剂吸附作用,提高颗粒性物质的去除效率,接着用磁分离器使污染物中的有机物分解,这种方法在国外已经开始运用。人们还研究利用声波技术,通过控制声波的频率而对有机物实现分离。非平衡等离子体技术是利用等离子体对有机物进行分解,等离子体可通过高压脉冲放电或者辉光放电产生。

2.2化学法进展

在化学氧化法方面,对光化学氧化、电化学氧化、声化学氧化进行研究,在光化学氧化方面进展较大。紫外光催化法是一种光化学氧化法,利用紫外光将废水中的有机物质进行氧化,已有成功运用的实例。湿化氧化是利用高温高压,将废水中有机物进行氧化,可以用于处理高浓度的难降解废水,在国外已有应用。超临界水氧化法是利用水的临界点,将有机物分解为水和二氧化碳,处理能力强大,被视为最值得研究的化工废水处理技术。

2.3生物法的进展

自然界的微生物对废水中的污染物降解能力比较差,利用高效优势菌菌株选育对细菌进行筛选,选出高效优势菌,可以提高细菌的降解效率。而为了提高高效菌的浓度,利用固定化生物技术,将筛选出的高效菌中的降解活性物质进行固定化,保持菌株的高效降解能力。

3.总结

化工废水处理技术近年来得到了更多的运用,也得到了更多的发展。目前国内主要使用物理、化学和生物的方法对化工废水进行处理,但是单一的方法难以实现废水处理目的,常常需要多种技术结合。在今后的研究中,要更加科学地结合各类技术,发展新的技术,提高废水处理效果、减少除了成本,解决难降解物质的处理问题。■

参考文献

对生物化学的理解例5

所有的科学领域几乎都涉及生物化学,化学素养是科学素养的重要因素,医学与化学的关系更密不可分。素养有修习涵养和平素所供养两种涵义,化学素养包括必要的化学知识、对化学科学的理解、科学态度、化学科学的思维方式,及用化学方法和知识解决问题的能力等[1,2]。

1提升医学生化学素养的重要性

1.1有助于丰富医学生的医学知识 人体的各种组织和器官是有各种化学物质构成的,如水、糖、脂肪、蛋白质等。人的生命体内的生理病理现象也是由化学过程产生,化学的基本原理和规律影响着人体的生陈代谢。无数个化学变化的综合表现组成了生物的生命过程,化学与生命紧密联系。同时,医学对于保证人体健康的药物,对人体疾病病因的研究都需要对人体化学元素的平衡进行充分研究,这些都需要丰富的化学知识,较高的化学素养。

1.2有助于推动医学技术的发展 基本医学和临床医学都需要化学理论和技术的支撑。生物化学从微观分子和化学变化角度研究生物生命。其中分子生物学研究蛋白质和核酸等生物分子的结构及这些生物分子在生物遗传中的作用,从分子水平去认识、深度的了解生命的本质。同时,随着环境的变化,生物体的疾病类型很多样,这就需要对生命体的深层研究,对疾病的诊断、治疗和预防也就需要生物化学的理论和技术支持。

1.3有助于对健康知识的普及 对于医生和医学院的学生而言,医学知识、技术的掌握不仅仅是为了治病救人,更是为人类更好、更健康的生活。人类的健康与食物紧密相关。对生物化学知识的学习使医学生对食物有了更好的了解,对人体的身体机制也有更全面的认知,对于健康知识的普及、医疗服务的开展都具有重要的意义。例如,可以通过对NaCl的结构分析和讲解,可以清楚的让人们知道食用盐的组成因素和食用盐的变质对人体的危害;可以让人们了解过度饮酒可致使酒精中毒,导致死亡。通过运用这些化学知识,对化学元素的讲解,普及了有关健康的知识,同时使健康教育更具有说服力。

2提升医学生化学素养的途径

2.1激发医学生学习生物化学的兴趣 生物化学是一门抽象复杂的课程,内容繁多、抽象,理论深奥,学生学习起来具有一定的难度。对于医学院的学生来说,课程繁琐,学习压力大,对于生物化学的学习往往提不起兴趣。激发医学院学生学习物化课的兴趣是提升他们化学素养的前提,"兴趣是最好的老师",有了学习兴趣,学生才愿意去学习,才会主动去提升自己。

教师在课程讲解可通过与生活有关的例子来导入课题,例如通过对克隆人的伦理问题的探讨来吸引学生的注意力,增加学生学习有关"细胞"的知识。激发学生的兴趣需要教师具有广泛的知识面,对医学领域的新技术、新方法、新成果的了解,把这些知识贯穿到教学中,拓宽学生的视野,激发他们的学习兴趣。

2.2丰富课堂形式 生物化学课程涉及许多微观、抽象的物体,学生很难想象、理解,丰富物化课的课堂,运用多媒体、实物模型等直观手段教学,让学生对知识有形象化的了解。例如在讲解DNA时,DNA这个生物结构式抽象的,学生很难了解它的结构和在人体中的生物过程。通过在课堂中应用三维动画的动态演示,使学生直观的看到DNA双螺旋立体空间结构及复制、翻译过程,使学生建立感性认识,更好的理解和掌握有关DNA的知识。同时,还可以通过播放一些医学影片、有关生物化学的记录片,提升学生的化学素养。

2.3理论与实际相结合 医学知识的学习是为了在实际中的应用,对生物化学知识的学习也是为了更好的在医学实验、临床实验、医疗服务中工作。在医学院的生物化学课程中,应淡化学科意识,是知识相互融合,以生活、医学中的实际情况开展课程,提高学生的综合素质。同时,在临床医学的实验中,通过让学生诊断、治疗,分析病因,把病因与生物机制结合起来,形成在实际中掌握理论,运用理论指导实际的学习习惯和教学方式。

3结论

目前,生物化学理论和技术常用于疾病的预防、诊断、治疗中,许多医学研究、医学新方法、技术都需要生物化学知识的支撑,物化课是医学院的基础课程,也是专业医学课的基础理论课程。学好生物化学对于医学技术、医疗服务的开展具有重要的意义。因此,医学院应加强对学生化学素质的培养,通过丰富课堂形式、理论结合实际等方法,提高学生的生物化学水平,提高学生化学素养、整体的医学素质。

对生物化学的理解例6

众所周知,尽管全国各地的中考制度在不断的改革,但化学学科历来都是必考科目之一。因此,学好化学就成为了当代中学生义不容辞的责任。而要学好化学,关键的就是要准确理解化学概念。化学概念是用简练的语言高度概括出来的,其中每一个字、词、每一句话、每一个注释都是经过认真推敲并有其特定的意义,以保证概念的完整性和科学性。在初中化学教材中,化学概念几乎每节都有,而化学概念是学习化学必须掌握的基础知识,准确地理解概念对于学好化学是十分重要的。尤其是在我们偏远的农村中学,初中生的阅读理解能力不强,这就需要教师在教学过程中引导学生准确解化学概念,以提升学生学习化学的能力。

那么,怎样才能引导学生准确理解化学概念,以提高学生学习化学的能力呢?

一、讲清概念,培养学生严密的逻辑思维能力

为了引导学生深刻领会概念的含义,教师不仅要注意对概念论述时用词的严密性和准确性,同时还要及时纠正某些用词不当及概念认识上的错误,这样做有利于培养学生严密的逻辑思维习惯。

例如,在讲“单质”与“化合物”这两个概念时,一定要强调概念中的“纯净物”三个字。因为单质或化合物首先应是一种纯净物,即是由一种物质组成的,然后再根据它们组成元素种类的多少来判断其是单质或者是化合物,否则学生就容易错将一些物质如金刚石、石墨的混合物看成是单质(因它们就是由同种元素组成的物质),同时又可误将食盐水等混合物看成是化合物(因它们就是由不同种元素组成的物质)。

又如在初中教材中,酸的概念是“电解质电离时所生成的阳离子全部是氢离子的化合物叫做酸。”其中的“全部”二字便是这个概念的关键了。因为有些化合物如NaHSO4,它在水溶液中电离是既有阳离子H+产生,但也有另一种阳离子Na+产生,阳离子并非“全部”都是H+,所以它不能叫做酸。因此在讲酸和碱的定义时,均要突出“全部”二字,以区别酸与酸式盐、碱与碱式盐。

二、剖析概念,提高学生的理解运用能力

对一些含义比较深刻、内容又比较复杂的概念,教师要引导学生进行深入的剖析,以帮助学生加深对概念的理解和掌握,从而培养学生对化学的理解运用能力。

如“溶解度”概念一直是初中化学的一大难点,不仅定义的句子比较长,而且涉及的知识也较多,学生往往难于理解。因此在讲解过程中,若将组成溶解度的四句话剖析开来,效果就大不一样了。其一,强调要在一定温度的条件下;其二,指明溶剂的量为100g;其三,一定要达到饱和状态;其四,指出在满足上述各条件时,溶质所溶解的克数。这四个限制性句式构成了溶解度的定义,缺一不可。

又如在学习“电解质”概念时,学生往往容易将“电解质”与“非电解质”,甚至同金属的导电性混淆在一起,导致学习中的误解。因此教师在讲解时,可将“电解质”概念剖析开来,强调能被称为电解质的物质①一定是化合物;②该化合物在一定条件下有导电性;③条件是指在溶液中或熔化状态下,二者居一即可,所以概念中用“或”不能用“和”。如NaCl晶体虽然不导电,但①它是化合物;②NaCl在水溶液中或熔化状态下都能导电,所以NaCl是电解质。而NaCl溶液和Cu丝虽然能够导电,但前者是混合物,后者是单质,所以它们既不是电解质也不是非电解质。在教学中若将概念这样逐字逐句剖析开来讲解,既能及时纠正学生容易出现的误解,又有抓住特征,使一个概念与另一个概念能严格区分开来,从而使学生既容易理解,又便于掌握。这样,学生就能运用所学概念知识去解答相关的练习题了。

三、领悟概念,增强学生明辨是非的能力

对生物化学的理解例7

众所周知,物理是一门理论和逻辑思维能力比较强的理科性学科,并且具有很强的抽象性和难以理解的特点,因而初中学生的物理成绩总是不理想。面对这一现状,为了提高初中学生的物理学习成绩,更好的理解和获得物理知识,提出了生活化的物理教学新方式。生活化的物理教学,能够把抽象的物理知识联系到人们日常的生活中去,更加有利于物理知识的理解和学习。本文首先分析了初中物理课程进行生活化教学的重要意义,并提出了生活化教学的具体策略和建议。

一、 生活化教学的重要意义

众所周知,初中物理的理论性和抽象性与其他学科相比比较强,因而学习难度也比较大。为了使学生更好的学到并运用初中物理知识,当前,随着新课程标准的要求不断提高,对初中物理课程提出了生活化的教学要求。之所以对初中物理课程实施生活化的教学方式,主要在于初中物理生活化教学的重要意义。

(一) 首先,帮助学生更好的理解和学习物理知识

对初中物理实行生活的教学方式,主要是帮助学生更好的学习物理知识。众所周知,物理知识难以理解,理科性比较强,因而学习起来,不少学生会感觉到吃力,对于一些物理概念、物理现象、物理公式推理等不理解,这样必然会带来一些学习上的障碍。把课本上抽象的物理知识联系到生活中去,对生活中一些物理现象结合物理知识进行解释。由于生活中的物理现象是我们比较熟悉且常见的一些事物,这样联想和理解起来就会容易很多,这样有助于学生更好的理解和学到物理知识,并能加深印象。

(二) 培养学习物理的兴趣

一般来讲,物理课程是与我们的日常生活联系比较紧密的一门特殊课程,并且生活中的很多现象都能够通过物理知识来解释。举例来讲:夏天,在屋里洒水会感觉到凉快,这是由于蒸发吸热的物理原理;炒菜时如果锅里着了火,最好的方法是把锅盖盖上,这是利用氧气不足来灭火的物理原理;又比如在高山上做饭,饭始终做不熟水就没了,这是由于高处沸点低造成的等等,这些我们生活中司空见惯的生活现象和习惯,都能通过物理知识和原理来解释。把物理知识运用到生活中去,采用生活化的教学方式,来解释生活中物理现象,会让学生感到好奇,从而不断的探索和学习,激发学生的兴致和热情。

二、 生活化教学的策略和建议

我们对初中物理的生活化教学策略进行了一系列的探索,下面我们将从以下几个方面,来阐述初中物理生活化教学的具体策略。

(一) 教学情境生活化

我们知道初中物理传统的教学方式是满堂灌输的形式,老师在台上讲授,学生在台下被灌输,老师在教学课堂上掌握着主动权,而学生的主体地位从未发挥出来,老师与学生之间的互动也比较少。这样,学生往往不能集中精力听课,另外物理知识还比较抽象,当学生某一环节听不懂时,接下来就完全不听了,这样久而久之,对物理知识的把握越来越差,兴趣也渐渐消失。如果改变传统的教学方式,在教学的过程中把学生的主体地位摆在突出位置,把物理知识与生活实际联系到一起,设计并制造一个生活化的教学情境,通过这样的课堂形式进行教学,会在很大程度上使学生参与到物理教学中来。举例来讲:在进行气体性质的学习时,可以从学生们比较熟悉的日常生活中的爆米花讲起,爆米花是采用不密闭的高压锅制作,高压锅内进行气体性质发生变化,从而制作出香甜可口的爆米花。以此引入课题学习,激发学生的好奇心和兴趣。

(二) 物理实验生活化

物理实验是物理教学中重要的部分,对于课本上和生活中的物理现象和物理知识,都能通过物理实验的方法得到论证和验证,并且物理实验是物理进行教学的有利工具,通过物理实验,我们能够更加透彻的理解物理知识和原理。物理实验能够帮助我们解释生活中的很多现象,例如:我们楼道里所安装的声控开关,大型文艺演出舞台上闪烁的霓虹灯等,这些物理实验和现象,不仅能够增加学生学习物理的好奇心和兴趣,还能锻炼学生的实际动手操作能力,并且亲身参与到物理实验中去,对物理实验知识的印象会更深。

(三) 物理作业生活化

物理知识的学习课堂上教学的生活化是十分重要的,但是为了学生更加牢固的掌握物理知识,还要通过课后作业的巩固作用,因此物理作业的生活化也是必不可少的。物理学习中的很多知识,都能直接运用到生活实际中去,为了减少学生的课后作业负担和对物理作业的反感,老师在布置作业时,要尽量从生活中选取素材,这样才能使学生更好的联系生活实际,使问题生动、形象化,更好的解决物理问题。

三、结语

综上所述,物理是初中教学中一门重要的学科,也是学生学习知识的重要课程,并且与人们的日常生活联系比较紧密。鉴于对初中物理课程的生活化教学具有重要的意义,为了学生更好的学到并掌握和运用物理知识来解释各种物理现象,我们要不断创新物理教学的生活化策略,重在提高学生的物理水平。

参考文献

[1]贾卓颖.初中物理教学中实施生活化教学策略的几点尝试[J].学周刊,2014(03)

[2]沈丽.初中物理有效教学策略初探[J].文理导航(上旬).2011(04)

对生物化学的理解例8

【正文】

1.目的性解释或功能解释的方式是概念自主性的逻辑延伸

如果承认生物学理论具有自主性,那么理论自主性的根本在于概念的自主性,即存在所谓不能用物理——化学术语进行描述和定义的概念。生物学理论自主性的另一表现——理论体系的目的性解释或功能解释方式,是概念自主性的逻辑延伸。另一方面,生物学理论中仅存在自主性概念并不必然导致目的性解释或功能解释,例如,孟德尔遗传学、公里化处理后的群体遗传学和进化论的演绎体系(1),其中所有的概念都没有与物理——化学发生关联,都是自主的,只有在一个体系中,例如,以分子生物学为主体的现代生物学,存在自主性概念的同时,又存在物理——化学的术语和概念,并且,二者都处于解释起点的位置,才必然导致目的性解释或功能解释的理论结构,这种结构成为融合自主性概念与物理——化学概念为一体的方案。就现代分子生物学来说,其中的物理——化学概念所描述的是生命现象中的分子及其行为,而自主性概念所描述和推演的是我们宏观经验的生命现象本身,这二者之间,从概念的构造和体系的建立的过程来说,分属两套逻辑体系,因而它们之间没有逻辑演绎的导出关系(2),同时,由于生命现象的复杂性(即使假定把它描述成所谓的因果反馈网络是可行的方案),难于形成一个由前者到后者的历史演化的因果决定性的理论描述,剩下来将二者结合在一个理论中的唯一方案就是目的性解释或功能性解释的方式。由此形成的体系中,自主性概念(如遗传信息)处于核心地位,物理——化学的术语和概念(如DNA,蛋白质)是附属的。现代还原论(或称分支论,企图将生物学作为物理科学的一个分支)对生物学理论的目的性解释或功能解释方式的一切责难,以及将其变换为演绎解释方式的企图,如果不首先化解概念的自主性问题,将是徒劳的。

从生物学理论的客观构建过程来说,这些“自主性概念”是直接从生命现象中认定的,因而也是无机世界所没有的。在自主论看来,无论站在什么角度或立场上,“自主性概念”是理论中不可再分解的最基本,最原始的元素,是解说其它现象的起点;而在还原论看来,从物理——化学的立场或从无机界与生命界的关系的角度来看,“自主性概念”是复合的,应由物理——化学的术语和概念复合而成,因而它们就不应是理论中最基本的元素。我们顺着还原论的思路思考下去,还原,就是最终由物理学中的概念逻辑地演绎“自主性概念”的内涵。物理学中所有概念都终究归结为可感知、可操作的三个量纲:质量、空间、时间。物理科学内部的还原都是这种归结:对热质的否定并把热现象归结为能、温度归结为分子的平均动能,从化学到量子力学等等,著名的“熵”,则以热量与温度的关系来表示,在申农创立了信息论之后,人们便千方百计地寻找“信息”与物理学的关系,勉强将其与“熵”联系起来。从有限的意义上说,分子生物学还原了经典遗传学,将基因还原为DNA和“遗传信息”,而“遗传信息”如何进一步归结为物理学的量纲呢?“遗传信息”是一系列生命过程的整体赋予DNA等生物大分子行为以生物学意义的概念,也就是说在解释的逻辑次序上整体在先,元素在后,这是“遗传信息”这一概念的自主性的来源。因此,分子生物学的还原仅是有限意义上的还原,甚至不能说是还原,因为它仅仅是以一个自主性概念(遗传信息)解说了另一个自主性概念(基因),而“遗传信息”已成为现代生物学的研究范式或纲领的核心。因此,现代分子生物学并没有给还原论以支持,而且具有反作用,因为,如果说经典遗传学是一个演绎体系因而在这一点符合还原论的要求,那么分子生物学由于“自主性概念”与物理——化学概念的混合而具有了目的性解释和功能解释框架的特征,这成为生物学理论自主性的表现特征之一。

现代自主论正是从分子生物学的这些自主性特征出发,声明了自己的原则和立场。

2.现代自主论的原则及其本体论基础

从活生生的生命现象中直接认定一些概念,从而它们独立于无机界,有别于物理——化学语言,使建立在这样的概念之上的理论具有自主性,最极端的例子是本世纪初的生理学家杜里舒(H·Driesch)将“活力”概念科学化和理论化,使它成为逻辑解释的起点;孟德尔到摩尔根所构造的经典遗传学中的“基因”,也是直接以生命现象以及从中所获得的数据为根据认定的有别于物理——化学的概念。本世纪六十年代,分子遗传学将“基因”用DNA分子片段代替,使人们一度认为生物学的自主性是一种虚幻的认识,迟早会消失的。但是,并非DNA分子片段唯一地代替了基因,而是DNA分子与“遗传信息”二者一起来解释基因。“遗传信息”又是直接来源于生命现象的概念,仅就这一点来说,分子生物学仍然具有自主性。这是现代生物学自主论的根据。

现代自主论的主要论点是生物学完全有根据形成自主的概念,“自主”意味着不能由物理——化学术语来分解或描述或定义。为了区别于分子生物学诞生之前的生机论或活力论,现代自主论提出以下原则:将生物学能否还原为物理科学与能否用物质原因阐释生命现象严格区分为两个问题。(3)这个原则所要强调的是,物理——化学并不是对物质世界的唯一表述方式,关于生命有机体自身的物质原因的表述(生物学理论)则是另一种关于物质世界的理论表述方式,二者之间不存在逻辑蕴涵或逻辑导出关系。生物学还原为物理科学,其严格意义是以物理——化学的概念和定律来解释生命现象,从而推演生物学理论。仅从概念的层次来说,完全用物理——化学的术语描述或定义生物学概念,已经非常苛刻而至今远未做到。现代自主论“用物质的原因阐释生命现象”则宽松得多,实际上,分子生物学就是这样,以生命大分子组成,再加上遗传信息、复制、转录、翻译以及选择、稳定等诸多生物学独有的自主性概念,成功地阐释了从功能到进化的许多生命现象和活动。这是一个非常实际的原则,既可以摆脱科学史上令人厌恶的“活力”纠缠,又没有象还原论那样自套枷锁。

虽然如此,如果深究这一原则,则存在以下问题:

第一,现代自主论所称的具有自主性的生物学概念的认知来源无疑仍是对生命现象的直接认定,因此,在还原论或分支论那里应该是纯粹的解释对象的生命现象,在此成为认知和解释的起点。至少在这一点上与“活力”概念是相同的;

第二,现代自主论的本意是,生命现象中的物质运动方式为无机界所没有,因而对这些运动方式、关系等可形成独立于或自主于描述无机界物质运动方式的物理——化学的术语、概念乃至规律、理论,作为解说生命现象的前提。这种主张或可与当下的生命现象或“功能生物学”(4)相谐调,但与科学界的一个基本承诺(也是一个从未被证实过的预设)相抵触:生命来自于无机界。这意味着生命现象中的运动方式与无机界的运动方式有—个逻辑与历史相统一的关系,描述它们的理论也应有一个统一的逻辑关系,因而自主性不应该是必然的。

第三,在解释上,“物质的原因”中的“物质”是指生命体组成,主要是生物大分子,因此在现代自主论看来,分子生物学在具有了自主性的同时,又具有了物质性。而具体体现这种主张的分子生物学必然是自主性概念与物理——化学的术语和概念相“混合”的理论,其中,直接以生命现象作为实在性基础的自主性概念占有主导地位,是理论的核心。“遗传信息”规定了未来的蓝图,成为生物大分子所有行为的目的性基础与源泉,(5)它以生物大分子自身的逻辑内涵所没有包容的、因而是外在的东西,来赋予生物大分子行为以生物学意义。这就使得DNA等生物大分子成为遗传信息等概念的附庸,导致了目的性解释或功能解释方式(2)。这实际上仅仅一半是物质的,而另一半却仍旧是“生机”的。这样,与其说是解释生命现象,不如说是在阐释生命形式下的分子及行为。这样的理论之所以被人们接受,其原因之一是人们接受了“生命来自于无机界”这个科学界中最基本的承诺之一,它已成为一种指导思想,给人们带来了希望:迟早有一天我们可以使理论上的从无机到生命的逻辑与历史上的从无机到生命的演化过程统一起来。因此,现代自主论的原则尽管与现代生物学相一致,但是,它却与这样一个重大的承诺不谐调。

第四,由此,我们可以做这样的一个回顾:生机论以从生命现象中认定的概念作为解释的起点,可简略称为“以‘生命’解释生命”;还原论则基于近现代科学精神的要求,以描述无机界的概念为起点来解释生命现象(即“以‘物质’解释生命”);而现代自主论的原则和主张,在分子生物学的具体体现中,却付出了这样的代价:以自主性概念为核心规范了物理——化学的术语和概念,以此为解释起点,但所解释的并非是生命现象本身,而是分子的行为(尽管是生命形式之下的)——自主性的那部分所解释的是生物大分子的(物质的)行为(即“以‘生命’解释物质”),“物质原因”那部分所解释的也仍是物质,而非生命。

以上几点,既是现代分子生物学理论体系中存在的哲学疑难,又是现代自主论的主张所存在的问题。现代自主论的原则是以现代生物学为其合理性依据的,它之所以坚持这一原则,一方面是由于现代分子生物学的内容的确如此,另一方面又企图把这一原则固定为今后理论生物学构建的指导性原则。这不由得使人想起了二千多年前亚里士多德的技巧,他不满意柏拉图在灵魂(生命)与肉体(物质)之间设置的鸿沟,企图找出生命过程与物理过程的密切联系,同时又要界说生命过程以表明与物理过程的区别,他构造了“形式因”和“目的因”的概念来解决这一问题:一件东西赖以构成的原料或物质并没有告诉我们它是什么,但赋予它以形式或目的,我们就可以根据它能做什么来说明它。

进一步的问题是本体论问题。现代自主论的优势在于现代生物学理论的形态和内容确以一些自主的概念作为理论根基的,但它的本体论基础却不令人信服:“生物学自主性的本体论根据在于生命有机体这种体系中的因果关系是复杂的,其中,生命整体行为对部分的制约是无机界所没有的。”(3)在此,存在着这样的悖论:因果关系是对现代生物学自主性的否定,而这里却以因果关系(尽管是复杂的,但仍是因果关系)作为自主性的本体论基础——前文分析了“一个理论体系中自主性概念与物理——化学概念同存并列作为解释的最基本元素,必然导致目的性解释或功能解释的方式”,它的逆否命题便是“非目的性解释(演绎的或因果关系的)体系不允许两种概念混合并列为解释的起点”,只能由一方还原另一方。那么,理论出现了“自主性”,到底是由于生命现象太复杂、纯粹以无机界为起点因果地或演绎地解释生命现象太困难而采取的权宜之计;还是由于存在着无机界所没有的“制约”,因而生命现象在本体上具有“自主性”(自主于无机界、确切地说自主于物理——化学的运动机制),使生物学也具有了“自主性”?接下来就发生这样的重大问题:本体上的自主性是什么?它与“活力”“生命力”的本质区别是什么?现代自主论可以争辩:生物学理论的自主性并不等同于生命现象具有自主性。但是,“整体对部分的制约”等诸如此类的现象如果在本体上不是自主的,而是与无机界有演化机制的因果关联,又为何不能为物理——化学(包括未来的物理科学)所描述?除非承认“科学的认识方法是有限的和不完备的”以及进一步承认“人的认知能力是极为有限的”这样令人气馁的命题,这又回到了“太困难而采取的权宜之计”上来。

因此,现代还原论固执地坚持以下两点与现代自主论的原则以及生物学理论现实作对:第一,生命必须纯粹地作为解释对象,而不能在解释之先从生命现象中预设某些概念作为解释的起点,如果生物学理论中有这样的概念,则它应被分解为物理——化学的语言;由此,第二,用演绎的解释方式转换由于存在自主性概念而采用的目的性解释或功能解释方式。坚持以上两点,也即将生命现象作为纯粹的解释对象而从无机界来演绎,就意味着用“物质的原因解释生命”与“生物学还原”是同一个问题。由于这种理想主义的固执,还原论所遭遇的困境甚于现代自主论。

3.现代还原论的困境

还原论的致命之处,主要不在于它反对现代自主论的原则,而在于反对现实的生物学理论的形式和内容去追求一种不太切合实际的理想。对生物学理论中的目的性解释和功能解释的诸多责难及演绎还原的要求所依赖的合理性依据——解释预言的检验是经验上可操作的,已随着现代生物学的成功而烟消云散,因为目的性解释或功能解释方式同样在试验上可检验。面对现代生物学的成功,以及还原所难以克服的诸多困难,再加上现代自主论强有力的批判和否定,现代还原论发现,剩下来可依赖的唯一合理性是哲学意义上的依据,即“生命来自于无机界”这一预设性和承诺性命题,我们不应“以‘生命’解释生命”,也不应“以‘生命’解释物质”,合理的“解释矢量”的方向应是“以‘物质’解释生命现象”。在这里,“生命现象”是一个很不具体的抽象概念,实际上可具体为被“约束”或“规范”的物质行为表现和“约束”或“规范”机制本身,这是真正的解释对象,也是理论自主性的实在性基础。因而,对于还原论来说,追究“基因”或“遗传信息”的起源和分子进化机制已成为其最后的坚守阵地,并且,当代自组织理论和超循环理论的盛行,似乎为还原论带来了令人振奋的希望。

迈尔曾将生物学理论划分为功能生物学与进化生物学,(4)在功能生物学中,基因所携带的遗传信息是生物学一切功能和目的的基础和源泉,只要突破这一点,即能够用物理——化学的语言演绎地描述形成遗传信息的分子进化机制,那么,还原论至少在原则上取得了胜利。但是,通过以下分析,这种希望似乎又是水中之月。

前面说过,“自主性概念”之所以“自主”,是由于它直接对应于生命现象或认定“生命的实在”,它反映了生命特有的本质,因此,它作为理论的起点,不必给予也不可能进行物理——化学的描述。还原论否认存在生命的特质,把所谓“自主性概念”或直接来自生命现象的概念看成是“复合性”的,可分解为诸多物理——化学的术语和概念,与此相应的试验上可操作性依据是生物化学对生命有机体的组成还原。但是,组成上的还原虽然可作为生命与无机界密切联系的依据,但也没有否定现代自主论的“用物质的原因解释生命不等于还原”的命题及所坚持的原则。否定“自主性概念”的充分条件不仅仅是把它看成“复合性”的,而且要以物理——化学的术语和概念逻辑地导出它的内涵。如果只满足于组成上的还原,结果只能是以“自主性概念”为核心来赋予生物大分子及其行为以生命意义(2)。与逻辑导出相对应的试验依据不是组成上的分解还原,而是与逻辑导出同向的试验可操作性,说白了,就是由无机要素合成生命,哪怕是最简单的生命现象。例如,对于超循环论来说,就是生物大分子超循环耦合能否在试验条件下发生,这涉及到“生命来自无机界”这一命题由哲学化向具体的科学化的过渡,关系到还原论在科学上能否真正站稳。但是:

第一,由无机到生命,经历了漫长时间,并且,生命的产生和演化是在十分优越的条件下选择了唯一快捷的途径而发生的。以人类的有限生命和历史是否有能力进行这种操作呢?这就象大海里的沙子,原则上是有限的,如果想数清楚有多少粒,则在实践上是一个无限的问题。退一步说,仅理论上的操作,即以物理——化学诸要素,通过在无机背景下取得的参数,进行自组织理论的非线性过程计算,来描述无机与生命之间的逻辑关系,这种非线性理论的计算操作也同样是事实上的无限复杂。这种原则上的有限而实践上的无限,直接冲击还原论的哲学基础:决定论。只有决定论成立,由无机到生命的逻辑演绎方式才是理论上可操作的,才具有进行预测和试验上可操作的价值和意义;决定论的前提又是自然有限论,而无限性就意味着不确定性,也就意味着逻辑演绎的理论之路是不通畅的、实践之路是不可操作的。

第二,自组织理论本身的结论——非线性过程的不可逆性,使这种操作不可能。从无机到生命的历史过程,其中有许多偶然性或随机因素起了决定作用并已作为“信息”储存于生物大分子的结构中。由于偶然性或随机因素的不可重复,使时间不可反演,因而整个过程无法进行重复操作。

第三,自组织理论和超循环论的非线性动力学过程的不确定性,使从无机到生命的演绎过程不可能。在此,应对“因果决定论”与“演绎解释方式”作出区分,一般来说,这二者被合二为一地用来与目的性解释或功能解释方式相对立,但它们之间是有区别的。因果决定论是用来表述定律或原理的方式,而演绎解释的方式是解释体系乃至理论体系的构成框架,即因果决定论形式的定律或原理是作为演绎框架的解释前提而出现的。这就可以提出这样的问题:否定了因果决定论的自组织理论的非线性过程的定律、原理是否可以作为从无机到生命演绎解释框架的解释前提呢?按照还原论解释的要求,如果中间环节有不确定因素,将阻碍这种演绎解释的逻辑通道的畅通。只有解释前提的因果决定论形式才与整体的演绎解释框架相谐调。尽管自组织理论及超循环论这一新物理科学曾经被讨论的热火朝天,由于它在分子自组织领域内就已经在逻辑上不确定了,因而,至今为止它对生物学的影响只限于描述性地说说而已,至多提供一个框架式的思想启示。

4.结语

还原论所遭遇的困境,是由于坚守着理想主义的科学信仰而不顾生物学现实。但是,无论是同情还原论而提出的带有折衷性的整体还原,还是反对还原论的自主论,在其构建生物学理论的建议中,只要还主张保存直接来自于生命现象的术语和概念,并且不可被物理——化学的术语和概念、也即描述无机世界的术语和概念所代替,都是在认识论上允许预先设定生命现象作为解释的起点,从而在本体论上承诺了存在着一种生命特质,也就有违于“从无机到生命的历史走向和逻辑走向相一致”这一基本的科学承诺。

在现代生物学面前,还原论成为固执地坚守理想和信仰的牺牲者而在所不惜,自主论由于切合生物学理论的现实而取得了优势,并以能够指导未来生物学理论的构建为最大的价值所在。但是,笔者认为,一门学科,特别是具有哲学色彩的学科,其意义和价值不应仅仅依赖于其他学科,更不能以其可否“指导”自然科学的发展为其价值标准。逻辑实证主义起始的现代科学哲学的历史已证明这种“指导”是虚妄和徒劳的,科学往往自我发展而不听命于哲学家的“指导”。在这方面,还原论也并不是无可厚非。无论是还原论还是自主论,它们的目的都是企图指导生物学理论按照它们指定的框架来运行,结果使我们处于这样一个悖论之中:如果信守“生命来自无机界”这一命题,则应否定“不能用描述无机界物质运动的概念、规律即物理科学进行还原”;而坚持还原论,则遇到操作上包括不确定性对演绎过程的否定的阻碍。这是否值得我们反思一下过于功利主义倾向的行为,以修正我们对科学的哲学探讨的目的?科学哲学的真正意义和价值在于自身,在于对科学及其与自然的关系的理解,在于它自身体系的建立,这个体系体现了人类的心智对完美的追求和向往。这一点,特别是在一个人欲横流的社会里,是极为可贵和重要的。

【参考文献】

(1)Rosenberg.A.(1985).The Structure of Biological Science.(Cambridge:cambridge University Press).

(2)郭垒:“生物学自主性与物理科学的理论构建”,《自然辩证法研究》,1995年第3期。

对生物化学的理解例9

在高中物理教学中,数学起着重要的推动作用,数学是解决物理问题的重要工具。将数学知识与物理教学紧密联系,对于优化物理课堂教学,提高物理课堂教学效果具有重要意义。

一、当前物理课堂教学中存在的问题

1.物理理论知识教学效率较低

物理学科中有许多物理知识具有很强的理论性。在物理实验教学中,学生对物理概念、原理等理论性较强的物理知识,理解难度较大,普遍存在物理理论知识学习效率低的问题。事实上,很多物理知识都可以用数学语言进行表述,教师应当在物理理论教学中注重运用数学知识,这对提高学生学习物理知识的效率是大有裨益的。

2.学生解决问题的能力不强

学生在物理学习过程中,解决问题的能力不强是一个重要问题。虽然学生已掌握了物理学科的理论知识,但由于没有深入地证明和讨论,往往只停留在表面认识上,在实践中,如遇到具体的物理问题时,就会显得捉襟见肘。物理学科是一门应用性很强的学科,新课程改革也致力提升教学的实用性,如果学生掌握的物理知识只停留在理论阶段,这就有悖于新课改的要求了,也不利于提高物理学习效率。物理与数学联系密切,许多物理问题都可转化为数学问题,将数学知识应用于物理课堂教学中,可以有效提升学生解决问题的能力。

二、数学知识对物理教学的积极作用

科学性、逻辑性、精确性是数学语言的特点,这与物理学科的抽象性、逻辑性特点相一致,数学知识对物理学科的学习发挥着重要作用。

1.有利于强化物理理论教学

教学中,合理运用数学知识不仅有利于提升学生对物理知识的认识,更有利于发现物理学科中蕴含的物理思想。由于物理学科的知识抽象性、逻辑性较强,单纯的文字描述往往会使学生难以理解,增加其学习难度,利用数学知识,将物理原理、概念等物理知识公式化,可以使物理知识简洁、具体,降低学生的学习难度,强化物理理论知识教学。

2.有利于解决物理学习中的问题

教学中,教师不但要让学生掌握基础理论知识,还应教会学生如何运用理论知识解决具体问题。教师要重视对学生物理解题能力和应用能力的培养。数学知识能够把物理学习中的原理、概念等公式化,为指导学生学好物理提供了一个新途径。另外,数学知识中包含着许多解题思想和方法,将数学知识应用于物理课堂教学,既有利于学生掌握物理解题技巧,又能提高物理知识的学习效率。

三、数学在物理教学中的应用实践

1.在物理理论教学中的运用

物理理论知识的深度和抽象性使得高中生学起来不是那么轻松。那么,教师在进行物理理论知识讲授时就必须注重数学知识在物理课堂教学中的应用,进而把复杂深奥的物理理论知识通过数学数字符号等简易化地体现出来,使得教师所讲授的内容更加通俗易懂。物理理论知识以这种形式表现出来,则更有利于教师理论知识的教学以及学生对知识的接受和掌握。在物理知识学习中,几乎所有的定律和公式都可以用数学形式来清晰、简明地表现出来,如牛顿定律、伽利略自由落体定律、电阻R、电场强度E等都可以通过数学公式来讲解,让学生在教师的带领下对各种物理量进行深入分析、探讨和研究,从而明白各个量的产生和各个物理定律的联系等,这种表现形式在物理理论知识的学习过程中是其他语言都无法代替的。由此,我发现,为了使学生能顺利地掌握教师所讲授的知识点和理论知识,把数学知识运用到该理论知识的学习中是必不可少的。这不仅对学生的物理知识学习极其有利,还使得物理课堂更具高效性。

2.在物理实验教学中的运用

物理知识的学习归根结底是离不开实验的,任何知识最终都要回归到实践中去。物理实验教学也离不开数学知识的具体运用。在进行物理实验时,如图像法、公式法等数学知识的运用都是必不可少的。这些数学方法的运用使得原本难以理解的物理知识以清晰、直观的形态呈现在学生眼前,从而使学生在操作实验时不再一头雾水。与此同时,在对物理实验进行总结、对比及研究之时,相关数学知识、数学工具的运用也是不可或缺的,这些工具的运用能够大幅度地提高物理实验结果的精准度。比如,在对电路图或力学进行分析时,若不将物理语言转换成图像,运用数学工具绘图的话,问题的解答将会变得十分困难,甚至无从下手。让学生运用数学工具进行物理图像的绘制,将会在很大程度上加强学生对物理知识的理解。

3.在问题解答中的运用

数学知识在物理学习中的灵活运用对于物理题目的解答大有裨益,很多物理题目若只是单纯地运用物理知识来解答,并不能拓宽解题思路,有些题目往往会让人感到无计可施。把数学知识灵活地运用于物理题目的解答中,这不单单是对高中物理教学提出的要求,更是物理教学的一部分。运用数学知识、数学公式来解题,如极值知识、代数知识、几何知识等都会让物理题目以相对直观的形式体现出来,能帮助学生寻找到更多的解题方法,解题途径会被进一步拓宽,思路也会更加灵活多变。数学知识在物理问题解答中的运用,使得题目的解答变得高效、简便,学生的解题速度也会有质的飞跃,教师和学生解决问题的实践能力增强,更好地适应了我国高中物理教学的新趋势。

四、结语

物理知识的学习不是一门单一的学问,它需要把数学知识融入其中,进行融会贯通地学习。把数学知识融入物理学习中,会使得整个物理教学和学习过程科学化、精准化、高效化、便捷化,对于物理课堂的高效起着巨大的推动作用,它优化了物理课堂的结构和效率,教师能把更多更深奥的物理知识以易于理解的形式教授给学生,这符合新课标对高中物理课堂教学所提出的新目标和新要求,是我们必须予以重视的一种教学方法。

参考文献:

[1]周庆平,李伶利.谈数学思维与物理教学[J].教育与职业,2006(17).

[2]任妙娟,赵朋,张仲.数学物理方法的渗透式教学[J].科技创新导报,

2010(4).

对生物化学的理解例10

中图分类号:G633.7 文献标识码:A文章编号:1003-6148(2008)5(S)-0044-4

新的《普通高中物理课程标准(实验)》颁布和实施以来,在物理新课程教学中,物理教师都希望进一步提高学生的科学素养,从知识与技能、过程与方法、情感态度与价值观三个方面培养学生。通过物理概念和规律的学习过程,使学生了解物理学的研究方法,认识物理实验、物理模型和数学工具在物理学发展过程中的作用等等。但在物理复习课教学中,大部分教师没有按照新的《普通高中物理课程标准(实验)》的要求来制定一套有效复习方法。而按照老的一套方法进行复习课教学,课后发大量练习、试卷,学生为了完成任务而被动练习,学生为此不断付出大量时间和精力,即使做出了点“成绩”,也是以牺牲学生身心健康为代价。因此,高中物理复习课教学一定要讲究方法,注重“六化”,即:知识结构网络化,解题技能程序化,方法教育显性化,过程教学变式化,模型迁移组合化,教学内容渗透化。

1 知识结构网络化

为什么学生学习了相同的知识内容之后,解决问题的能力不同?认知心理学家认为:学生头脑中的知识结构网络对解决实际问题具有重要意义。在高中物理复习中,如何建立学生的知识结构网络呢?首先,揭示知识之间的内在联系,让学生理解和把握其间的本质性规律。如在“物体的运动”这一章复习时,对“位移、距离、路程、时间、时刻、即时速度、初速度、末速度、线速度、平均速度、角速度、速率、速度变化、速度变化率、加速度”等概念的复习,要让学生理解和把握同一层次各概念间的区别和联系以及不同层次各概念间的联系。其次,教师通过有关教学策略,使学生形成良好的知识结构网络。如:高中物理“功和能”部分的知识结构网络可按图1所示的结构建立。从这张网络图很容易看出,“功和能”部分的主要知识有机地组成一个整体,而不再是孤立的内容。如果教师通过有关教学策略使这张网有序地贮存到学生头脑中,便可形成良好的思维通道,在解决功和能问题时,只要问题的信息刺激到这张网络,便可迅速检索出所需的知识主线,提高解题的效率。

2 解题技能程序化

思维的有序化是指在某领域内具有普遍意义的一种有效的科学思考顺序,在对问题的分析过程中通常体现为思考的一般步骤。问题解决技能程序化就是指解决问题时,按照一定的科学思考顺序和解题的一般步骤,特别是针对一些解题能力不够强,比较勤奋的学生。因为这些学生遇到物理问题,往往不知如何下手。如果学生知道解决这类问题的一般程序,就会按照程序思考解题,达到解决问题的目的。在物理复习时,教师可以告诉学生一些解决问题的程序,如力学问题解决技能的一般程序为:1、找对象(单一物体,系统);2、分析力(每个力的施力、受力物体是什么,画出受力分析图);3、看过程(一个过程、多个过程、全过程,画出过程示意图);4、定状态(确定初、末、中间态);5、立方程(确定方向,选参考点,选择规律)。我们在解决物理问题时,各类物理问题的解题技能程序有所不同,如在学了洛仑兹力之后,解题技能的程序与力学有所不同,是找圆心、定半径、靠几何、拉关系。

3 方法教育显性化

在新的《普通高中物理课程标准(实验)》一书中,提到各种物理科学方法的次数很多,其中演绎推理法36次、假说方法13次,等效方法10次、乘积定义法10次等,可见物理方法教育的重要性。高中物理方法的教育分为隐性教育和显性教育。物理方法的隐性教育为只在物理教学过程中隐蔽地发挥方法的导向作用,使学生在学习过程中受到物理方法的熏陶,但一般不提供方法的名称,更不对这些方法的内容进行解释。物理方法显性教育,就是在教学过程中把物理方法的内容、特别是操作过程讲清楚,指导学生运用这些方法进行训练。这两种方法各有优点:隐性方法适用广,不必额外为物理方法教育花费较多的教学时间,日积月累,学生自然地学到了一些物理方法,但不能使学生获得物理方法的理性认识;显性方法正好能弥补这一缺陷,并能让学生自觉地以物理方法为指导,加深对学习过程的理解,促进方法的迁移。但有些方法较难理解,学生不易接受,随着学生年级的升高,显性方式逐步增强。如要让学生对理想化方法有较深理解,在复习课的教学中可显性地进行方法教育,介绍理想化方法完整的操作过程:1、分析影响因素;2、比较各因素作用;3、忽略次要因素;4、建立理想化模型。在单元、会考、高考复习课教学中,还可以向学生显性化地介绍演绎推理法、归纳法、比较法、类比法、数学法、假设法、定量分析法、极值法、对称法、等效法、整体法、隔离法、乘积定义法等物理方法。

4 过程教学变式化

新的《普通高中物理课程标准(实验)》把“过程与方法”作为课程目标的一个重要领域,明确提出了“过程与方法”这一具体目标,它对全面提高学生的素质有着重要意义。因此,在高中物理复习课教学中,要注重过程教学,也就是说要注重习题的变式教学。所谓变式,就是在引导学生认识事物属性的过程教学中,不断变更所提拱材料或事例的呈现形式,使本质属性保持稳定而非本质属性不断变化。变式习题教学往往采取一题多变、一题多问、一题多联、一题多解的过程教学。因此,变式习题教学是能够活化学生的知识结构、培养学生的发散思维与应变能力的过程教学。

例1 光滑的平行导轨间距为l,上面放两根质量都为m的金属棒,其电阻均为r,导轨电阻不计。在导轨平面内有竖直向上的匀强磁场B,如图(2)所示。现给MN一水平向右的初速度v0,则稳定时MN与PQ的速度各为多少?

本题解答比较简单,但在复习课教学中,要引导学生对此题进行一题多变的过程教学。

变式1:如果质量分别为m1,m2,稳定时,MN、PQ速度各为多少?

变式2:如果质量分别为m1,m2,m1的初速度为v01,m2的初速度为v02,且v01>v02,则稳定后,MN、PQ的速度为多少?

变式3:如果光滑导轨不等距,且满足l1=2l2,如图(3)所示,则稳定后MN、PQ的速度为多少?

变式4:从开始至稳定时,感应电流产生的焦耳热为多少?

变式5:从开始至稳定时,系统损失的机械能是多少?

变式6:如果两杆初速度均为零,PQ受到恒定的水平外力F的作用如图(4),则两杆以后将作怎样的运动?

变式7:如果两杆初速度均为零,MN受到恒定的水平外力F的作用,但导轨不光滑,其动摩擦因数为μ,则两杆以后将作怎样的运动?

5 模型迁移组合化

运用物理模型研究物理问题是一种科学的思维方法。在物理复习课教学中,使学生掌握物理模型,并学会迁移、组合,可以提高学生分析和解决物理问题的能力,提高物理复习效率。首先,学生必须理解什么是物理模型,掌握所学过的物理模型。在高中物理中,我们所研究的可以说都是物理模型。例如对象模型有:质点、弹簧振子、单摆、光滑表面、点光源、理想气体、点电荷、均强电场和磁场、理想二极管、理想变压器、理想电压表等。过程模型有:匀速直线运动、匀变速直线运动、匀速圆周运动、完全弹性碰撞、简谐运动、等容(等压或等温)过程、电流的稳恒变化等。其次,要理解物理模型的含义及遵循的规律。有些学生对概念、公式背得滚瓜烂熟,但不会解题,原因在于没有掌握物理模型的含义及遵循的规律和物理模型的迁移或组合。

本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文

5.1 把简单的物理模型迁移或组合成复合的物理模型(近迁移)

例2 如图(5)所示,在竖直平面内放着一半径R=10m的半圆形光滑轨道,A为其最低点。现将小球从很靠近A点的B处释放,求它到A点的时间。

析与解 根据质点的概念,小球可视为质点(研究对象模型)。小球从BA的过程,它的速度大小和方向时刻在变,不能视为匀速圆周运动。但由于B与A靠得很近,且轨道对小球的支持力N始终与运动方向垂直,所以可把小球的运动视为单摆振动(过程模型),小球从BA的时间t,便是单摆周期的1/4,即:t=T4=2πR/g4≈1.71(s)。解决这个问题的关键是把质点和单摆这两个简单物理模型迁移过来并组合成复合的物理模型。

5.2 把物理模型迁移到实际问题上(远迁移)。

高中物理新教材增加了许多联系生产、生活的实际问题和高新科技内容。要求学生能从大量文字中摄取有效信息,把实际问题转化为物理问题,构建物理模型,再用学过的物理模型解决。如图(6)所示,在匀强电场和匀强磁场中,当带电粒子向右以速度v进入场区时,如果受到的电场力Eq和洛仑兹力Bqv平衡,即Eq=Bqv,而粒子的重力又不计时,带电粒子将做匀速直线运动。这一物理模型有很多的应用,如:带电粒子速度选择器、磁流体发电机、磁强计、电磁流量计等实际问题。

6 数学内容渗透化

物理学是应用数学思想与方法最充分、最成功的一门科学。可以这样说,离开了数学思想与方法,就不会有真正意义上的物理学。但是,在相当多的学生中,存在着将学习数学和学习物理两者截然分开的现象。他们学习了一定的数学思想与方法,并能解决一些比较复杂的数学问题,但是在需要运用这些数学思想与方法掌握物理概念、总结物理规律、解决物理问题时,却表现出滞后和吃力。正是由于存在着对数学思想与方法和物理内容之间的联系认识不够,在很大程度上影响了众多学生学习物理的兴趣和成绩的提高。基于此,在高中物理复习课教学中,要注重数学思想与方法教学,高中物理中蕴含着重要的数学思想,一般认为有如下四种:函数方程思想、数形结合思想、分类讨论思想、转化化归思想。高中物理学中的数学方法,它是指运用数学工具分析及阐明物理理论、解决物理问题的方法。常见的数学方法有:三角函数法、图象求解法、数学比例法、指数对数法、几何图形法、数学极值法、数列极限法、导数微元法等。在这里就例举三角函数法加以说明。

例3 质量为m的物体放在地面上,它们间的滑动摩擦系数为μ,用力F斜向上拉物体,使物体在水平面上作匀速直线运动,求力与水平方向的夹角α为多大时最省力。

析与解 由于物体在水平面上做匀速直线运动,随着α角的不同,物体与水平面间的弹力不同,因而滑动摩擦力也不一样。而拉力在水平方向的分力与摩擦力相等,因而α角不同,拉力F也不一样。以物体为研究对象,受力分析如图(7)所示,因为物体外于平衡状态,根据ΣF=0得

参考文献:

[1]陈宗造,邵晓明.高中物理中的数学思想与方法[M].北京:中国科学技术出版社,2005

[2]阎金铎,乔际平.高中物理课堂教学设计[M].上海:上海教育出版社,2000