期刊在线咨询服务,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

期刊咨询 杂志订阅 购物车(0)

软土地基论文模板(10篇)

时间:2023-03-27 16:50:32

软土地基论文

软土地基论文例1

近几年,经济的发展带动了电力建设迅速发展,同时由于国家“西电东送”工程的实施,苏北沿海地区新建了若干输变电工程。由于该地区地质分布有含水量大、压缩性高、承载能力低的软土薄弱层,对工程基础设计带来极为不利的影响,稍微地质勘察不详细或基础设计形式不对,都可能引起建筑物(构筑物)的过大沉降、倾斜甚至倒塌。

1工程案例及原因分析

案例一:在苏北沿海地区新建某35kV变电所,主变容量31.5MVA,变压器总重17000kg,主变基础采用长5米,宽3.8米,厚0.6米的独立基础,内配Ф12@150双层双向钢筋,基础埋深1.5米,下设100厚C10混凝土垫层。就在主变就位后的第二天发现,主变基础产生不均匀沉降,最大沉降达50mm,明显不利于设备安全运行,基础只得从新浇筑。新主变基础在独立基础下布置了八根12米石灰桩进行地基处理,主变荷载由复合地基承担。基础浇筑养护成功后主变重新就位,安装结束观测至今发现沉降很小。

案例二:同一地区,某在建220kV变电所,配电楼共二层,框架结构,基础采用12米Ф500(壁厚80)预制管桩,承台埋深2米,单桩设计承载力400kN。在静压桩时发现,桩达到设计标高时,压力表读数换算为桩承载力仅为300kN,而且桩最终贯入速度一直很快,这说明桩端未进入持力层,仍然处于软土薄弱层中。经设计、勘察、监理、施工等单位多方协同论证,反复研究,确定接桩方案,在原来12米桩基础上加接8米同型号管桩,后来做静载试验发现,20米桩能满足设计要求。

经分析研究,案例一工程主变基础沉降过大是由于地质勘察不详细引起的,勘察报告就没能详细反映该主变基础下的软土地基分布情况,由于潮汐对地下水位的影响,软土在含水量高时极易压缩变形,从而引起主变基础过大沉降;案例二工程处地基存在9米厚的软土层,由于设计上没有高度重视软土地基对桩基础承载力的影响,导致桩设计不合格。

2软土地基分布及地质特点

软土地基给工程上带来的事故、缺陷很多,要减少软土地基的危害,工程技术人员熟悉软土的特性就显得非常重要。所谓软土是在静水或缓慢的流水环境中沉积,经生物化学作用形成的饱和软弱粘性土。中国建筑工业出版社出版的《工程地质手册》称软土为“软土是指天然含水量大、压缩性高、承载能力低的一种软塑到流塑状态的粘性土,如淤泥、淤泥质土以及其他高压缩性饱和粘性土、粉土等”。特征指标也做了如下表述:当天然空隙比e大于1.5时,称为淤泥;天然空隙比小于1.5而大于1.0时,称为淤泥质土。

几千年来,苏北地区由于黄河淤积和改道,大陆逐步东移,形成了以粉砂、粉土为主,中间夹以粉质粘土和淤泥质粉质粘土软土的地貌。根据工程地质勘察报告发现,苏北沿海地区海拔在1.5~4.5米之间,整个地面从东南向西北缓缓倾斜,软土厚度从3米至14米,地下水位受大气和潮汐影响,一般在0.5~1.5米之间。该地区地质分布土质的一些典型物理性质指标见下表。

表一:土体物理性质指标

土层

厚度(m)

天然含水量ω(%)

天然孔隙比e

压缩模量Es(MPa)

塑性指数IP(%)

液性指数IL

承载力fk(Kpa)

耕土

0.5~1

粉土

2.5

32

0.724

8.21

8.21

9.7

100

粉质粘土

1.5

33

0.928

4.34

4.34

13.8

90

淤泥质粉质粘土

3~14

40~55

0.899~1.348

2.57~4.12

9~14.5

1.22~2.49

60

粉土

4~9

27.3

0.767

6.23

11.0

0.6

140

粉土夹粉砂

未钻透

24

0.598

15.98

170

以上数据是经统计该地区几个变电所工程地质勘察报告而来,从表中不难发现,作为软土层的淤泥质粉质粘土埋深不深,但对不同的场地,该土土层厚度分布不均,这对建筑物和构筑物基础设计提出了较高的要求。

3处理措施及设计对策

3.1细心勘察,查清场地水文地质情况。

拟建场地勘察评价很重要,如若勘测点布置过少,或只借鉴相邻建筑物的地质资料,对建筑场地没有进行认真勘察评价,提出的地质勘察报告不能真实反映场地条件,勘察资料不准确,结论不正确、建议不合理,就会给结构设计人员造成误导。如淤泥质土、暗塘等没有被发现,会使新建的建筑物和构筑物发生严重下陷、倾斜或开裂。

沿海地区工程现场的地质、水文勘察调查宜包括下列内容:了解工程区的地形地貌特征、微地貌类型,地层成因类型、岩土性质、产状与分布概况,不良地质现象概况,地下水类型和分布概况,区域稳定性和历史地震背景和震情。查明海水的侵入范围、咸水(包括现代海水和古代残留海水)与淡水的分界面及其变化规律;潮汐对地下水动态的影响。只有认真研究地质资料,以数据说话,才能设计出切实可行的基础方案。

3.2认真研究、多方论证,确定最佳地基处理和基础设计方案。

苏北沿海地区地质是由于黄河淤积和黄海冲积而成,地貌属于淤泥质海岸,为我国淤泥质海岸分布最广、最典型的地区之一。淤泥质软土的存在对工程基础设计提出了更高的要求。淤泥质软土地基承载力低,压缩性大的特点,不易满足建筑物和构筑物地基设计要求,需进行地基处理。根据软土地基处理的原理和作用,根据多年一些输变电工程建设实践,可以采取以下简单易行、经济效益较高的软土处理方法。

(1).换土法

此方法适用于浅层软弱地基及不均匀地基的处理。当淤泥土层厚度在4m以内时,可采用挖除淤土层,换填砂土、灰土、粗砂、砾石、片石、卵石等办法进行地基处理,换填淤泥土层,提高软土地基强度,一般换填的厚度为30~100cm。换填土相对来说造价高,但可以节省工期。

(2).地基加固处理及桩基法

当淤土层较厚,难以大面积进行深处理时,可采用打桩的办法进行加固处理。当淤土层厚度小于5m时,宜打砂桩或石灰桩,通过吸水和排水来挤密淤土,使其孔隙比小于1,以达到一般地基要求;当淤土层厚度在5~7m时,宜打预制管桩至硬土层,设承载桩台;当淤土层厚度在7~10m时,宜打灌注桩至硬土层,设承载桩台;淤土层厚度在10m以上时,宜采用打悬浮桩的办法,挤密淤土层并靠摩擦承载。

(3).优化基础法

①扩大条基底面积,增设钢筋混凝土基础梁。可将条形基础浅埋,把基础设置在地基表层的密实土层上,从而避开淤土层,适当设置钢筋混凝土基础梁,增大基础的刚度,提高基础的稳定性和抗变形的能力。

②采用筏板基础或箱形基础。对小型建筑物可采用扩大基础底板的方法,如设计较薄的钢筋混凝土底板。对大中型工程,可采用空箱底板,即在不增加建筑物造价的情况下,用加大底板高度、减轻底板自重的办法来适应软土地基要求。

软土地基论文例2

1.1现场勘查。软土地基的现场勘查工作主要包括:首先,现场的测绘调查,分析软土地基分布区域的地貌、地形等,同时分析软土地层的成因、范围、深度以及性质等;其次,选择科学的勘查点以及勘查手段,常用的勘查手段包括原位测试法、钻探式勘查法、室内土工试验法等;再者,软土地基评价,当获得了软土地基施工现场的相干参数之后,对各种数据进行分析和计算,获得软土地基的沉降性、均匀性、灵敏度以及承载能力等。

1.2选择合适的施工处理方案。根据现场勘查获得的相关数据资料,对比各种软土地基处理方法之间的优劣性,选择合适的施工处理方案,可以是某种施工处理方法,也可以是多种软土地基处理方法的组合,同时还应该评估施工技术、机械、环节、工期以及材料工程等各种印象因素,综合各种因素选择科学的施工方案。

2道路桥梁工程中软土地基的施工处理措施。目前,道路桥梁工程中软土地基的施工处理措施主要包括以下方面:

2.1灌浆处理技术。灌浆处理技术是通过利用电化学原理、高压旋喷法、粉喷法等将能够改善软土地基性质的浆液注入到地基裂缝中,灌浆浆液可以是水泥砂浆、水泥浆,还可以是化学材料,例如硅酸盐等,灌浆处理技术能够有效的改善软土地基的性质。粉喷桩处理技术是最常用的灌浆处理技术,该种灌浆处理技术的应用优势在于施工机械简单,操作方便,加固效果好等,在采用粉喷桩处理技术时,应该严格的控制钻机的位置,保证钻机按照既定的设计要求进行就位,桩的孔位置必须和设计图纸的位置完全吻合,垂直方向的偏差不能超过1.5%,通常不超过50mm,严格的控制水泥喷入量、停粉时间以及喷粉时间,以此保证粉喷桩的长度和质量,同时还应该做好施工日志,全面、详细的记录水量、孔深、孔位等信息。

2.2强夯处理技术。强夯处理技术是目前使用最广泛的软土地基处理技术之一,也称之为动力固结法,该种软土地基处理技术的工作原理表现为:将具有一定重量的重锤提升至一定的高度,然后由重锤自由降落,通过重锤的重力作用对地面产生巨大的冲击,以此起到加固地基的作用。强夯处理技术具有施工周期短、费用低、设备简单等应用优势,该种软土地基处理技术适用于低饱和粘土、杂填土、黄土、粉土、沙土、素填土等软土地基,但是不适用于饱和度相对较高的软土地基。因此,道路桥梁施工队伍在采用强夯施工处理措施时,应该充分的考虑施工现场的地质构造。

2.3排水固结处理技术。排水固结处理技术是最常见的软土地基处理技术之一,主要包括袋装沙井法、沙井法、砂垫层法等:砂垫层法指的是在软土地基的顶层铺设足够量的砂石,通过填土荷载将软土地基中多余的水分排出,该种排水固结处理技术能够实现排水固结和路基填筑的同步进行,达到在填筑过程中保证路基排水效果的目的,同时又不会承受过大的荷载被破坏;沙井加固处理技术指的是在采用钻探器械在软土地基上进行钻孔施工,然后选取足量的砂石灌入,吸收软土地基中的水分,以此实现排水固结的效果;袋装沙井加固处理技术指的是选取足量的满足施工要求的砂,将其装入到透水性良好的编织袋中,然后用专用的机械设备将沙袋打入到软土地基中,该种排水固结处理技术具有节省材料、费用低、施工效率高等优点,致使其在道路桥梁工程的软土地基施工中得到广泛的应用。

2.4换填加固处理技术。换填加固处理技术指的是根据勘察所获得的数据,选用强度高、稳定性好的石灰、砂石等置换原来的软弱土质,以此改良原有地基或者形成双层地基,达到加固地基、控制地基沉降等效果。在采用换填加固处理技术时应该注意以下几个方面:其一,根据道路桥梁工程的具体状况选择符合相关设计要求的换填材料;其二,在进行置换的过程中,应该进行分层换填、加固和压实,通常采用机械碾压进行处理,保证地基的压实度满足相关的施工要求,;其三,精确的计算换填的深度以及面积,保证换填施工能够顺利的进行。

软土地基论文例3

2桩基础施工技术工艺处理措施研究

2.1开挖方法及控制要点

2.1.1打桩后再开挖在结合该工程实际处所地基地质环境及其当时现有的工艺条件下,包括吸收了国外同类题材项目的施工经验及建模理论的基础上,确立了“打桩后再挖土”的打桩作业原则。这是因为本项目如若采用先开挖在打桩的作业方式,不仅要考虑造价因素,同时还要评估施工难易程度。具体原因则是:本工程项目所处地质形态环境下,土质结构相对松散、含水量大,且高度压缩性非常明显,渗透性表现不灵敏,属于软塑、流塑组织状态,荷载性能不足。此外就开挖作业量而言,开挖规模较大,很难准确评估坑底标高。同时基坑长期在外投入的人工降水造价费也很高。特别是该地气象条件下降雨量丰富,但凡基坑被泡则会加剧塌方隐患,所以打桩机很难到坑底地带完成作业。若非所处作业条件受限,正常基坑打桩则需要利用路基箱,碎石块等物资设施加以辅助。基于此,本项目实行的“打桩后再开挖”打桩作业法则充分切合实际利用了地表硬壳层,从而使得打桩工作开展可采用地面行进方式完成作业,不仅使得作业效率显著提升而后又控制了造价成本投入,并巧妙控制了基坑开挖的桩柱变形及顶部位移。2.1.2质量控制要点虽然结合本项目实际特点采取了“打桩后再开挖”作业施工法具备显著优势,但是短板之处也同样值得重视,需要予以重点质量控制,即预先打入桩的弯曲变形组织形态下的水平位移需要严格控制。基于此,为控制变形加剧并产生控制良效,则需采取针对性控制手段:第一,应能结合施工流程,妥善控制挖土次序,并保持对称挖土以避免基坑长期在外;第二,当基坑面积较大时,则可以使用分段挖土作业原则完成该时期工序作业,即每挖一段就随后完工一段,并处理好每挖一段的回填,然后交替循环进行开挖。第三,基坑开挖后存在的土料应随挖随运,杜绝在边坡周围堆放开挖土,从而达到控制桩基变形及顶部位移的主要目的。

2.2锤击沉桩施工法

2.2.1沉桩锤选用标准本项目采用的打桩法主要以锤击沉桩法应用为主。值得指出的是,柴油锤、落锤、或者蒸汽锤的选择应能结合项目实际进行评估并应予以采用。一般而言,柴油锤特别适用于坚硬土层性质的地基土,这是因为柴油锤连续作业性能良好,锤芯夯击起跳高,且沉桩成效佳;而蒸汽锤一般比较受用于软粘土层进行沉桩;至于落锤,严格意义上可将其视为作业机具,应用于沉桩规模作业较小的短桩结构。因此,对于沉桩锤的选用确认,应能结合桩基础的规格型号、基本长度、以及其重量级、直径等参数进行评估并予以采用。2.2.2质量控制要点沉桩落锤的捶打原则应坚持以“重锤低打”执行原则为主,并要考虑桩基础本身极限强度允值的承受情况,即处在其捶打承受荷载允值内,尽量采用大桩锤,以避免捶打时桩头损坏。因此,结合上述沉桩锤落锤的捶打依据,本项目对于400x400mmx30m的钢筋混凝土方桩和钢管桩的沉桩施工,可优先选用3.5t级柴油锤;当调配确有困难时,亦可选用4.5t级柴油锤,但应限制锤跳高度,不应超过2m;φ550x100mmx40—45m的预应力钢筋混凝土管桩和钢管桩的施工,宜选4.5t级柴油锤。

2.3停打标准处理控制要点

2.3.1桩基础基本停打标准确认高层项目桩基础打桩的停打控制标准有关责任施工单位应能高度予以重视。这是因为桩基础的停打处理标准决定着该高层项目基础所承载的极限允值,从而决定是沉降量是否规则,以保障项目基础结构上方的建筑结构安全性能得以保持。此外,如若确保桩基础的停打控制标准合乎质量控制标准,则直接有效、合理控制施工进度,并确保打桩机具的油耗得到有效控制,且使得其桩锤使用周期寿命得以延长。因此,确认桩基础的桩锤停打标准,则需要客观考量该项目的所处地质环境,以及现有的桩基础规格种类、桩的长度,包括现场各项组织控制要素等进行综合评估并予以采用。基于此,结合受力形态存在的力学差异,则需切合项目实际来确认桩基础停打标准。2.3.2持力层确认贯入度虽然沿海一带土层所固有的基本性质属于软粘土,并且分布相对稳定。但是如何判断桩基础的沉桩锤击受力是否进入到持力层就成为了停桩标准控制关键。因此,此时可以凭借贯入度去进行客观评估。也就是说,待桩端已经深入到持力层,则可结合设计要求继续打至3—5D。不过,有时会遇到突发状况,即遇到结实、坚硬的持力层,这是打至3-5D无疑非常困难,(贯入度S<1.0mm)并且如若强行进行锤打则会使得桩基础损毁的同时又白白毁掉了桩锤。因此,对于该情况的技术交流则需要和设计单位进行反映与沟通,当经得对方同意时则能够以贯入度参数指标作为桩锤停打的主要考量依据。2.3.3基本效益本项目采用“重锤低打”大桩锤(柴油锤)的作业方式对400x400mmx30m及φ550x100mmx40—45m砼方桩及钢管桩完成了其沉桩作业。实际施工中,采用4.5t柴油锤的φ550x100mmx40—45m较大型号桩也都达到了基本预定深度,并且经过静载荷试验表明,桩身强度基本满足设计承载力需求,施工组织设计方案更为合理、可行和经济,远远超过缩短工期所获得的效益。

软土地基论文例4

2水利工程中有效的软土地基处理方法

2.1置换填土法置换填土法不失为一种较好的软土地基处理方法,处理效果较为明显持久,但由于对客观条件要求较高,实际操作起来难度较大。具体操作方法是利用灰土、水泥等硬度较高的土质、材料取代软土,操作过程中注意做到均匀散落于地基之上,目的是保证洒落后土质有更高的承载能力,使其满足进一步的水利工程施工要求。该种软土地基处理方法,存在的问题在于其工程量较大,成本较高,不够经济,操作实施过程中为了有效控制工程成本,尽量就地取材。为了提高工程地基的防渗透性和地基承载能力,需要对替换后的填土进行再次夯实处理,必要时可以采用分层夯实方法。

2.2排水固结法软土地基处理,主要是通过各种技术方法来降低地基土质中的水分含量,达到增强土体强度的目的,可以尝试使用排水固结法处理。通过引入专门的排水设备(如塑料水管、沙井)排出软土地基内部的水分,以此来减小软土地基的土孔隙率,促使地基固结发生变形,从而有效提高地基牢固度。排水固结法较适用于那些饱和、软弱土层;如果是渗透性较低的泥炭土,由于可能导致最终的排水效果较差,应当慎重使用该方法。

2.3夯锤强夯法软土地基处理方法选择与地基内部土体性质密切相关,如果是沙土、黄土构成的软土地基,可以考虑使用夯锤来对软土进行夯实处理。一般情况下,用于夯实土体夯锤的夯力要求在80kN及以上,以此保证土体牢固,从而保证软土地基较高的牢固度和稳定性。以南水北调中线一期工程中某河段施工为例,该河段渠道地基为黏砂多层结构,且半挖半填,挖方深度为7.0~10.5m;渠道底板土质为细砂、重砂壤土和中壤土,渠坡由细砂、重砂壤土和中壤土构成,且重砂壤土、细砂土质分布不均,具有中等偏弱的透水性,而重砂壤土有明显的地震液化潜势。面对该特点的软土地基,在水利工程施工过程中可以考虑使用强夯法处理,单击夯击能3000kN•m时击四遍;其中前三遍夯锤落距可以保持在15m,第四遍满夯过程中落距可以降为5m。使用该技术方法处理完成后,需要对强夯区进行必要的标贯检测、土样室内化验分析,一般情况下都能够明显消除重砂壤土的地震液化问题,使处理后质量能够满足工程设计要求。如果由于地下水位较高,导致强夯后软土地基仍然不合格,可以考虑进行垫土辅助处理。

2.4水泥旋喷法水泥旋喷法是一种通过专用旋喷设备形成水泥旋喷桩来提高软土地基承载能力的方法。该方法较适用于冲填土、软黏土等土质软土地基加固。该方法的基本原理是通过在旋喷桩上设置一个能够发挥特别功能的注浆管,将这个注浆管放入到一定深度的软土层中,然后缓慢向上提升,这时喷嘴会以一定速度转动,而注浆管会在强压力作用下喷出水泥浆液,其与土体接触融合,在水泥浆液凝固后形成所谓的旋喷桩,达到牢固软土地基、防止渗水的目的。旋喷桩的强度、牢固度较高,且不容易被压缩,能够起到很好的土质改良作用。但是水泥旋喷方法也不是万能的,在使用该方法之前需要准确核查土体的成分,如果土体中含有较多的有机质成分,如塘泥土、泥炭土,建议不要使用该方法。

2.5管桩桩基法桩基法是当前水利工程施工建设中应用较为广泛的软土地基加固方法。由于其具有良好的牢固性质,被广泛应用于含水量较大的软土地基处理,其中以钢筋混凝土管桩和预应力管桩使用居多。仍然以前边所述的南水北调中线一期工程某河段为例,鉴于该河段地基土质,经研究后决定采用挤密砂石桩方法处理渠道地基;挤密砂石桩桩位布置为三角形,桩距为200cm、桩径为60cm。挤密桩施工前,先复核每根桩的桩位放线,成桩后再次检查桩位位置是否有偏差,如果发现存在偏差或者漏桩现象要及时纠偏和进行补桩。施工过程中挤密砂石桩跳打进行,由两侧向中间方向试验成桩,均匀分布、逐步加密,及时进行夯填。如果施工是在既有建筑物附近,该桩位是背离建筑物方向。

2.6高压灌浆法高压灌浆法是水利工程软土地基处理的主要方法之一,一般采用液压或者气压的方式,向软土地基内部灌入有凝固功能的浆液,或使用注浆管将水泥浆液均匀注入到软土层中,目的是赶走原有软土层中的水分、空气,促使软土层发生变形。浆液的凝固作用在于使原有软土层中的松散颗粒、裂隙进一步胶结成新的结合体,从而提高原有软土层的承载力、压缩模量,起到加固软土地基的作用。灌注浆液一般选择水泥浆、黏土浆等。

软土地基论文例5

(1)彻底清理施工现场。为保证水泥搅拌桩在钻孔时符合相关要求,应确保施工地面平整,且应对地面上的垃圾、废弃物、杂物等进行彻底清除,若地面为坑洼,则需适当展开填压处理,确保水泥搅拌桩可向地基中顺利置入。(2)应准备好适当的喷射材料。在水泥搅拌桩施工过程中,所选材料可在很大程度上对其施工质量造成影响,而水泥作为其中重要的原料,其选择应与软土地基相应需求相符合,且水泥在凝固之后的加固效果应符合标准要求。一般情况下,水泥搅拌桩施工中最佳的水泥为较高等级的硅酸盐水泥。(3)需选择适当的施工设备。在水泥搅拌桩施工过程中,钻机为其核心的施工设备,故在施工之前应确保钻机以及其他的设备顺利运送到现场,且应精密调试设备并展开测试,保证设备可在施工过程中顺利应用。对于其他所有进场设备也应进行严格检查,保证其性能完好。

1.2水泥搅拌桩施工工艺分析

(1)在水泥搅拌桩施工中,放线为首要操作,其目的是对定桩位置进行确定。在放线过程中,勘测人员应以施工设计图为依据根据水泥搅拌桩具置展开放线定位,在定位过程中应对施工图纸相应要求严格遵行,尽量将误差控制在最小范围中。(2)钻机设备是展开定位操作的必要设备,应在搅拌桩口正上方放置钻机,根据放线定位结果确保桩位、钻头中心处于同一条直线并保证钻孔垂直度。另外还应调整层向轨至垂直于搅拌轴处,保证钻机主轴倾斜度低于1%。(3)适当调整钻机部位,确保其处理最佳位置,然后可开启钻机,确保钻机所处深度的合理性,同时应保证钻机钻入时喷浆泵同时被开启,以确保水泥自喷浆泵进入搅拌的泥土中,从而充分对水泥及土体进行混合搅拌。另外,钻机钻进过程中应安排专门人员对相关读数进行记录,以确保钻机钻至预期的深度及位置。(4)水泥喷射至桩底后应立即进行搅拌,同时搅拌后应加强对复捣的重视,且复捣应从桩底部开始直到顶部,待复捣至顶部后可终止桩体喷射。从而确保地基中所含的水泥量充足,促使软土地基的承载力及抗压性增大。

1.3水泥搅拌桩施工期间的注意事项

水泥搅拌桩施工期间应加强对施工过程监控的重视,且应认真对的施工过程中所得数据进行认真、清晰的记录;另外,相关人员还应加强对施工现场环境熟悉的重视,并且应认真评估环境可能会对施工质量造成的影响。另外,还应安排专门人员负责水泥用量,并且应严密观察施工过程,及时发现并处理施工过程中存在的问题。同时复捣时应确保复捣次数充足,并且复捣力度应达到要求,从而保证桩体足够稳固。水泥喷浆时相关人员应加强对喷浆实践及停浆时间控制的重视,严禁中途随意停止中断;且应禁止在喷浆未完成前进行钻杆提升作业。除此之外,若施工期间出现喷浆水泥量不足现象则需安排监理工程师对整桩复捣工作进行负责,保证其顺利完成。

1.4水泥搅拌桩的质量检测

(1)施工结束3d后可对水泥搅拌桩进行轻便触探实验,以及时明确水泥搅拌桩桩体内水泥浆的分布情况,探触深度通常应控制在4米左右,且触探桩数应不低于3根。(2)施工结束后第28d则可对搅拌桩的承载力进行检验,检验方式可采用检验单桩承载力及复合地基承载力的方式进行,以及早明确桩基承载力情况,确保其达到质量要求;另外,通过对水泥搅拌桩承载力的检验还测试软土地基整体的承载情况。(3)若在进行上述两种检验后仍难以明确判定桩身质量,则可采用抽芯机对桩身的芯样进行抽取,并对抽取的芯样进行研究,检测桩身强度及完整性。需注意的是该检验需安排专业检验机构进行,且抽取的芯样数量应大于3根。

2搅拌桩位不准问题及相关解决策略

水利工程中深层搅拌桩施工是一项较为隐蔽的工程,且对施工质量的要求较高,因而,这就要求桩体施工实施前相关技术人员必须要加强对施工放样操作的重视,工程实施前需做好各项准备工作,尤其应加强对桩体校准的重视,同时在施工人员完成桩体放样工作后,监理工程师还需认真校核桩位,同时还应认真检测桩位轴线,尽可能确保施工质量,以防由于桩位施工质量不佳而造成返工。另外,水利工程软基处理深层搅拌桩技术实施过程中相关人员还应加强对轴线安放检测的重视,以确保该工序满足工程的质量要求,为保证整个水利工程软基处理质量提供保障。

软土地基论文例6

排水砂垫层主要是在地基的地表铺一层砂石,这样做可以将土层中的水分进行很好的控制,不会使水量发生重大变化,保证土层的良好排水,影响土质结构,同时铺设一层砂石可以增加软土层的承载力。在铺设砂石层时,砂石层的厚度以0.6~1.0m为宜,在进行软土地基的排水改造的同时还要进行地基两侧的排水系统的修建,保证良好的外部排水中间,在软土地基的土壤颗粒和置入材料产生摩擦力,将整个的软土层和抗拉力材料形成一个整体,增加整个软化土层的稳定性。例如:在福建省的围垦工程中间,就是采用的朔料排水板,加强土层中水分的排除,将剩下的土壤固结成可以承受高强度的土层,同时还在其中放置土工织物,将整个拉力均匀的分布在基地中,这样可以使得基地均匀承受力,同时增加软土地基的稳定性。

1.2预压砂井法

预压砂井法是利用压力系统和排水系统的相互结合,在软土地基中,将空隙中的水分排除来,同时将剩下的土壤进行加压,增加土层的承压能力。在这种两种方法相结合的系统中,常用的排水系统是水平的排水垫层或者利用排水沟将水排除,还采用竖直方向的排水砂井和排水板;在加压系统中,常用的方法是推载预压、真空预压和降低低下水位等等。当在清除加固范围内的植被和土壤后将上面铺上砂层,再插入垂直的排水板,在砂层中放置横向的排水管,最后在砂垫层封膜,将膜内的空气抽出,这种方法我们称为真空联合堆载预压法。但是这种方法的作用范围有限,适用于工期较宽泛的工程。

1.3旋喷法

旋喷法是将带有喷嘴的机械作用到预订的土层深度后,从喷嘴中喷射出水泥,通过高速的旋转将土壤和水泥混合到一起,最后整个固结硬化成桩,这样的方法可以将整个的地基变成土壤和水泥混合硬化而成的桩,最后可以达到提高地基承载力的效果。这种方法对于有机质含量较多的土层作用很小,在塘泥等土层中要慎用。

1.2换土法

换土法是软土地基处理技术中比较常用的一种方法,这种方法简单有效,在实施过程中,通过对软土本质的改变,改变土质特性,达到水利地基建设的标准。例如:在水利施工中遇到软土地基问题,可以用水泥、灰土等替换软土,使土壤的承载力达到水利施工的标准。换土法可以直接的有效的提高土壤的承载力,但是这种简单直接的方法却很容易收到地理位置的制约,影响这种方法的使用,在比较偏远的位置,交通运输不便的情况下,这种方法就会加大工程的成本,因此,在采用换土法的同时,也要充分考虑到当地的实际,在交通便利的情况下采用这种方法。

1.5排水固结法

排水固结法是采用排水板将土壤中间的水分排出,然后提高土壤的稳定性,增加土壤的承载力。

1.6振动水冲法

振动水冲法是将软土地基打孔,然后将水泥等原料填充到其中,在采用分层夯实的方法,加固地基,一般在采用这种方法之前不要利用排水系统进行排水。

1.7硅化加固法

硅化加固法是将氯化钙和氧化钠等溶液通过两侧有洞的管注入到地基中间,通过这些化学溶液融入到土壤中间,在和土壤产生化学反应,在土壤之间生成一种胶状物,将土壤凝结在一起,从而增加土壤的承载力。在使用这一技术的过程中间,采用电化的方式可以加大硅化的范围,这种方法叫电动硅化法。

1.8人工材料加筋法

人工材料加筋法是采用人工合成材料覆盖在地基表层,这一工作要在工程施工之前完成,这样做主要是为了将整个建筑物的重量均匀的分布在地基的各个地方,不会出现某些地方承载的压力大,有的地方承载的压力小的情况,另外,这种方法可以有效的增加建筑物和地基之间的摩擦力,防止建筑物出现倾斜的现象。

1.9桩基法

基法在面对含水量大,软土地基层后等水利工程的建设中间使用的较多,将钢筋混凝土桩置入到软土地基中,代替传统的砂石桩。

软土地基论文例7

2道路桥梁工程中软土地基的施工处理措施分析

2.1道路桥梁工程软土地基施工处理前的准备工作。

道路桥梁工程软土地基处理前的准备工作主要包括以下几个方面:

2.1.1现场勘查。

软土地基的现场勘查工作主要包括:首先,现场的测绘调查,分析软土地基分布区域的地貌、地形等,同时分析软土地层的成因、范围、深度以及性质等;其次,选择科学的勘查点以及勘查手段,常用的勘查手段包括原位测试法、钻探式勘查法、室内土工试验法等;再者,软土地基评价,当获得了软土地基施工现场的相干参数之后,对各种数据进行分析和计算,获得软土地基的沉降性、均匀性、灵敏度以及承载能力等。

2.1.2选择合适的施工处理方案。

根据现场勘查获得的相关数据资料,对比各种软土地基处理方法之间的优劣性,选择合适的施工处理方案,可以是某种施工处理方法,也可以是多种软土地基处理方法的组合,同时还应该评估施工技术、机械、环节、工期以及材料工程等各种印象因素,综合各种因素选择科学的施工方案。

2.2道路桥梁工程中软土地基的施工处理措施。

目前,道路桥梁工程中软土地基的施工处理措施主要包括以下方面:

2.2.1灌浆处理技术。

灌浆处理技术是通过利用电化学原理、高压旋喷法、粉喷法等将能够改善软土地基性质的浆液注入到地基裂缝中,灌浆浆液可以是水泥砂浆、水泥浆,还可以是化学材料,例如硅酸盐等,灌浆处理技术能够有效的改善软土地基的性质。粉喷桩处理技术是最常用的灌浆处理技术,该种灌浆处理技术的应用优势在于施工机械简单,操作方便,加固效果好等,在采用粉喷桩处理技术时,应该严格的控制钻机的位置,保证钻机按照既定的设计要求进行就位,桩的孔位置必须和设计图纸的位置完全吻合,垂直方向的偏差不能超过1.5%,通常不超过50mm,严格的控制水泥喷入量、停粉时间以及喷粉时间,以此保证粉喷桩的长度和质量,同时还应该做好施工日志,全面、详细的记录水量、孔深、孔位等信息。

2.2.2强夯处理技术。

强夯处理技术是目前使用最广泛的软土地基处理技术之一,也称之为动力固结法,该种软土地基处理技术的工作原理表现为:将具有一定重量的重锤提升至一定的高度,然后由重锤自由降落,通过重锤的重力作用对地面产生巨大的冲击,以此起到加固地基的作用。强夯处理技术具有施工周期短、费用低、设备简单等应用优势,该种软土地基处理技术适用于低饱和粘土、杂填土、黄土、粉土、沙土、素填土等软土地基,但是不适用于饱和度相对较高的软土地基。因此,道路桥梁施工队伍在采用强夯施工处理措施时,应该充分的考虑施工现场的地质构造。

2.2.3排水固结处理技术。

排水固结处理技术是最常见的软土地基处理技术之一,主要包括袋装沙井法、沙井法、砂垫层法等:砂垫层法指的是在软土地基的顶层铺设足够量的砂石,通过填土荷载将软土地基中多余的水分排出,该种排水固结处理技术能够实现排水固结和路基填筑的同步进行,达到在填筑过程中保证路基排水效果的目的,同时又不会承受过大的荷载被破坏;沙井加固处理技术指的是在采用钻探器械在软土地基上进行钻孔施工,然后选取足量的砂石灌入,吸收软土地基中的水分,以此实现排水固结的效果;袋装沙井加固处理技术指的是选取足量的满足施工要求的砂,将其装入到透水性良好的编织袋中,然后用专用的机械设备将沙袋打入到软土地基中,该种排水固结处理技术具有节省材料、费用低、施工效率高等优点,致使其在道路桥梁工程的软土地基施工中得到广泛的应用。

2.2.4换填加固处理技术。

换填加固处理技术指的是根据勘察所获得的数据,选用强度高、稳定性好的石灰、砂石等置换原来的软弱土质,以此改良原有地基或者形成双层地基,达到加固地基、控制地基沉降等效果。在采用换填加固处理技术时应该注意以下几个方面:其一,根据道路桥梁工程的具体状况选择符合相关设计要求的换填材料;其二,在进行置换的过程中,应该进行分层换填、加固和压实,通常采用机械碾压进行处理,保证地基的压实度满足相关的施工要求,;其三,精确的计算换填的深度以及面积,保证换填施工能够顺利的进行。

软土地基论文例8

一、软土路基成因

所谓软土,比规范中的定义广泛,包括强度达不到设计要求的湿粘土。路基强度及稳定性与路基干湿状态密切相关。路基干湿状态是由土中含水量的高低决定的,而含水量的高低取决于各种湿源的作用和延续时间。由于路面宽、路基低、排水设施不全或失效,使得雨水和生活污水向路基内渗透、地下水位升高,路基长期处于潮湿状态,加上土的水稳定性差等原因,导致路基软化。

二、软弱地基变形特点

为了更好地解决上述问题,就必须要弄清楚软弱地基的变形特点。它主要有三大特点:变形量大;压缩稳定所需的时间长;侧向变形比一般的土体大。变形量大:软弱土体主要指淤泥或淤质土,其自身的含水量较大,水份不易自流出来;压缩稳定所需的时间长:软土主要以粘粒为主,尽管孔隙比大,但单个孔隙教细,孔中的水很难流动,透水教低,饱和土受荷载作用后,水不能尽快排出,变形也只能慢慢进行,其变形过程要持续数年或数十年;侧向变形:比一般土体大,而且侧向变形与竖向变形之比在相同条件下比一般土体大。

三、软弱地基处理方法

在了解软土的三大特点之后,结合平日的实际施工情况,重点介绍几种软弱地基的处理方法,供有关技术人员参考。下面重点介绍前几种的适用范围、施工方法和作用。

1.抛石挤淤

适用范围:路基位于水塘、鱼塘、藕田、泥砂、流砂或不易抽干水或无法挖除淤泥或淤泥较深或水不能自流的地方。

处理方法:在其上面直接抛填大块径不易被水侵泡软化的石块,石块块径控制在50-80cm之间,并在大块石缝隙内填筑20—50cm的不易被水侵软化的小块石,抛填高度控制在常水位以上50cm左右,铺平后,用轮式压路机或拖式压路机振动压实,直到淤泥被挤出路基坡脚外,没有明显的再下沉现象为止;如果抛填深度较深,一定要分层抛填压实,其每层厚度控制在50—80cm,整段处理完后,在其上面铺一层10cm厚的碎石有必要时加铺一层土工格栅,再进行填筑土石方。并把此过程称为路基的原地面处理。

作用:由于抛填了大块径的石块,可将路基底的大部分淤泥挤出,在路基底部形成一个坚硬的骨架结构,并在大石块间填筑了小的石块,通过压路机振动碾压,石块与石块间嵌固的更紧,整体承受荷载的能力增强,对今后承受路堤的整体压力能起到很好的作用。

2.敷设盲沟

适用范围:一般水田或淤泥深度在2米以下的稻田或不易自流干水的地方。

作用:通过敷设盲沟,能大大降低土体的水位,能将土体内的大量水分排入盲沟,并通过盲沟排出路基以外,并通过日晒,使土体达到比较干的状态。

盲沟的结构形式有两种:矩形盲沟和梯形盲沟。

处理方法:首先沿公路横向每10米间距用人工或机具挖成矩形沟或梯形沟,对软土层在1.5米以上的采用150╳150cm的盲沟;对软土层在1.5米以下的可根据情况采用其他几种形式。其次,沿公路纵向设置纵向盲沟,其间距控制在10米左右;第三,在挖好的盲沟中填充块径在30—50cm的不易被水泡软化的石块,填满后在其上面铺设10cm的碎石,并在碎石上铺一层土工布,防止盲沟内水上溢,防止土尘下漏,堵塞盲沟,影响排水效果;第四,在上面回填一层土石混和料,摊平压实直至合格。把此过程称为路基原地面处理。

3.换填软土

适用范围:路堤填方高度小于3米且软土层不厚,一般软土层厚度在1.5米以内的软土地基段。

处理方法:将深度在1.5米以内的软土挖掉运往弃土场堆放或倾倒,然后利用挖方出来的好料或从借土场取来的好料进行分层回填压实直至合格。施工时要特别注意天气的变化,要求每个换填段必须在同一个工作日完成,对面积大或长度长的段落要求必须分段进行换填,否则未完成遇雨将全功尽弃。同样将此过程称为路基的原地面处理。

作用:通过换填好的填方材料,经过压实达到路基基底的承载力要求,能有效承受车辆荷载的作用力和路堤的自重,是最简单的施工方法。

4.碎石桩

适用范围:软土深度在15米以内且路基处于高填方地段。

作用:(1)挤密作用,对土体产生两个方向的横向挤压力。一个是成桩过程中沉管对周围土层产生较大的横向挤压力;另一个是在填入孔内碎石振动挤压时对土体周围产生的横向挤压力,使桩周围的孔隙减小,增加密实度;(2)消散孔隙水,加快地基固结。碎石桩的材料可使桩因土体的渗透能力高出很多的优势,能形成竖向排水管,让土体内的水排出地面,排出路基外,加快路基排水固结。

施工方法:

(1)碎石桩的几大控制指标:

平面位置——应按正三角形或梅化形部置

桩的直径——多数采用50-100cm

桩的长度——其长度不能大于15米

桩的部置范围——一般不少于路基款度的1.2倍

(2)用于碎石桩径相同或接近的钻孔机按照事先部置好的位置进行钻孔,并清除孔内的泥浆或水,边倒入碎石边进行振动使碎石达到密实;

软土地基论文例9

摘要 结合宁连公路北段高速化完善工程探讨了粉喷桩处理公路软土地基的施工工艺与检测方法,介绍了喷粉桩施工注意事项。关键词 公路 软土地基 粉喷桩 施工工艺 检测方法宁连公路北段高速化完善工程连云港市境内有13座跨线桥位于软土地基路段,其土层状态基本是表层1~3m厚硬塑层,下8~10m厚软、流塑层,再下为硬塑层(或基岩),采用粉喷桩处理软土地基,即以水泥作为固化剂,利用深层搅拌机械将水泥与原位软土进行强制搅拌、压缩,并吸收周围水分,经过一系列物理化学作用生成一种特殊的具有较高强度、较好变形特征和水稳性的混合柱状体,它对提高软土地基承载能力、减少地基的沉降量及保证桥头高填土路基稳定性具有明显的效果,下面结合工程实际对粉喷桩处理公路软土地基施工工艺与检测方法进行探讨。1 设计简介宁连公路北段高速化完善工程(下简称“本工程”)粉喷桩设计桩径为50cm,间距1~2m,按梅花型布置,桩长以穿透软、流塑层进入硬塑层不少于50cm为原则,通常为8~12m,用于粉喷桩的水泥(425#普通硅酸盐水泥)为干粉。根据地基含水量的大小,采用水泥喷入量为45~60kg/m。含水量在40%以下时,水泥用量为45kg/m;含水量在40~60%之间,水泥用量为50kg/m;含水量在60~70%之间,水泥用量为55kg/m;含水量>70%时,水泥用量为60kg/m。设计要求水泥土28天无侧限抗压强度≥1.2MPa。2 施工准备2.1 粉喷桩施工前应准备下列施工技术资料:施工场地的工程地质报告,土工试验报告,室内配比试验报告,粉喷桩设计桩位图,原地面高程数据表,加固深度与停灰面高程以及测量资料等。2.2 场地平整、清除障碍。如场地低洼,应回填粘性土;施工场地不能满足机械行走要求时,应铺设砂土或碎石垫层。若地表过软,则应采取防止机械失稳措施。2.3 施工机具准备,进行机械组装和试运转。2.4 粉喷桩的施工工艺根据设计要求的配比和实测的各项施工参数通过试桩来确定。试桩一般为5根,通过试桩来确定钻进速度、提升速度、搅拌速度、喷气压力、单位时间喷粉量等。2.5 粉喷桩所用的水泥(425#普通硅酸盐水泥)应符合设计要求,并有产品合格证,并经室内检验合格才能使用,严禁使用受潮、结块变质的加固料。3 施工工艺流程3.1 粉喷桩施工。3.2 操作步骤为:①深层搅拌机械就位。②预搅下沉(至设计标高)。③搅拌提升,同时喷干水泥粉至地面以下0.5m处(设计桩顶)。④在桩上部的5m长范围内重复搅拌一次(1/3~1/2)桩长、桩上部强度要求较高。⑤重复搅拌提升,直到离地面下0.5m,上部回填5%灰土(或水泥土)并压实。⑥关闭搅拌机械移位至下一桩位。4 施工注意事项4.1 控制钻机下钻深度、喷粉高程及停灰面,确保粉喷桩长度。4.2 严禁没有粉体计量装置的喷粉机投入使用。4.3 定时检查粉喷桩的成桩直径及搅拌均匀程度。对使用的钻头定期复核检查,其直径磨耗量不得大于2cm。4.4 当钻头提升至地面以下0.5m时,喷粉机应停止喷粉。4.5 当喷粉成桩过程中遇有故障而停止喷粉,在第二次喷粉接桩时,其喷粉重叠长度不得小于1m。4.6 粉喷桩施工时,泵送水泥必须连续,固化材料的用量以及泵送固化材料的时间应有专人记录,其用量误差不得大于±1%。4.7 为保证搅拌机的垂直度。应检查起吊设备的平整度和导向架对地面的垂直度,每工作班检查不少于2次,使垂直度偏差不超过1%。4.8 搅拌机喷粉提升的速度和次数必须符合预定的施工工艺要求,搅拌机每次下沉或提升的时间应有专人记录,深度应达到设计要求,时间误差不得大于5秒,施工前应丈量钻杆长度,并标上明显标志,以便掌握钻入深度,复搅深度。施工中出现问题应及时处

软土地基论文例10

中图分类号:TV551.4文献标识码: A 文章编号:

1引言

随着我国经济建设不断发展,城市规模的不断扩大,土地资源不断缩减,往地下建设越来越受到青睐(特别是多层地下室的建设),继而带来了一系列关于深基坑开挖与支护的技术和理论的发展。但是在我国软土地区的深基坑开挖与支护仍然是一个难点。我国软土地区分布主要在东南部,如东南部沿海地区福建省等,其上部土层主要是由滨海相沉积形成,多属厚层泥质土,土层主要性质是饱和、软~流塑状、粘滞力小、抗压抗剪强度小,为工程不良地质土,易发生塑性破坏。在地面建筑群分布密,地下管线纵横交错的软土中,进行大量深基坑开挖,如何严格控制基坑四周饱和软土的位移量成为人们关注的焦点。

2 基坑开挖支护常见的破坏模式

图1基坑常见的破坏模式

(1)倾覆破坏(图1a):产生的原因是排桩入土深度太浅和宽度不足或支护方式不当,以及地面堆载过多或重载车辆在坑边频繁行驶等。

(2)墙址外移破坏(图1b):当排桩插入深度不够,坑底土太软或因地下水作用产生的管涌或流沙,可能会导致此类破坏。

(3)地基整体破坏(图1c):此种破坏形式所造成的环境破坏最严重,所造成的损失也最大,因此笔者欲从此破坏方式进行理论探讨,对深基坑基底软土稳定性进行分析。

3深基坑基底软土稳定性分析

对于基坑a、b类破坏方式,只要引起人们高度重视,地基资料齐全,往往能够避免。但是,在厚层饱和软土层中开挖深基坑时,随着维护墙体内外测土面的高差的不断增加,由于土自重载荷以及无法避免的地面荷载等因素,仅靠地基基底以上多层支撑和维护墙体来平衡是不能完成支护的。基坑维护主要控制了基底以上坑外侧土体荷载和地面超载所诱发的水平作用力,对于垂直方向的重力效应,也只有靠基底以下的土体承担。问题是,基底下土层是由厚层的饱和软土组成,由其性质决定了其抗剪强度十分有限,塑性流变破坏也成为严重的不良地质,因而极有可能导致c类破坏方式,造成严重的经济损失和环境破坏。因此对基底软土即下卧层软土分析是十分必要的。

3.1基底软土稳定性分析的极限平衡法

为简化复杂数学计算,笔者对土层和基坑简化处理,见图2所示。

(1)基坑开挖深度为H,围护体入土深度为D;

(2)饱和软土为均质土,非均质土按加权平均厚度视为“均质土”;

(3)当基坑地面以下土体受地面超载q和基坑底高以上土自重作用下达到Mohr-Coulomb极限平衡时,基地土体沿以D为半径的圆弧塑性滑动破坏。

按以上简化由Mohr-Coulomb极限平衡理论,滑动面上土体的抗剪强度Tr:

Tr=(δ1-δ3)/2×cosφ

式中:δ1―――大主应力;

δ3―――小主应力;

φ―――土体内摩擦角。

在滑动面上任取p单元体(如图2),则可知抗滑力τf:

τf=((1-λ2)(q+γH+Dsinθ) +2cλ)/2×cosφ

式中: φ―――内摩擦角;

γ―――土容重;

c―――粘滞系数;

q―――地面载荷;

λ=tg(π/4-φ/2)。

由此可计算出对圆心O点的抗滑力矩Mr的大小:

从上式我们可以看出在基坑深度既定下,Ks与D呈线性关系,与φ值(λ值)成复杂的曲线关系,与粘滞系数c呈线性关系。由此我们可以得出两点启示:若想加大基坑稳定安全系数,有两套方案可供选择,即加深排桩插入深度和改变地基土的力学性质。下面笔者从抗滑系数与基桩插入深度和地基土内摩擦角的关系着手,讨论上述两套方案的优与劣。

3.2 Ks的变化规律

(1) Ks与D/H的关系

由Ks-D/H的关系曲线图(图3)可知, φ与D/H成线性关系,然而土体的φ值不同,相应直线斜率就显著不同,当φ值较小时,直线斜率则很小,随φ值增加,直线斜率陡然增大。这意味着,从经济上和效果上考虑,仅靠增加排插入深度借以提高Ks不可取,应从改善维护墙周围的饱和软土的力学性质着手,尤其是对基坑底面下卧层的处理。

(2)φ与Ks的关系

从理论上讲, φ与Ks的曲线关系较复杂,从前述公式中的K与理论关系中可间接反映出其关系,但从大量的实践活动中得出近似曲线(图4),从图中可看出,曲线族随土体φ值增大呈“喇叭”状迅速散开,当φ

3.3关于Ks的取值标准

当基坑附近无重大建筑物,对基坑水平位移要求不苛刻时,Ks可取1.30~1.50;当基坑附近存在较重要的保护对象时,Ks可取时,要求地面沉降≤0.2%,水平位移≤0.25%H时,建议Ks取值>1.85。

从以上分析可知,对饱和软土的基坑开挖支护应着重考虑改变土体θ值。目前最有效的方法是降水预压以增加基坑内软土的φ值、c值,同时也应适当考虑排桩的入土深度。目前真空降水预压以改变土的力学性质的技术已经成熟,所以改善饱和软土的力学性质是可行的。

3.4案例分析

泉州某项目基坑上部土层约28米厚的淤泥软土,其下为较厚的松散的粉砂,基坑开挖深度为9.8米,且基坑外地下管线较多,无法移走,最先考虑开挖基坑设计为排桩加外支撑支护,但排桩加外支撑支护系统造价高。经分析论证先采用真空降水预压以改变软土的力学性质,提高基坑内软土的φ值、c值,然后采用排桩加外支撑支护方案。经方案比较,该基坑开挖支护造价节省约45%,取得了较好的经济和社会效果。该基坑在采用真空降水预压前后软土的力学指标见表1。

表1软土的力学指标

通过计算,在排桩同样的入土深度条件下降水加固时,东坑Ks=1.49,西坑Ks=1.46。降水加固后,东坑Ks=1.88,西坑Ks=1.85。从比较来看,降水加固增加基底的土层力学指标,大大改善了基底软土的抗滑鼓破坏,且取得了较好的经济和社会效果。

4结论

在厚层软土地区中进行深基坑开挖设计时,应根据场地内软土的力学指标,考虑采用综合处理的设计方案,特别是在厚层软土中,可根据Mohr-Coulomb极限平衡理论,对软土先进行排水预压处理,提高基坑内软土的φ值、c值,然后采用排桩加外支撑支护方案,以期取得较好的经济效果。

参考文献:

热门文章