期刊在线咨询服务,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

期刊咨询 杂志订阅 购物车(0)

卫星通信论文模板(10篇)

时间:2023-03-17 18:11:34

卫星通信论文

卫星通信论文例1

1.2卫星通信的一些劣势主要的方面有:(1)延迟现象比较常见。(2)传播过程中由于信号较差,容易出现信号中断的现象。(3)终端产品的选择面不广。

2卫星通信产品的多址体制方式的选择

卫星通信由于具有广播和大范围覆盖的特点,因此,特别适合于多个站之间同时通信,即多址通信。多址通信是指卫星天线波束覆盖区内的任何地球站可以通过共同的卫星进行双边或多边通信。目前比较常用的两种卫星通信多址体制方式为:TDM-FDMA(时分复用-频分多址)和MF-TDMA(跳频-时分多址)。(1)多址体制方式一:TDM-FDMA。(2)多址体制方式二:MF-TDMA。

3卫星通信在铁路应急通信中的应用网络架构

有时候会因为遇到突发性、严重的自然灾害、人为因素导致其他所有通信手段无法使用时,而应急指挥中心又急需现场相关资料,这时就可以利用卫星通信覆盖区域广和快速部署的优势将信息发送到应急指挥中心。常规卫星系统现场接入方式可以分成两种:一种是车载型,一种是便携型,这两种卫星接入方式可以视现场情况而定。而对于铁路应急通信人员来说,以上两种接入方式均可以采用,但在到达应急现场后,还需要在现场对卫星接入设备进行开设,考虑操作使用人员的技术水平和熟练程度,选择自动对星的车载或便携卫星设备就显得非常的方便,可确保快速建立通信链路保证通信。

事发现场人员要将信息传送到应急指挥中心,在铁路应急卫星通信系统网络建设时,可根据实际情况需要,按下文所述三种方案进行建设,如图1所示。

方式一:在中国铁路总公司应急中心建立卫星地面通信站,这样就可以通过应急指挥中心收发数据,再通过地面的有线网络传输到需要数据的各路局应急指挥中心。这种方案对于现代网络资源的应用比较充分,但在遇到一些突况时,数据可能无法通过地面有线网络传输到需要数据的各路局应急指挥中心,这就导致可能会出现一些无法预知的情况。

方式二:在各个路局的应急指挥中心建立卫星通信站,这样就可以在发生状况时迅速的将数据发送到各路局的应急指挥中心,同时各路局也能够及时的下达指令,进行相关问题的处理。这样做的好处是各路局应急指挥中心能及时掌握应急现场状况,但不利的是其建设费用将会大大增加。

方式三:在中国铁路总公司应急指挥中心以及各路局应急指挥中心均设置卫星通信站,这样一来,无论发生什么灾害情况,各路局应急指挥中心与中国铁路总公司应急指挥中心都可以实时掌握事发现场情况。这样做的好处不言而喻,但其建设费用也无疑会昂贵很多。

卫星通信论文例2

1.1MAC-Idle状态MAC-Idle状态中不存在TBF,MES监视CCCH上子信道的相关传呼。MES可能采用DRX(非连续接收)监视CCCH。在MAC-Idle状态,上层可请求传输一个上层PDU(协议数据单元),这就会触发在PDCH上建立一个TBF并由Idle状态转入MAC-Shared状态,或者有可能通过RRC流程或者是RLC/MAC流程在DCH上触发建立一个TBF,MES会在完成建立DCH后由Idle状态转入MAC-Dedicated状态。

1.2MAC-Shared状态在MAC-Shared状态中,MES分配无线资源提供TBF用于在一个或多个PDCH上产生点到点连接。TBF用于在网络和MES之间单向传输上层PDU。在MAC-Shared状态,上层可请求传输一个上层PDU,这就会通过RRC流程在DCH上触发建立一个TBF,这将会使MES由MAC-Shared状态转入MAC-DTM状态。当上行链路和下行链路中的TBF都被释放时,MES返回到MAC-Idle状态。当重新配置PDCH到DCH的所有无线承载,释放完PDCH上所有的TBF并建立第一个DCH时,MES将会由MAC-Shared状态转入MAC-Dedicated状态。

1.3MAC-DTM状态在MAC-DTM状态MES将无线资源分配给一个或多个DCH和一个或多个PDCH。在MAC-DTM状态当所有在PDCH上上行或下行的TBF都被释放之后,MES进入MAC-Dedicated状态。在释放了所有的DCH之后,MES进入MAC-Shared状态。在释放了所有的PDCH和DCH之后,MES进入MAC-Idle状态。

1.4MAC-Dedicated状态在MAC-Dedicated状态MES分配无线资源以提供一个或多个DCH(专有信道)。在释放掉所有的DCH之后,由MAC-Dedicated状态转入MAC-Idle状态,当从DCH到PDCH(分组数据物理信道)的所有无线承载都被重新配置以后,MES将会在释放完所有的DCH并在PDCH上建立第一个TBF时由MAC-Dedicated状态转入MAC-Shared状态。

1.5MAC层对组呼的支持由于GMR-1系统的MAC层不支持组呼功能,所以要对MAC层做一些改变。我们设计了组呼模块,它和单呼模块是并列的关系。根据逻辑信道的映射和MAC层的状态来区分单呼和组呼两个模块通道。组呼工作在电路域,只跟DCH有关,跟PDCH无关[5]。所以在MAC状态机中加入两个状态,分别是MAC-Ready-Gcc(组呼控制)状态和MAC-Dedicated-Gcc状态。工作在MAC-Dedicated-Gcc状态下的主/被叫移动台,正常接收MACDATA,状态不变;在释放掉所有DCH后,由MAC-Dedicated-Gcc状态转入MAC-Idle状态。主叫移动台发起组呼时,RRC层利用原语参数配置MAC层状态;接收下行报文时,MAC层根据MAC-Dedicated-Gcc状态将消息递交给上层组呼模块。图4是主叫用户的组呼MAC转移图。被叫侧成员移动台根据接收到的NCH逻辑信道通知MAC层转入MAC-Dedicated-Gcc状态,工作在组呼模块。流程如图所示。图5是被叫成员移动台组呼MAC状态转移图。集群组呼中,网络要向多个成员移动台发送寻呼通知消息,因此需要采用广播的方式发送。我们增添NCH为组呼通知信道。由于系统资源有限,这里我们借用未配置的CBCH逻辑信道的位置来配置NCH逻辑信道,NCH逻辑信道的突发结构和调制解调编解码方式与CBCH逻辑信道保持一致。例如,如果BCCH指派CBCH使用第一帧,则NCH使用2、3、4帧,如果BCCH指派CBCH使用第1、2帧,则NCH使用3、4帧,余此类推。

2MAC层PTT竞争随机接入回退策略

当组呼讲话方释放组呼上行信道时,讲话方用户在上行DACCH(专有随路控制信道)信道上发送“UPLINK_RELEASE”消息,表明讲话完毕。当一个组呼中有几个用户要同时讲话时,会产生讲话权的竞争。组呼成员也可能有不同的优先级,这时候需要一种竞争策略来解决[6]。以下举例为组呼信道采用8时隙结构,编码的话音为2.4kbits/s。网络收到讲话方上行信道的“UPLINK_RE-LEASE”消息以后,在组呼信道的下行信道的DACCH上向所有组呼移动台发送“UPLINK_FREE”消息,表明上行信道空闲,允许新的讲话方使用上行信道。需要讲话的组呼用户,在下行信道上收到“UP-LINK_FREE”消息以后,采用直接强占和随机接入相结合的方式,在组呼上行信道发送“UPLINK_AC-CESS”消息,消息被封装在NT5上,直接抢占第一帧,随后的随机时间选择为T,回退的最大帧数为F,则T=40ms*F。考虑到2比特的用户优先级,让优先级高的用户有较大的概率竞争成功,设用户优先级为m,退的次数为n,回退的最大帧数为F,则F=(m+5)*n,其中m=1,2,3;n≥1。

当n=0的时候,四个级别的用户都抢占第一帧,此时F=1。用户优先级m和回退次数n与回退最大帧数F关系部分如表1所示。下面以用户优先级m=0为例,随后的随机时间选择为200ms(5帧),400ms(10帧),600m(15帧),和800ms(20帧)总计2s秒钟的时间争用上行信道,方法如图6所示。按下PTT移动台,在最初开始的一帧直接发送“UPLINKACCESS”请求,若有碰撞,随机占用之后的5帧之一发送“UPLINKACCESS”请求,若还有碰撞,随机占用后续10帧之一发送“UPLINKAC-CESS”请求,还有碰撞,随机占用后续15帧之一发送“UPLINKACCESS”请求,一直到,随机占用后续20帧之一发送“UPLINKACCESS”请求,任意帧周期,当下行链路由“UPLINKFREE”转换成“UPLINKGRANT”时竞争结束。任何一个按下PTT的移动台直接抢占最初的一帧发送“UPLINKACCESS”,在后续的2秒钟的时间内又可以竞争上行信道四次,竞争期间,如果收到网络在下行信道上发送“UPLINK_GTANT”,则竞争结束。

当网络成功收到一个“UPLINK_ACCESS”消息以后,在组呼信道的下行DACCH信道上发送“UP-LINK_GRANT”消息,用于告知竞争成功用户可以使用上行信道,其它用户不再进行竞争,直到再次收到“UPLINK_FREE”消息为止。这里我们考虑的是有竞争冲突时,保证优先级高的用户有较大的概率竞争成功。通过以上的描述,分析计算可得。从公式可以看出,优先级高的用户,产生冲突的概率低,这样就很好的保证了优先级高的用户有较大的概率竞争成功。假设一个优先级为0、3的用户,其竞争产生冲突的概率曲线如图7所示。从图中可以看出,优先级高的明显比优先级低的冲突概率小,当n的取值逐渐变大,p越小,当n为5时,概率几乎为零了。事实上,n值不能取很大,应为值越大,虽然冲突概率很小,但是从PTT按下到响应这个时延过大,这不是我们所期望的。所以这个退避算法兼顾了n值不能太大,冲突概率小。

卫星通信论文例3

空间环境中影响CTE特性的重要参数包括辐射源粒子注量(辐射强度)、温度、CCD的类型以及掺杂情况、信号数据包大小、CCD的偏置状态等等,这里主要针对不同辐射源、不同沟道类型以及不同偏置状态展开具体的讨论分析。

不同辐射源对CTE的影响

空间环境中存在的可能对CCDCTE造成影响的粒子主要包括质子、电子、中子、x射线、γ射线以及各种重离子。x射线和γ射线主要造成CCD器件的电离损伤效应,对CTE影响较大的有质子、中子、电子等高能粒子。Norbert等人选取质子和中子作为辐射源,对XMM系统中工作于深耗尽状态的PN结CCD进行了空间辐射特性测量,测量结果如图8所示[13]。从图中可以看出,CCD的CTI特性具有较强的温度依赖性,并且在120K左右出现了CTI的极大值点,这对应着CCD的一个典型体缺陷,即A中心(或者叫氧空位缺陷),其对应的缺陷能级距离导带约0.17eV;CTI的量级较地面实验要小得多,这主要是因为空间中的粒子注量比实验中要小得多,并且在轨运行中的CCD器件增加了屏蔽层,大大提高了CCD的抗辐射性能;电子较质子对CCD造成了更大的位移损伤,其CTI较质子高约一个量级左右。由此可见,不同的辐射源可以对CCD的电荷转移效率造成不同的影响。

不同沟道CCD对CTE的影响

卫星通信论文例4

1.2海外应急通讯机制在全球经济一体化的影响下,世界各国之间的交流明显增多,海外应急通讯需求也在不断的增加。例如,海地地震的发生。针对该种情况的发生,国家外交、能源、水利水电等大型企业都应当适当的建立海外应急通信机制。在海事卫星的利用上应当对以下问题进行重点考虑。首先,应当在海外组织配带便于携带的承载终端及相应的配套装备,以便在紧急事件发生时为移动通信提供保障。其次,应当在常驻的机构及组织中部署专线,同海事卫星进行网络互连,确保传输通道的可靠和稳定,并成功的将通信网络延至海外。最后,建立合理的网络通信化系统,系统应当合理的将短信、位置、视频、音频等功能进行集成,提供本体和远程一体化解方案。

1.3改善海上航空应急方案网络技术的进步推动了海事卫星的在航空领域上在通信上的发展,同时因为海事卫星在遇到危险后具有安全通信的功能,航空领域的通信的优先级为海事卫星中的最高级。航空领域通信的安全性为海事卫星在航空领域的通信安全提供了有利的支持。目前,在世界各国的推动下,海事卫星在能够完成原有的任务的基础上,对网络宽带进行了完善和优化,实现了在技术上的进一步创新,实现了在语音上的双向优先级呼救,并成功的将其应用到了带宽的终端中,同时在安全服务中加入了IP数据业务,并且建立了热备模式“海上安全数据服务器”;“远程会话”功能主要用于对海上应急工作进行协调;提高在飞行过程中对重要数据的传输能力,从而提高飞机的报告系统与通信地址能够被更好的利用。目前海事卫星正在加快将航空宽带和海洋宽带纳入到ICAO和GMDSS安全通信体系之中,这样在一定程度上也提高了应急通信能力[4]。

1.4完善地面应急通信方案海事卫星应急通信网络目前已经在我国的许多行业中得到了应用,并且取得了不错的效果,但在网络利用上的解决方案尚且不足。一方面为了确保宽带在使用上需要具有一定的稳定性,因此在接入方式上应当发展专网接入。从南极科考、四川汶川大地震等重大事件中对海洋卫星通信的应用案例中可以看出相关部门与政府部门利用专网接入的形式同海事卫星进行连接,这样海事卫星则可以独自享用带宽,在数据传输上的可靠性、稳定性、安全性都将会得到进一步的提高。另一方面对海事卫星的终端进行应用,建立现场延伸解决方案。合理的对SIP、甚高频、IP技术和协议进行应用,从而科学的将海事卫星设备、专用设备、无线设备联系到一起,确保组与组、端到端、现场同异地能够顺利的开展,同时应当利用现代的科技手段不断的提高现场通信中组合性、移动性,从而实现异地和现场的移动指挥,提高医疗救助、公共通讯、救灾抢险等应急能力。

卫星通信论文例5

北斗卫星通信系统的主要特点体现在抗雨水能力强,具备高可靠性和低功耗且简单维护的特点,再加上是由我国自主独立研发,因此在信息的保密性和安全性方面都更有保障。另外其多元化的不同制式能够实现和水情测报系统的无缝集成。特别是水情自动测报系统更加注重短通信的数据传输,而这一点正是北斗卫星通信系统所特有的优势。这个系统的工作频段主要有L/S/C,其频段范围较宽,所以在信息传输方面拥有其独特的优势。

1.2北斗卫星技术下的水情自动测报站的主要构成

北京市的北斗卫星技术下的水情测报站的主要构成包括了四个方面。第一是北斗通信模块。主要选择的是用户终端。该北斗卫星的用户终端主要有天线设备和主机设备两种,而且这两种设备的终端体积也相对较小,且操作比较简单,安装维护工作也非常容易。其主要信号的传送机制是通过瞬间突发的模式,这样也能够有效的降低用户终端的功耗。而且也能够支持环境恶劣的野外水情测报。第二是测试中心的终端机。测试中心一般远离监测中心,所以需要通过遥测的方式来实现。这种终端机能够和不同的传感器进行连接,并支持不同的数据通信模式。北京的水文测试中心的遥测终端就支持北斗卫星通信,同时也支持了GSM通信和GPRS通信等。并能够根据信号的变化自动切换,从而保障遥测数据能够及时的反馈到监测中心。第三就是前端的传感器。这些传感器主要有涉及到测报水情的相关数据需求,包括了水位传感器和雨量传感器以及水质、水位等传感器等。第四就是电源。电源主要选择的是密封的蓄电池,并能够通过太阳能板进行充电,这样能够具有一定的环保性。另外这些电池还具有自动启动和切断的装置,只有在发送数据的时候才会启动,从而提升蓄电池使用寿命,并节省用电。

1.3北斗卫星通信链路分析

北京市某地北斗卫星的通信链路构成主要包括了北斗卫星以及网管中心。这个链路的功能就是对水情测报站的数据进行备份以及进行查询和下载。

1.4北斗卫星的监测中心

北斗卫星的监测中心自然是这个水情测报系统的核心,主要有由卫星指挥型终端以及数据接收端和数据库等构成。这个监测中心是所有数据的交汇点。同时也是控制中心。第一是卫星接收终端。主要具备兼收功能和通播功能以及全信道锁定以及大数据处理功能。同时还包括了内置的电池。第二就是接收数据服务器。这是专门集中管理数据的重要设备。具备两个信道来进行接收。其中第一个信道主要是连接互联网,通过互联网来进行数据接收。第二个信道则是通过卫星系统。在北京某地的水情测报系统,这个信道就是和北斗卫星通信系统进行实时的数据接收。这个数据也能够通过RS232串口来接收。第三就是水情数据库。当数据接收服务器接收到各种途径获得数据之后,就会对这些数据进行解码和分析,然后将水情数据录入到水情数据库中,从而为各种水情的应用提供服务。第四是数据应用服务器。这个服务器主要是对水情数据进行处理和存储以及统计报表等。另外监测中心能够将指令或者某一个执行动作信息发到各地的遥测站点,或者指定某个遥测站点进行发送。

1.5北斗卫星自动测报的软件设计

北斗卫星自动测报的系统软件主要包括两个部分。其一是控制测站的软件。在北京的水情自动测报系统中,主要是有北斗卫星监控中心以及遥测站点形成一对多的传输关系。遥测站将感应信息通过卫星传输到监控中心,然后监控中心反馈收到信息。而这些遥测站点会根据相应的反馈信息进行相应的处理,或者转入休眠,抑或是重新要求遥测站点进行收集数据。其二就是软件系统的处理。这是系统软件的关键部分,能够对遥测站点传输的数据进行多元化的处理,从而为相应的使用人员提供多种的水情服务,有助于提升当地的水情观测水平。

1.6通信机制的设计应用

北京的水情自动测报系统的通信机制设计的关键在于解决了通信频度控制问题以及信息格式的设计问题两种。其一是通信频度的控制策略。基于北斗卫星通信系统的收费标准要比移动的GSM以及全球卫星定位系统的GPRS的费用都要高出不少,根据北京市场大概要高出5倍多。因此在发送信息策略上和普通的移动遥测站的数据传输策略要尽心差异化。只有在出现明显差异的水情数据时,才会性发送。根据北京的通信费用,每次传输为0.5元。因此北京的遥测站点设置传输策略为每小时传输一次。如果没有发生变化,如没有下雨,每天在早晨8点发送一次平安数据报。这样就能有效的降低信息的传输次数,节省了传输费用。其二就是在信息格式设置上,北斗卫星通信系统可以设置的短字节有43字节数和70字节数以及98字节数三种,字节数越大,那么单次的传输内容就越多,因此费用也就越高。由于水情数据相对较为复杂,而且为了提升数据的准确性,在北京的水情自动测报系统上,就采用了98字节数进行传输,所以每次的传输价格在1元。

卫星通信论文例6

1.2卫星通信网实现舰队终端与卫星通信网的互联,主要采用甚小口径天线地球站(VSAT)实现,通过VSAT能够将舰队终端接入SEAMOBIL和HISDESAT卫星通信网络,这2种卫星通信网在海事、通信等领域,均已得到广泛的应用,具有大量的地面卫星站,并覆盖了除两极之外绝大多数的地球表面,如图2所示。VSAT通信采用C波段或X波段,相比与国际海事卫星(INMARSAT)终端,VSAT能够提供更好的数据传输容量。同时INMARSAT采用舰队船舶共享连接的方式,为每艘船舶提供的带宽有限,而VSAT则采用的是专用信道,能够提供给船舶和舰队更加稳定的传输信道和更高的传输质量。另外,与INMARSAT相比,VSAT具有更低的获取成本和使用成本,因而使用VSAT具有更好的经济性。通过以上介绍的卫星通信网,使得舰队终端和岸基服务器之间能够建立持久稳定的网络连接,从而可以提供实时的、高信息刷新速率的数据服务。

1.3岸基服务器岸基服务器是整个系统的核心,由图1显示的岸基服务器与舰队终端之间的交互过程,可以看出整个系统是一个中心化的结构。岸基服务器共有3个主要功能:接收卫星通信网传输的数据和图像信息;根据接收到的信息融合并计算生成KML文件;通过HTTP协议栈[8]将KML传输给相应的GIS服务器。根据第1.1节的叙述,岸基服务器具有2种不同的数据接收接口,其中UDP协议栈负责接收舰队终端传输的数据信息,而“rsync”应用接口负责接收传输的图像信息。这2种接口与舰队终端接口类似,均可使用软件实现,并已得到广泛应用。岸基服务器中的KML文件产生模块是岸基服务器的关键功能,其能够根据实现定义的KML文件格式,和各种信息的内容,将信息嵌入KML文件模板中,产生正确可用的KML文件,进而通过HTTP协议,将其传输给绑定的GIS服务器。

2KML文件的格式与生成

KML文件时当前GIS系统广泛使用的地标文件,由于KML由XML发展而来,因而KML文件的格式和定义方法集成了XML的特点。

2.1KML文件的格式与一般基于XML的语言类似,其广泛采用标记定义各种数据块。其主要含有以下几个部分:位置数据、模型数据、航迹数据、图像数据和字节数据。各个部分的格式如下所示。通过以上的KML文件格式,可将不同类型的信息嵌入其中形成KML文件。

2.2KML文件的生成KML文件生成的过程,就是根据KML文件格式,不断分析与填充相应数据的过程[9]。KML文件生成的流程图如图3所示。KML文件的生成过程应遵循以下步骤:首先,KML文件产生模块需要根据信息来源判断和识别船舶的信息;然后根据导航信息生成基本的数据,之后再根据信息中包含的媒体信息和其他信息[10],对KML文件进行完善;最后形成完整的KML文件,并使用HTTP协议进行传输。

3系统实现与仿真

最后,本文在OPNET中构建模拟的卫星通信网,并仿真实现了舰队终端和岸基服务器,模拟了舰队终端与岸基服务器之间的交互过程,并利用GoogleEarth证明了生成KML文件的正确性。在OPNET中的实验拓扑图如图4所示。

3.1系统功能实现通过舰队终端产生的信息,仿真宽带卫星通信网络,UDP流量约为25~36kb/s,持续时间约为20s,丢包率小于1%。而传输图像数据的速率约为80~120kb/s,持续时间约为15s。根据以上仿真可知,本系统中采用的通信接口和链路,其带宽能够满足系统信息的传递以及更新需求。按照第2.2节中方法,生成KML文件,并在GoogleEarth中导入,生成的实时监视状态图,如图5所示。通过图5可看到,KML文件可以在通用的GIS系统中得到显示和应用,不仅包含了船舶的位置、航向等,还能够根据需求显示详细的航迹信息及其他信息。

3.2负载测试在系统的实际使用过程中,由于本系统结构采用中心化的结构,因而岸基服务器将承担较大的负载。本文将利用图4所示拓扑,继续对岸基服务器的工作负载进行测试,主要测试内容是KML文件产生时,对服务器资源的占用。在仿真中,采用通用X86计算机模拟服务器,采用Corei3双核处理器,4G内存,运行Win7(64bit)操作系统,采用软件实现KML产生模块,设计各个舰队终端的信息到达服从泊松分布,在第3.1节中研究的信息通信负载下进行测试,最终得到CPU的占用率如图6所示。通过以上测试结果可知,在实际使用过程中,当带宽满足系统传输要求时,CPU的占用率约为16%~22%,证明岸基服务器能够满足本系统用户的实际需求。

卫星通信论文例7

2应用举例

卫星固定通信台站天线口径大波束窄,对天线伺服系统的自动跟踪性能要求较高,为确保通信效果,需定期测量卫星天线系统的自动跟踪性能,传统的测试方法需用频谱仪在射频方舱内测试,且测试结果保持和记录都不方便,利用本系统可以方便进行远程测试,而且可以将测试结果保存在数据存储单元中,方便后续查询和参考。卫星天线跟踪性能测试流程如下:(1)调整卫星天线使其对准通信卫星;(2)在监控主机上按下述过程设置频谱仪;a)按卫星信标频率设置频谱仪中心频率,设置SPAN为0到100KHzb)根据信标信号的电平变化范围设置Sacle/DIV,以使测量过程中的载波电平变化始终落在频谱仪的可显示电平范围内c)根据信标频率稳定度,选择尽可能窄的RBWd)根据载波的峰值频率和功率,调整频谱仪的中心频率和参考电平e)利用键盘调窄SPAN,重复4f)重复5,将SPAN调整到最小g)将SPAN置0,使载波显示谱线作水平运动h)输入扫描时间,确定扫描长度(3)用手控方式调偏卫星天线的方位角和俯仰角,频谱仪显示谱线的电平将随天线偏离卫星而下降(4)启动天线自动跟踪功能,观察卫星信标电平随时间的变化,记录自动跟踪天线的对星过程以及跟踪速度和精度(5)存储记录数据,重复3、4步骤,多记录几次测试结果,分析卫星天线自动跟踪性能。

卫星通信论文例8

2混合算法仿真及其仿真结果分析

混合算法首先基于雨衰模型得出功率补偿的极限阈值,然后根据该阈值将信道的雨衰补偿算法分为两部分:当雨衰值小于该阈值时,运用自适应功率控制算法进行雨衰值估计,再根据估计值相应地增大功率补偿衰减;当估计的雨衰值大于功率补偿极限值时,在功率调整到最大的同时,估计当前信道的信噪比,计算信噪比比值,再通过式(17)进行速率调整。由图2可知,年平均小于0.02%的时间其雨衰值超过34dB,这里设34dB为功率补偿的极限值。

为使可用率达到99.99%,则当雨衰超过34dB时,应适当降低信息速率。同时从图2中可以看出,雨衰超过44dB的时间百分比小于0.01%。由于缺乏Ka波段实测雨衰数据,因此,笔者应用不同频率衰减转换公式,由Ku波段雨衰数据转换成Ka频段的雨衰数据作为雨衰真实值[14,15]。图3显示了2013年5月27日在200min的观测时间内每10s取一个降雨衰减值的雨衰真实时间序列。从图3中可以看到,本次选取的属于雨衰非常大的降雨过程,在[108,145]min时间内衰减较大,最大衰减值可以达到44.67dB,其中雨衰超过34dB的时间占总时段的13.1%。图4为应用自适应功率控制算法所得到的补偿误差曲线。其中模型阶数p=5,已知数据数m=10,Δt=10s。在雨衰超过34dB的时段,功率控制已无法进行跟踪补偿,因此,补偿误差趋于劣化,甚至达到十几分贝。同时,在雨衰速率变化大时,误差也会增大。图5为信息速率随观测时间变化的曲线。

这里假设信道的(m,σ2)=(4.5,0.5),信息速率为2.048Mbit/s,其中I^o的值可通过仿真自适应功率补偿后信道的误码率曲线得到,其值为18dB。从图5中看到,雨衰大时,速率频繁调整,最低速率为256kbit/s,可保证一般的数据通信需求。图6为采用混合算法后得到的跟踪补偿误差曲线,可以看出,该算法有效地减小了雨衰较大时的补偿误差,使其几乎全部在±1dB以内,最大补偿误差约为1.6dB。图7为信道的误码率仿真曲线。从图7中可以看到,降雨在无补偿的情况下,信道的误码率很大,但在功率控制补偿后,误码率明显减小。同时,图7还给出了运用混合补偿算法后的误码率曲线,相比较于只应用功率控制技术的方法,其误码率小很多,且在信噪比达到18dB时,误码率小于10-7。

卫星通信论文例9

1.2卫星通信MPLS网络体系MPLS网络体系可以将IP路由的控制和第二层交换无缝地集成起来,是目前最有前途的网络通信技术之一。卫星通信MPLS体系结构分为用户层、接入层、核心层三部分,其中,用户层包括卫星手持移动终端、小型专用局域网用户、其他网络用户等。各结构和网络体系将信息有效绑定、标注和转发,实现卫星的通信功能。

1.3卫星通信的抗干扰技术卫星运行在外太空,电磁环境复杂,统一受到太阳风、强磁暴等空间环境影响,导致出现信息干扰和信息失真,卫星通信的抗干扰技术主要依靠卫星传输链路中不同的抗干扰设备和系统完成其功能,抗干扰设备和系统主要有DS/FH混合扩频、自适应频域滤波、猝发通信、时域适应干扰消除、基于多用户检测的抗干扰、自适应信号功率管理、自适应调零天线、多波束天线、分集抗干扰、变换域干扰消除、纠错编码和交织编码抗干扰技术等。在软硬件共同的作用下阻断电磁干扰、过滤杂波、屏蔽信号污染、实现程序监视等功能。

2卫星通信技术的发展趋势

2.1通信卫星体积的发展趋势通信卫星体积正在向大型化和微型化两个方向发展。其一,各国把通信卫星体积建造得越来越大,以便实现高灵敏和强处理能力。其二,各国推出小型通信卫星,用多颗小卫星组网构成卫星通信网络代替单颗大卫星,具有方便发射和成本低廉等优点。

2.2卫星移动通信技术方兴未艾卫星移动通信是指利用卫星实现移动用户间或移动用户与固定用户间的相互通信。随着频谱扩展、数字无线接入、智能网络技术的不断发展,卫星移动通信在向卫星个人通信方向演进,用手持机可实现方便接入卫星移动通信网,进行卫星移动通信。

2.3卫星互联网技术兴起将卫星通信网络转化为互联网中数据上下交换的链路,可将电话拨号、局域网等其他通信链路作为上行数据链路,还可以将下载和传输作为下行数据链路,利用卫星的特点实现地面随时连接互联网络。

2.4卫星通信向宽带化发展为了满足卫星通信系统用户对大数据量和高负荷的需求,卫星通信技术已向拓展直EHF频段发展,扩大频段的容量,大大减轻现有频谱拥挤现象,减少受电磁现象影响引发的信号闪烁和衰落,提高了卫星的抗干扰能力。使卫星通信部件尺寸和重量大大缩小和减轻,方便卫星搭载更多的通信设备。

2.5卫星通信光通信化发展卫星光通信是利用激光进行卫星间通信,达到降低卫星通信系统设备质量和体积,提高卫星通信保密性等目的。

卫星通信论文例10

CFDAMA基本接入方式能够实现较好的时延/吞吐量性能。CFDAMA-PA成功的将按需分配和自由分配结合在一起,采用固定预约时隙分配的形式来保证用户接入的公平性和实际业务需求量,在信道负荷较低的时候,其平均时延和固定分配方式保持一致,在信道负荷逐渐增大和接入用户数变化较大时,存在资源利用率下降的问题。CFDAMA-RA在低信道负荷时由于采用的竞争方式进行接入,对信道利用率更高,但对于用户接入的公平性却不能保证,并且存在接入过程中的碰撞,在高信道负荷时碰撞概率逐渐增大,平均时延性能也急剧下降。CFDAMA-PB通过对上行数据帧结构的改进,减小了用户发送预约时隙请求的间隔时间,但随着信道负荷的增大,某些用户会因为其他用户预约请求的资源占用导致无法发出预约时隙请求,同样不能保证接入的公平性。因此,如何保证用户的接入时延和接入过程中的公平性,成为本文的一个研究重点。

2.CFDAMA-PRI

由于当前数据业务大多突发性较强并且业务类型呈现多样性,抽象出来这类数据业务流通常用ON-OFF信源模型来表示[5]。而在此信源模型的情况下,数据业务具有很强的突发特性,用户的预约时隙请求也带有很强的随机性和不确定性。基本的CFDAMA接入方式此时由于多次请求造成的再分配策略和预约请求的冲突概率增大,在信道负荷较高和接入用户数逐渐增大时,其性能受到明显的影响。CFDAMA-PR协议在用户时隙申请阶段对发送队列的堆积状况进行判断,比较当前时刻和上一时刻发送队列中数据分组的差值Δ,如果Δ>0表示当前发送队列有数据包的堆积,则通过加权的方式向星上调度器发送更多的预约时隙请求[6]。该协议的好处在于实际应用中可以根据用户发送队列的堆积情况获得更多的分配时隙,能在突发数据分组到来情况下实时的将新的数据分组发送出去。因此,本文在CFDAMA-PR的基础上提出了基于用户优先级排序的改进协议CFDAMA-PRI,优化星上调度算法,进一步保证接入的时延性能和接入的公平性。

3.仿真分析

本文采用OPNET仿真平台[7],将基本的CF-DAMA-PA、CFDAMA-PR和改进的CFDAMA-PRI进行对比仿真。具体的仿真参数设置如表2所示。对信道负荷固定但用户数目变化条件下的仿真结果进行分析,目的是为了得出CFDAMA-PRI的时延性能和在用户接入公平性方面的优越性。选取信道负荷为0.8,用户数目依次为5、10、20、40、80,CFDAMA-PA的预约时隙数为20,得到的仿真结果如图5、图6所示。由仿真结果可以看出,当系统中用户数不断增大时,由于CFDAMA-PA在一个链路帧中仅使用了一部分时隙用作预约请求时隙点,那么更多有请求的用户就无法通过预约时隙点接入链路帧,加之信道负荷较大,突发数据强,用户申请时隙的不确定性也大。如果增大预约请求时隙数的比例也会以牺牲数据时隙为代价,平均时延和队列的分组累积同样会增加。CFDAMA-PRI则采用CFDAMA-PR对信源突发数据分组的计算方法,并使用优先级排序的方法对时隙需求量大的用户给予更高的时隙分配权,确保了用户的可接入次数,降低了时延,提高了接入公平性。