期刊在线咨询服务,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

期刊咨询 杂志订阅 购物车(0)

功率因数模板(10篇)

时间:2023-03-14 15:22:15
功率因数例1

1、变压器功率因数:指变压器二次侧有功功率一次侧的视在功率,不是电压效率而是变压器的传输效率,即变压器的有功损耗,无功损耗视在功率之间的关系。

2、在配电系统中,系统的功率因素,在理想的情况下,主要决定于负载特性。在没有任何补偿的情况下,如果负载是纯电阻,那么系统的功率因素就是如果是纯电感,那么功率因素就为0。与变压器本身的特性无关。

3、在实际情况中,负载往往具有电阻,电感,电容的混合特性。所以存在大于0,小于1的功率因素值。

(来源:文章屋网 )

功率因数例2

中图分类号:TM933.3+1

引言:

矿井供用电设备功率因数的高低,对于电力系统有很大的影响。因为,矿井供用电设备功率因数底,所需要的无功功率多,需要发电厂大量发出无公功劳,增加了发、供电设备的容量;另一方面,由于大量输送无功功率,使电网中的电能损耗增加:其次,供电电压的质量也得不到保证。所以,提高矿井供用电设备的功率因数具有非常重大的意义。

正文:

由于大多数用电器(负载)都同时含有电阻和电感,也称感性负载,如:异步电动机,因此分析这类电路有其广泛的代表性。

一、功率因数的重要意义

由交流电路的功率的意义可知,电阻元件是耗能元件,有功功率P=UI=I2=U2/R,电感、电容元件则都是储能元件,p=0,它们不消耗功率,只与电源进行能量交换。在一般的电路中,将有热能的消耗也有能量的交换。在这样的电路中,总电压和电流相之间相位差(φ角)的余弦值,也就是负载取用的有功功率与电源供给的铈在功率的比值叫做电路的功率因数,即COSφ=P/UI=P/S, COSφ功率因数的高低对发电机、变压器、电缆的利用利用率有关:

1-1、电源能力的发挥与COSφ功率因数成正比。

电源设备在工作时,总想产生与它的额定视在功率相等的最大有功功率,发挥最大效益。如:一台交流发电机、额定参数为:Ve=1000V、Ie=100I、Se=100kVA,问当负载功率因数分别为:COSφ1= 0.8、COSφ2= 0.2时,这台发电机能发出多少有功功率?则

P1=VeIe COSφ1=80000W P2=VeIe COSφ2=20000W 。

所以,同一个电源设备,由于负载的COSφ高低不同,设备的发挥有着明显差别。这是值得注意的问题。当电动机的负载率从小逐渐增大时,功率因数也从小逐渐增大。一般电动机的负载率在0.8左右时效率和功率因数最高。负载率低于0.8以下时,效率和功率因数下降。当负载率底于0.5 以下时,功率和功率因数急剧下降,此时电力损耗较多。因此,必须合理选择电动机容量,使其接近满载运行。

1-2、线路损失功率与COSφ功率因数成反比,功率越小越好,节省能量越多越好。实际负载大多数是电感性的,感性负载 通过具有rL 、xL的导线联至电源。感抗虽然不消耗功率,但当它与电源进行能量交换时,必须要在连接电源与负载的导线上引起功率消耗。就是说,电源向负载输送的能量,除了负载中电阻成分消耗的以外,还包括电感中的磁场能。但后一部分能量并没有被消耗掉,而是在一定时期内送回电源,这样一来一往自然会在线路上产生功率损耗,如果负载电抗成分大即功率底,而且是远距离大功率的输电系统,则这部分功率损耗是很可观的,在电力系统中,提高功率因数是一件很有意义的措施。

二、如何提高功率因数

2-1、自然提高功率因数的方法

(一)正确选择电动机容量,使其接近满载运行。

当电动机的负载率从小逐渐增大时,功率因数也从小逐渐增大。一般电动机的负载率在0.8左右时效率和功率因数最高。当负载率低于0.8以下时,效率和功率因数下降。当负载率低于0.5以下时,效率和功率因数急剧下降,此时电力损耗较多,如下图所示:

因此,必须合理选择电动机容量,使其接近满载运行。如有电动机轻载运行时,可以选用容量适当的电动机进行更换。更换电动机之前,应当掌握原有电动机的起动情况。

(二)对于轻负荷的异步电动机,可以降低电压运行。

对于一千伏以下,负载率经常小于35 ~ 40 %的异步电动机,可采用电动机外部或内部改接线的方法实现降压运行。

1、 电动机外部改接线

1) 当需要大的起动转矩时,起动时接成三角形,运行时换接成星形。

2) 当不需要大的起动转矩时,可将其接成星形。

这种方法只适用于电动机的接线盒内具有六个接线柱的情况。

2、 电动机内部改接线

凡不具备外部改接线条件的电动机,可采用改变内部接线的方法。对于负载率很底仅达25%左右的异步电动机,采用外部和内部改接线的方法,不仅可以节电,而且可使功率因数提高。

(三)变压器合理选择和使用

变压器的选择和使用不合理,也会消耗很多的电能。因此,必须将平均负荷率小于30%的变压器用容量适当的变压器进行替换。但当变压器的平均负荷率大于30%时,应该结合具体情况进行技术经济比较。通常,负载率大于50%的变压器效率较高,功率因数也较高不应更换。

(四)采用同容量的同步电动机代替异步电动机

凡是在生产条件许可的情况下,均可采用同步电动机代替异步电动机。大家知道,同步电动机在过激磁时,功率因数是超前的。因此,它可以提高电网的功率因数。

(五)能用鼠笼型异步电动机的地方,尽量不用绕线型异步电动机

凡是可以用鼠笼型异步电动机的地方,应尽量不用绕线型异步电动机。这是因为同容量同转速的鼠笼型异步电动机比绕线型异步电动机的功率因数提高5%,效率也高3%左右。

2-2、人工补偿提高功率因数的方法

(一)在感性负载两端并联适当电容可以提高电路的功率因数,并联电容可以在负载功率及端电压不变的条件下,减小电流的无功分量,如下图所示:

感性负载并接电容器

(二)同步补偿机 对于区域电网的电压和功率因数特别低时,可采用同步补偿机补偿的方法。由于同步补偿机价格很贵,所以矿井供电一般不采用同步补偿机。

(三)静电电容器 由于静电电容器具有重量轻、安装方便、投资省、故障范围小、有功功率损耗小、容易维护等优点。所以,安装静电电容器提高功率因数的方法,在矿井供电中得到了广泛地应用。

结束语:希望从事电力工程的同志,关心重视这一问题,因为它关系到国民经济的发展,急需的电能是否合理应用的问题。

参考文献

[1]刘介才主编.工厂供电. 北京:机械工业出版社,2012.

[2]李汝火主编. 电气节能技术.北京:水利电力出版社,2010.

功率因数例3

我们将正弦交流电电路中电压有效值与电流有效值的乘积称为视在功率,有功功率和无功功率的几何之和(即平方和的均方根),它用来表示电气设备的容量。关系式:

视在功率的平方=有功功率的平方+无功功率的平方

用符号S表示,计算单位:伏安(VA)、千伏安(kVA)。

变压器的容量是用视在功率表示。

视在功率不表示交流电路实际消耗的功率,只表示电路可能提供的最大功率或电路可能消耗的最大有功功率。在交流电路中,由电源供给负载的电功率有两种: 一种是有功功率,一种是无功功率。

二、有功功率

有功功率是保持用电设备正常运行所需的电功率,也就是将电能转换为其他形式能量(机械能、光能、热能)的电功率。比如:5.5千瓦的电动机就是把5.5千瓦的电能转换为机械能,带动水泵抽水或脱粒机脱粒。有功功率的符号用P表示,单位有瓦(W)、千瓦(kW)、兆瓦(MW)。

三、无功功率

无功功率是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功率。它不对外作功,而是转变为其他形式的能量。凡是有电磁线圈的电气设备,要建立磁场,就要消耗无功功率。比如40瓦的日光灯,除需40多瓦有功功率(镇流器也需消耗一部分有功功率)来发光外,还需80乏左右的无功功率供镇流器的线圈建立交变磁场用。由于它不对外作功,才被称之为“无功”。无功功率的符号用Q表示,单位为乏(Var)或千乏(kVar)。

无功功率决不是无用功率,它的用处很大。电动机需要建立和维持旋转磁场,使转子转动,从而带动机械运动,电动机的转子磁场就是靠从电源取得无功功率建立的。变压器也同样需要无功功率,才能使变压器的一次线圈产生磁场,在二次线圈感应出电压。因此,没有无功功率,电动机就不会转动,变压器也不能变压,交流接触器不会吸合。

用电设备不但要从电源取得有功功率,同时还需要从电源取得无功功率。如果电网中的无功功率供不应求,用电设备就没有足够的无功功率来建立正常的电磁场,那么,这些用电设备就不能维持在额定情况下工作,用电设备的端电压就要下降,从而影响用电设备的正常运行。

无功功率对供电、用电产生一定的不良影响,第一,降低发电机有功功率的输出。第二,降低输、变电设备的供电能力。第三,造成线路电压损失增大和电能损耗的增加。第四,造成低功率因数运行和电压下降,使电气设备容量得不到充分发挥。

从发电机和高压输电线供给的无功功率,远远满足不了负荷的需要,所以在电网中要设置一些无功补偿装置来补充无功功率,以保证用户对无功功率的需要,这就是电网需要装设无功补偿装置的道理。

四、功率因数

电网中的电力负荷如电动机、变压器等,属于既有电阻,又有电感的电感性负载。电感性负载的电压和电流的相量间存在着一个相位差,通常用相位角φ的余弦cosφ来表示。cosφ称为功率因数,又叫力率。功率因数是反映电力用户用电设备合理使用状况、电能利用程度和用电管理水平的一项重要指标。三相功率因数的计算公式为:

式中:cosφ—功率因数;

P —有功功率,kW;

Q —无功功率,kVar;

S —视在功率,kVA;

U —用电设备的额定电压,V;

I —用电设备的运行电流,A。

功率因数分为自然功率因数、瞬时功率因数和加权平均功率因数。

1.自然功率因数

指用电设备没有安装无功补偿设备时的功率因数,或者说用电设备本身所具有的功率因数。自然功率因数的高低主要取决于用电设备的负荷性质,电阻性负荷(白炽灯、电阻炉)的功率因数较高,等于1,而电感性负荷(电动机、电焊机)的功率因数比较低,都小于1。

2.瞬时功率因数

指在某一瞬间由功率因数表读出的功率因数。瞬时功率因数是随着用电设备的类型、负荷的大小和电压的高低而时刻在变化。

3.加权平均功率因数

指在一定时间段内功率因数的平均值,其计算公式为:

cosφ

五、提高功率因数的意义及方法

1.提高功率因数的意义

(1)提高用电质量,改善设备运行条件,可保证设备在正常条件下工作。

(2)可节约电能,降低生产成本,减少企业的电费开支。例如:当cosφ=0.5时的损耗是cosφ=1时的4倍。

(3)能提高企业用电设备的利用率,充分发挥企业的设备潜力。

(4)可减少线路的功率损失,提高电网输电效率。

(5)因发电机的发电容量的限定,故提高cosφ也就使发电机能多出有功功率。

提高功率因数的方法有两种,一种是改善自然功率因数,另一种是安装人工补偿装置。

2.提高自然因数的方法

(1)选择合适的电动机容量,减少电动机无功消耗,防止“大马拉小车”。

(2)对平均负荷小于其额定容量40%左右的轻载电动机,可将线圈改为三角形接法(或自动转换)。

(3)避免电机或设备空载运行。

(4)合理配置变压器,正确地选择其容量。

(5)采用同步电动机或异步电动机同步运行补偿。

(6)调整生产班次,均衡用电负荷,提高用电负荷率。

3.人工补偿法

实际中可使用电路电容器或调相机,一般多采用电力电容器补尝无功,即:在感性负载上并联电容器。在感性负载上并联电容器的方法可用电容器的无功功率来补偿感性负载的无功功率,从而减少甚至消除感性负载于电源之间原有的能量交换。在交流电路中,纯电阻电路,负载中的电流与电压同相位,纯电感负载中的电流滞后于电压90?,而纯电容的电流则超前于电压90?,电容中的电流与电感中的电流相差180?,能相互抵消。并联电容器的补偿方法又可分为:

(1)个别补偿。即在用电设备附近按其本身无功功率的需要量装设电容器组,与用电设备同时投入运行和断开,也就是再实际中将电容器直接接在用电设备附近。适合用于低压网络,优点是补尝效果好,缺点是电容器利用率低。

(2)分组补偿。即将电容器组分组安装在车间配电室或变电所各分路出线上,它可与工厂部分负荷的变动同时投入或切除,也就是再实际中将电容器分别安装在各车间配电盘的母线上。优点是电容器利用率较高,且补尝效果也较理想(比较折中)。

功率因数例4

Abstract:This paper mainly discuss the produce reason of bad power factor,the harm of bad power factor,the source of harmonic current,the definition and calculate of power factor,the harm of harmonic current to electric net,power factor and higher the power factor’s good results etc.

Key words:power factor;harmonic current;power factor correction

一、不良功率因数的产生原因

开关电源的输入端通常采用如图1所示的由整流二极管和滤波电容组成的整流滤波电路,220V交流输入市电整流后直接接电容器滤波,以得到波形较为平滑的直流电压。

但是由整流二极管和滤波电容组成的整流滤波电路是一种非线性元件和储能元件的组合,虽然交流输入市电电压的波形Vi是正弦的,但是整流元件的导通角不足180o,一般只有60°左右,导致输入交流电流波形严重畸变,呈图1所示的脉冲状。由整流二极管和滤波电容组成的整流滤波电路主要存在如下的问题[1]。

(一)启动时产生很大的冲击电流,约为正常工作电流的十几倍至数十倍。

(二)正常工作时,由于整流二极管的导通角很小,形成一个高幅度的窄脉冲,电流波峰因数(CF)高、电流总谐波失真(THD)通常超过100%,同时引起电网电压波形的畸变。

(三)功率因数(PF)低,一般在0.5~0.6左右。

脉冲状的输入电流含有大量的谐波成份,但是交流输入电流中只有基波电流才做功,其余各次谐波成份不做功,即各次谐波成份的平均功率为零,但是大量的谐波电流成份会使电路的谐波噪声增加,需在整流电路的输入端增加滤波器,滤波器即贵、体积和重量又大。同时大量谐波电流成份倒流入电网,会造成电网的谐波“污染”。一则产生“二次效应”,即谐波电流流过线路阻抗造成谐波电压降,谐波电压降反过来又会使电网电压波形(原来是正弦波)发生畸变,二则会造成输入电流有效值加大,使线路和变压器过热,同时谐波电流还会引起电网LC谐振,或高次谐波电流流过电网的高压电容,使之过电流而发生爆炸。对三相交流供电,由于大量的谐波电流成份还会使中线电位偏移,中线电流过电流而发生故障等。感性负载或容性负载都会使交流输入电压、电流产生附加相移,使线路功率因数降低,电能利用率降低;非电阻性负载还会产生严重的谐波失真,对电网造成干扰。

虽然输入的电压波形为正弦波,但是输入的电流波形为非正弦波,呈现脉冲状,其电流脉冲的持续时间只有交流输入电流周期的10%~20%。

由于在由整流二极管和滤波电容组成的整流滤波电路中电流的升降速度比输入电压的升降速度快,并且输入电流的不连续性,所以产生了一系列如图2所示的奇次谐波[3],导致供电线路功率因数降低至0.6~0.7左右,所以线路不良功率因数主要来源于输入电流波形的畸变。

从图2可以看出,偶次谐波电流成份的幅度很小,这是由于正弦波的正负半波对称,偶次谐波电流成份几乎被抵消了,只剩下了奇次谐波电流成份的原因。在图2中假定基波电流成份的幅度为100%,其它谐波电流成份的幅度被表示成了它占基波电流成份的百分比数。

二、功率因数PF的定义

功率因数PF的定义如公式(1)所示。

(1)

三、理想正弦波的讨论

在这种情况下假定输入的电流和电压波形均为正弦波形,对输入电流和电压波形的相位移定义为,这可以用矢量图3表示[1]。

对正弦交流输入市电,交流输入电流无波形失真时电路的功率因数可以用公式(2)表示。

(2)

四、非理想正弦电流波形

假定输入交流市电电压波形为理想正弦波,有效值可以用公式(3)表示。

(3)

如果输入电流为非正弦的周期电流波,通过傅立叶级数变换有公式(4)成立。

(4)

式中I0为直流电流成分,I1RMS为基波电流有效值成分,I2RMS-InRMS为2~n次正弦谐波电流有效值成分,对正弦交流电而言,I0=0,而基波电流I1RMS由不同相位的I1RMSP和90°相位差的基波电流成份I1RMSQ构成。所以,交流总输入电流的有效值可以利用公式(5)表示。

(5)

有功功率可以用公式(6)表示。

(6)

由于表示交流输入电压与交流输入基波电流之间的相位移,即:

有公式(7)成立。

(7)

这样有公式(8)和公式(9)成立。

(8)

(9)

功率因数可以利用公式(10)表示。

(10)

可以利用系数k表示,有公式(11)成立。

(11)

k表示谐波电流波形失真因数,系数k是一个和电流谐波成份有关的系数,如果交流输入电流2次以上的谐波电流成份为0,有系数k=1。如果谐波电流波形失真用一个相位角θ有关的参数表示表示,有公式(12)成立。

(12)

这样,功率因数PF和几波电压和基波电流相位移角、谐波电流波形失真等有关功率成份之间的关系可以利用图4表示。

在图4中,表示基波电流和电压之间的相位差,θ表示和谐波电流有关的失真角,无功功率Q和失真功率D均会使输入同样有功功率的情况下输入更大的交流电流有效值,从而产生额外的功耗,降低供电回路的供电效率。可见,可以通过以下途径提高电路的功率因数PF。

(一)01降低I1RMS和V之间的相位移;

(二)θ01降低交流输入电流IRMS总的谐波电流成份。

五、谐波电流的主要来源

通过分析发现产生谐波电流的主要来源有以下几种[2]。

(一)开关电源;

(二)调光装置;

(三)电流调节装置;

(四)频率变换器;

(五)脉冲宽度调制的电源变换器;

(六)低功率灯;

(七)电弧炉;

(八)电焊机;

(九)由于磁芯饱和而导致不规则磁化电流的感应电动机;

(十)由于开关装置与/或具有非线性V/I特性的负载等。

六、谐波电流对电网的危害

脉冲状的交流输入电流波形中含有大量的谐波电流成分,大量的谐波电流倒流入电网会对电网造成“污染”,供电电网中的谐波电流会对电网产生以下不利影响。

(一)谐波电流的“二次效应”,即谐波电流流过线路阻抗而造成的谐波电压降反过来会使电网电压波形(原来是正弦波)发生畸变。

(二)过大的谐波电流会引起供电线路故障,从而损坏用电设备。例如过大的谐波电流会使线路和配电设备过热,谐波电流还会引起电网LC谐振,或高次谐波电流流过电网的高压电容,使之过电流、过热而导致电容器损坏。

(三)在三相四线制电路中,三次谐波在中线中的电流同相位,导致合成中线电流很大,有可能超过相线电流,中线又无保护装置,使中线因过电流而导致中线过热引起火灾,并损坏电气设备。

(四)谐波电流对自身及同一系统中的其他电子设备会产生恶劣的影响,例如会引起电子设备的误动作和电子设备的故障等。

由于目前开关电源得到了广泛的应用,由此产生的输入电流高次谐波成分的问题不容忽视,因此功率因数校正技术的应用显得十分迫切。

七、功率因数校正的常用方法

常用功率因数校正电路按工作原理划分主要有以下2类。

(一)无源功率因数校正电路

无源功率因数校正电路利用电感和电容等元器件组成滤波器,将输入电流波形进行相移和整形,采用这种方法可使功率因数(PF)达0.9以上。优点是电路简单,适用于小功率应用场合。缺点是在某频率点可能产生谐振而损坏用电设备。

(二)有源功率因数校正电路

有源功率因数校正电路的基本工作原理是利用控制电路强迫输入交流电流波形跟踪输入交流电压波形而实现交流输入电流正弦化,并与交流输入电压同步。其中关键电路是乘法器和除法器,有源功率因数校正电路的特点是:

1.功率因数高,PF可达0.99以上;

2.总谐波失真低,THD

3.交流输入电压范围宽,交流输入电压范围可达90~270VAC;

4.输出电压稳定;

5.所需磁元件小。

有源功率因数校正电路的缺点是电路比较复杂,由于有源功率因数校正电路的引入,降低了电路的总体工作效率,并且电磁辐射干扰(EMI)较大。

八、提高电源功率因数的意义

(一)用户和供电部门都会从高功率因数中获益

例如,功率因数为1的220V标准交流市电供电,在降低至最低85V时需为负载提供15A的有功供电电流,当电路的功率因数降低至0.6时只能为负载提供9A的有功供电电流。例如,同样一个壁式电源插座,功率因数为1时可为4台功率为280W的电器设备供电,当功率因数为0.6时仅可以为2台功率为280W的电器设备供电。功率因数低意味在为负载提供同等功率的情况下要提供更大的电流,因而供电线路的损耗要加大,并且供电线路导线的线径也要加大,使供电线路的供电效率降低,而需多提供的功率和谐波电流成份有关。同时由于交流输入电流的波形失真而引入的谐波电流还会致使交流市电过零检测电路不能正常工作,在零线产生过电流和过电压。

目前在欧盟和美国已对电器设备的功率因数这个技术指标提出了严格要求,规定在欧盟销售的功率大于75W的电器设备,要求它们的功率因数技术指标应满足欧洲技术标准EN61000-3-2(IEC61000-3-2)的要求,否则不能进入欧洲市场,同样在美国也做出了类似的技术要求。在EN61000-3-2

(IEC61000-3-2)中对用电设备的供电输入高至39次的谐波电流幅度做出了限制要求,所以,今后的电子产品如不能满足有关功率因数技术指标要求则不能进入国际市场[2]。

(二)下游变换器的元器件成本降低

在同等输出功率的情况下如果采用了PFC电路,对下游变换器的功率开关管的技术要求也要低些,例如对下游变换器功率开关管的导通电阻的要求就可以低些。同时,采用PFC电路后下游变换器的功率变压器的体积可以小些,导线线径也可以小些,采用有源PFC电路后由于稳压范围宽(85VAC~265VAC),所以也可以省掉110/220VAC的电源选择开关,也可以在不加大滤波电容器容量的情况下提高供电电路的保持时间。

(三)有源功率因数校正电路对电网的影响

当然功率因数校正电路会产生一些对电网的高频谐波干扰,对这些高频谐波干扰需设计专门的EMI和RFI滤波器(如图5所示)加以滤除[4],图5表示采用了有源功率因数校正和没有采用功率因数的电路对比,实用中需根据具体技术要求选用PFC电路结构和相应的工作模式。

九、结论

由于对电网供电质量要求越来越高,在设计开关电源时需考虑IEC 555-2和IEC61000-3-2标准的有关技术要求,采用功率因数校正技术的开关电源可以很好的改善开关电源的技术性能,同时采用有源功率因数校正后,开关电源的供电直流电压更为稳定,还可以省掉110/220VAC交流输入市电电压选择开关。

参考文献

[1]L.Wuidart.Application note understanding power factor[Z].AN824/1003,2003,.

[2]路秋生.功率因数校正技术与应用[M].机械工业出版社,ISBN7-111-18381-9,2006,02:1-10.

[3]AND8147/D An Innovation Approach to Achieving Single Stage APFC and Step-down Conversion for Distributive Systems On Semiconductor.

[4]AND8124/D 90W,Universal Input,Single Stage,APFC Converter On Semiconductor.

功率因数例5

功率因数0.8-0.9正常。功率因数是指交流电路有功功率对视在功率的比值。用户电器设备在一定电压和功率下,该值越高效益越好,发电设备越能充分利用。

功率因数的大小与电路的负荷性质有关,如白炽灯泡、电阻炉等电阻负荷的功率因数为1,一般具有电感性负载的电路功率因数都小于1。功率因数是电力系统的一个重要的技术数据。功率因数是衡量电气设备效率高低的一个系数。

(来源:文章屋网 )

功率因数例6

随着现代工业的发展,人们对电能的需求量越来越大,对电能质量的要求也越来越高。目前电力网中的电力负荷如感应式异步电动机、变压器等,大部分属于感性负载,在运行过程中需要向这些设备提供相应的无功功率,使电网的功率因数降低。为了对电力负荷设备进行更好的监测,针对具体情况采取相应的措施,有必要对电网的功率因数进行检测。在三相电网的功率因数测量中,一般假设电网是三相平衡的,此时任意一相的功率因数就相当于三相系统的功率因数。由于测量单相功率因数需要中性点(如果采用三相四线制),在某些应用场合有很大的不便,因此本文提出了通过采样三相中一相的电流以及另外两相的线电压之间的相位差来得到三相系统的功率因数的检测方法。

由于利用该方法测量功率因数的接线方式有12种,每种接线方式的相位关系又不一样,所以功率因数的计算以及超前滞后的判断方法也有些差别。因此如何使功率因数的检测与接线方式无关将成为一个重点。由于相关文献较少,因此对与接线无关的三相功率因数检测方法进行研究有着重要意义。

本文利用电网三相电压、电流间的相位角关系,通过直接检测相电流相邻的方波信号上升沿的时间差以及相电流和线电压的相邻的两个方波的上升沿的时间差,来确定功率因数以及功率因数的超前滞后情况,从而得到了一种与接线无关的三相功率因数检测方法。

1工作原理

设三相的电压分别为Ua、Ub、Uc,电流分别为Ia、Ib、Ic,假设电网三相平衡,则它们的表达式如下:

Ua=UmSinωt

Ub=UmSin(ωt-120°)

Uc=UmSin(ωt+120°)

Ia=ImSin(ωt-φ)

Ib=ImSin(ωt-φ-120°)

Ic=ImSin(ωt-φ+120°)

式中,Um表示每相电压幅值,Im表示每相电流幅值,ω表示角频率,表示相电流滞后相电压的相角(功率因数角)。由此可以得到:

其中,-Ia表示负A相电流,-Ib表示负B相电流,-Ic表示负C相电流。可见,采用其中一相的相电流和另外两相的线电压之间的相位差来测量功率因数的接线方式有12种,分别为:Ia,Ubc;Ia,Ucb;Ib,Uca;Ib,Uac;Ic,Uab;Ic,Uba;-Ia,Ubc;-Ia,Ucb;-Ib,Uca;-Ib,Uac;-Ic,Uab;-Ic,Uba。下面以Ia,UbcI型接线和Ia,UcbII型接线两种接线方式来讨论的计算。

1.1I型接线φ的计算

设α为Ubc滞后Ia的相角,由于Ia滞后Ua的相角为φ,而Ubc滞后Ua的相角为90°,所以有α=90°-φ。针对三种负载情况,α表达式如下:

在电路设计中,若把A相相电流和Ubc线电压的采样信号放大后,再进行上升沿过零触发,即可得到反映相位的方波信号。针对纯阻性负载、容性负载和感性负载,经过上升沿过零触发后可得到相电流和线电压的方波信号,从而得到如图1(a)所示的一组波形,从上到下分别为相电流与线电压的正弦波、上升沿过零触发后的方波、纯阻性负载电流与电压上升沿时间差、容性负载电流与电压上升沿时间差(图中取φ=-45°)、感性负载电流与电压上升沿时间差(图中取φ=45°)。τ为相电流与线电压的上升沿的时间差,τ的宽度随φ的变化而变化。

图1A相相电流与线电压波形图

设T为正弦波的周期,则τ和T满足下面的表达式:

显然,α=(τ/T)×360°。根据α与的关系,可以得到:

因此,针对A相电流Ia和线电压Ubc的接线方式,超前滞后的判断和相位角的绝对值||的计算表达式如下:

T/4<τ≤T/2,超前;

0≤τ<T/4,滞后;

|φ|=|(τ/T)×360°-90°|(1)

1.2II型接线的计算

设α为Ucb滞后Ia的相角,由于Ia滞后Ua的相角为,而Ucb滞后Ua的相角为270°,所以α=270°-。针对三种负载情况,有如下表达式:

同理,按照Ia、Ubc的分析方法,可以得到如图1(b)所示的一组波形。此时τ和T满足下面表达式:

显然,α=(τ/T)×360°。根据α与角的关系,可以得到:

因此,针对A相电流Ia和线电压Ucb的接线方式,超前滞后的判断和相位角的绝对值||的计算表达式如下:

3T/4<τ≤T,超前;

T/2≤τ<3T/4,滞后;

||=|τ/T×360°-270°|(2)

1.3与接线无关的功率因数测量原理

采用同样的分析方法,可以发现-Ia,Ucb;Ib,Uca;-Ib,Uac;Ic,Uab;-Ic,Uba等五种接线方式的相对位置的波形图与Ia,Ubc接线方式的一样,其的计算同式(1);而-Ia,Ubc;Ib,Uac;-Ib,Uca;Ic,Uba;-Ic,Uab等五种接线方式的相对位置的波形图与Ia,Ucb接线方式的一样,其的计算同式(2)。

因此,直接检测相电流的两个相邻的方波信号上升沿的时间差,即可得到周期T;检测相电流线电压的相邻的两个上升沿过零触发方波的上升沿的时间差,即可得到时间τ;根据τ落在周期T的范围可确定接线方式是属于I型还是II型,然后参照相应的计算公式可以很容易算出相位角以及超前滞后情况,从而得到三相系统的功率因数,这样就可以做到功率因数的检测与具体的三相接线方式无关。

2信号的获取

由与接线无关的三相功率因数测量方法的工作原理可知,获取三相电网中一相的相电流和另外两相的线电压信号是本测量方法实现的一个重点。下面简述该测量方法的信号获取过程。

功率因数例7

一、变电所无功补偿概况

崇明厂区变电所最早建造从2003年就开始了,电容柜都是从变电所投产就开始同步运行,而且是每天24小时不间断的,受制于电容器的使用寿命比断路器等产品短很多,经过十几年的时间,没彻底更换过的电容器柜问题频出,这就增加了运行维护的难度。

电力公司对我单位电能收费是根据进线线路分别进行的:崇明元件厂生活区一路,崇明生产区域两路,其中主体生产用电集中在崇明生产区域,所以我们本文就以崇明生产区域的两路35KV线路电费情况为调查对象来具体分析。

二、不同等级电压上的补偿

补偿在高、低压两个电压等级上,我们具体分析也围绕这两个大的方向来进行,

(一)10KV高压侧补偿。在这个电压等级上,堡船207和堡船217都分别有一组高压电容器组,型号TBB2-10-1800/100BL,额定电流94.5A,补偿容量为1800KVA。高压电容器组采用人工操作的方式,早上,用电进入高峰期时人工合闸,晚上负荷降下来后人工分断,只能整组的投入或者退出。在高压侧,投入及退出时间点上能把控,容量投入的多少是无法改变的。

(二)低压侧电容补偿。根据生产的需要,我们对负荷相对集中处都设立了变电所,根据负荷的多少,在变电所内部都进行了功率因数的补偿。生产现场的变电所有24个,其中带低压电容补偿的变电所有21个,每个变电所电容补偿的容量及完好程度有所区别。一部分电容柜因为线路元器件老化、电容本身破损等原因,考虑到安全因素,没有投入运行,这就有了提升的空间,特别是针对负荷比较大的5.3万车间、造船码头1#及2#变电所、船台、涂装一期及二期等变电所等。

提升功率因数对于总电流的下降有一定影响,就相当于增加了变压器的有功输出,对用电负荷较大变电所容量能进一步改善。

三、功率因数低原因分析

通过平时工作中观察以及现场查看,细致周到分析了功率因数低的原因,见图1。

针对功率因数偏低的情况,根据平时维修及行业经验进行系统的分析,因为高压系统和低压系统电容器在投用、自动化运行、切除等方面完全不同,后续的分析也是分两部分分别进行。

四、效益分析

(一)减少线路损耗。特别是对于负荷较大的区域,一直以来低压侧电流特别大,功率因数提高了,无功电流就减少,更利于有功电能的输送,也相当于提升变压器有功使用容量,更好的为生产现场提供电能。

(二)电力公司给予我公司奖励。功率因数提高后,可以得到

电力公司用电奖励。我厂电费是按照:0.90标准电费调整(%)来计算的,由之前统计的两路数据可以看出功率因数攻关前后的变化 。当功率因数提高后,并做好保持工作,我厂堡船207和堡船217在电力公司拿到的奖励还是比较可观的。

五、固措施

功率因数例8

功率因数是指电力网中线路的视在功率供给有功功率的消耗所占百分数。在电力网的运行中,我们所希望的是功率因数越大越好,如能做到这一点,则电路中的视在功率将大部分用来供给有功功率,以减少无功功率的消耗。用户功率因数的高低,对于电力系统发、供、用电设备的充分利用,有着显著的影响。适当提高用户的功率因数,不但可以充分地发挥发、供电设备的生产能力、减少线路损失、改善电压质量,而且可以提高用户用电设备的工作效率和为用户本身节约电能。因此,对于全国广大供电企业、特别是对现阶段全国性的一些改造后的农村电网来说,若能有效地搞好低压补偿,不但可以减轻上一级电网补偿的压力,改善提高用户功率因数,而且能够有效地降低电能损失,减少用户电费。其社会效益及经济效益都会是非常显著的。

一、影响功率因数的主要因素

首先我们来了解功率因数产生的主要原因。功率因数的产生主要是因为交流用电设备在其工作过程中,除消耗有功功率外,还需要无功功率。当有功功率P有一定时,如减少无功功率P无,则功率因数便能够提高。在极端情况下,当P无=0时,则其功率因素=1。因此提高功率因数问题的实质就是减少用电设备的无功功率需要量。影响功率因素主要是下面几个方面。

(一)异步电动机和电力变压器是耗用无功功率的主要设备

异步电动机的定子与转子间的气隙是决定异步电动机需要较多无功的主要因素。而异步电动机所耗用的无功功率是由其空载时的无功功率和一定负载下无功功率增加值两部分所组成的。所以要改善异步电动机的功率因数就要防止电动机的空载运行并尽可能提高负载率。变压器消耗无功的主要成份是它的空载无功功率,它和负载率的大小无关。因而,为了改善电力系统和企业的功率因数,变压器不应空载运行或长其处于低负载运行状态。

(二)供电电压超出规定范围也会对功率因数造成很大的影响

当供电电压高于额定值的10%时,由于磁路饱和的影响,无功功率将增长得很快,据有关资料统计,当供电电压为额定值的110%时,一般工厂的无功将增加35%左右。当供电电压低于额定值时,无功功率也相应减少而使它们的功率因数有所提高。但供电电压降低会影响电气设备的正常工作。所以,应当采取措施使电力系统的供电电压尽可能保持稳定。

(三)电网频率的波动也会对异步电机和变压器的磁化无功功率造成一定的影响

我们知道了影响电力系统功率因数的一些主要因素,因此我们要寻求一些行之有效的、能够使低压电力网功率因数提高的一些实用方法,使低压网能够实现无功的就地平衡,达到降损节能的效果。

二、低压网无功补偿的一般方法

低压无功补偿我们通常采用的方法主要有三种:随机补偿、随器补偿、跟踪补偿。下面简单介绍这三种补偿方式的适用范围及使用该种补偿方式的优缺点。

1. 随机补偿

随机补偿就是将低压电容器组与电动机并接,通过控制、保护装置与电机,同时投切。随机补偿适用于补偿电动机的无功消耗,以补偿磁无功为主,此种方式可较好地限制农网无功峰荷。

随机补偿的优点是:用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,而且不需频繁调整补偿容量。具有投资少、占位小、安装容易、配置方便灵活、维护简单、事故率低等特点。

2. 随器补偿

随器补偿是指将低压电容器通过低压保险接在配电变压器二次侧,以补偿配电变压器空载无功的补偿方式。配变在轻载或空载时的无功负荷主要是变压器的空载励磁无功,配变空载无功是农网无功负荷的主要部分,对于轻负载的配变而言,这部分损耗占供电量的比例很大,从而导致电费单价的增加,不利于电费的同网同价。

随器补偿的优点是:接线简单、维护管理方便、能有效地补偿配变空载无功,限制农网无功基荷,使该部分无功就地平衡,从而提高配变利用率,降低无功网损,具有较高的经济性,是目前补偿无功最有效的手段之一。

3. 跟踪补偿

跟踪补偿是指以无功补偿投切装置作为控制保护装置,将低压电容器组补偿在大用户0.4kv母线上的补偿方式。适用于100kVA以上的专用配变用户,可以替代随机、随器两种补偿方式,补偿效果好。

跟踪补偿的优点是:运行方式灵活,运行维护工作量小,比前两种补偿方式寿命相对延长、运行更可靠。但缺点是控制保护装置复杂、首期投资相对较大。但当这三种补偿方式的经济性接近时,应优先选用跟踪补偿方式。

三、采取适当措施,设法提高系统自然功率因数

提高自然功率因数是在不添置任何补偿设备,采用降低各用电设备所需的无功功率减少负载取用无功来提高工矿企业功率因数的方法,它不需要增加投资,是最经济的提高功率因数的方法。下面将对提高自然功率因数的措施作一些简要的介绍。

1. 合理使用电动机(下转第122页)

(上接第199页)

合理选用电动机的型号、规格和容量,使其接近满载运行。在选择电动机时,既要注意它们的机械性能,又要考虑它们的电器指标。若电动机长期处于低负载下运行,既增大功率损耗,又使功率因数和效率都显著恶化。故从节约电能和提高功率因数的观点出发,必须正确地合理地选择电动机的容量。

2. 提高异步电动机的检修质量

实验表明,异步电动机定子绕组匝数变动和电动机定、转子间的气隙变动时对异步电动机无功功率的大小有很大的影响。

3. 采用同步电动机或异步电动机同步运行提高功率因数

由电机原理知道,同步电动机消耗的有功功率取决于电动机上所带机械负荷的大小,而无功取决于转子中的励磁电流大小,在欠激状态时,定子绕组向电网“吸取”无功,在过激状态时,定子绕组向电网“送出”无功。因此,只要调节电机的励磁电流,使其处于过激状态,就可以使同步电机向电网“送出”无功功率,减少电网输送给工矿企业的无功功率,从而提高了工矿企业的功率因数。异步电动机同步运行就是将异步电动机三相转子绕组适当连接并通入直流励磁电流,使其呈同步电动机运行,这就是“异步电动机同步化”。因而只要调节电机的直流励磁电流,使其呈过激状态,即能向电网输出无功,从而达到提高低压网功率因数的目的。

4. 合理选择配变容量,改善配变的运行方式

对负载率比较低的配变,一般采取“撤、换、并、停”等方法,使其负载率提高到最佳值,从而改善电网的自然功率因数。

功率因数例9

功率因数是指电力网中线路的视在功率供给有功功率的消耗所占百分数。在电力网的运行中,我们所希望的是功率因数越大越好,如能做到这一点,则电路中的视在功率将大部分用来供给有功功率,以减少无功功率的消耗。用户功率因数的高低,对于电力系统发、供、用电设备的充分利用,有着显著的影响。适当提高用户的功率因数,不但可以充分地发挥发、供电设备的生产能力、减少线路损失、改善电压质量,而且可以提高用户用电设备的工作效率和为用户本身节约电能。因此,对于全国广大供电企业、特别是对现阶段全国性的一些改造后的农村电网来说,若能有效地搞好低压补偿,不但可以减轻上一级电网补偿的压力,改善提高用户功率因数,而且能够有效地降低电能损失,减少用户电费。其社会效益及经济效益都会是非常显著的。

1 影响功率因数的主要因素

首先我们来了解功率因数产生的主要原因。功率因数的产生主要是因为交流用电设备在其工作过程中,除消耗有功功率外,还需要无功功率。当有功功率P有一定时,如减少无功功率P无,则功率因数便能够提高。在极端情况下,当P无=0时,则其功率因素=1。因此提高功率因数问题的实质就是减少用电设备的无功功率需要量。影响功率因素主要是下面几个方面。

1.1 异步电动机和电力变压器是耗用无功功率的主要设备

异步电动机的定子与转子间的气隙是决定异步电动机需要较多无功的主要因素。而异步电动机所耗用的无功功率是由其空载时的无功功率和一定负载下无功功率增加值两部分所组成的。所以要改善异步电动机的功率因数就要防止电动机的空载运行并尽可能提高负载率。变压器消耗无功的主要成份是它的空载无功功率,它和负载率的大小无关。因而,为了改善电力系统和企业的功率因数,变压器不应空载运行或长其处于低负载运行状态。

1.2 供电电压超出规定范围也会对功率因数造成很大的影响

当供电电压高于额定值的10%时,由于磁路饱和的影响,无功功率将增长得很快,据有关资料统计,当供电电压为额定值的110%时,一般工厂的无功将增加35%左右。当供电电压低于额定值时,无功功率也相应减少而使它们的功率因数有所提高。但供电电压降低会影响电气设备的正常工作。所以,应当采取措施使电力系统的供电电压尽可能保持稳定。

1.3 电网频率的波动也会对异步电机和变压器的磁化无功功率造成一定的影响

我们知道了影响电力系统功率因数的一些主要因素,因此我们要寻求一些行之有效的、能够使低压电力网功率因数提高的一些实用方法,使低压网能够实现无功的就地平衡,达到降损节能的效果。

2 低压网无功补偿的一般方法

低压无功补偿我们通常采用的方法主要有三种:随机补偿、随器补偿、跟踪补偿。下面简单介绍这三种补偿方式的适用范围及使用该种补偿方式的优缺点。

2.1 随机补偿

随机补偿就是将低压电容器组与电动机并接,通过控制、保护装置与电机,同时投切。随机补偿适用于补偿电动机的无功消耗,以补偿磁无功为主,此种方式可较好地限制农网无功峰荷。

随机补偿的优点是:用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,而且不需频繁调整补偿容量。具有投资少、占位小、安装容易、配置方便灵活、维护简单、事故率低等特点。

2.2 随器补偿

随器补偿是指将低压电容器通过低压保险接在配电变压器二次侧,以补偿配电变压器空载无功的补偿方式。配变在轻载或空载时的无功负荷主要是变压器的空载励磁无功,配变空载无功是农网无功负荷的主要部分,对于轻负载的配变而言,这部分损耗占供电量的比例很大,从而导致电费单价的增加,不利于电费的同网同价。

随器补偿的优点是:接线简单、维护管理方便、能有效地补偿配变空载无功,限制农网无功基荷,使该部分无功就地平衡,从而提高配变利用率,降低无功网损,具有较高的经济性,是目前补偿无功最有效的手段之一。

2.3 跟踪补偿

跟踪补偿是指以无功补偿投切装置作为控制保护装置,将低压电容器组补偿在大用户0.4kv母线上的补偿方式。适用于100kVA以上的专用配变用户,可以替代随机、随器两种补偿方式,补偿效果好。

跟踪补偿的优点是:运行方式灵活,运行维护工作量小,比前两种补偿方式寿命相对延长、运行更可靠。但缺点是控制保护装置复杂、首期投资相对较大。但当这三种补偿方式的经济性接近时,应优先选用跟踪补偿方式。

3 采取适当措施,设法提高系统自然功率因数

提高自然功率因数是在不添置任何补偿设备,采用降低各用电设备所需的无功功率减少负载取用无功来提高工矿企业功率因数的方法,它不需要增加投资,是最经济的提高功率因数的方法。下面将对提高自然功率因数的措施作一些简要的介绍。

3.1 合理使用电动机

合理选用电动机的型号、规格和容量,使其接近满载运行。在选择电动机时,既要注意它们的机械性能,又要考虑它们的电器指标。若电动机长期处于低负载下运行,既增大功率损耗,又使功率因数和效率都显著恶化。故从节约电能和提高功率因数的观点出发,必须正确地合理地选择电动机的容量。

3.2 提高异步电动机的检修质量

实验表明,异步电动机定子绕组匝数变动和电动机定、转子间的气隙变动时对异步电动机无功功率的大小有很大的影响。

3.3 采用同步电动机或异步电动机同步运行提高功率因数

由电机原理知道,同步电动机消耗的有功功率取决于电动机上所带机械负荷的大小,而无功取决于转子中的励磁电流大小,在欠激状态时,定子绕组向电网“吸取”无功,在过激状态时,定子绕组向电网“送出”无功。因此,只要调节电机的励磁电流,使其处于过激状态,就可以使同步电机向电网“送出”无功功率,减少电网输送给工矿企业的无功功率,从而提高了工矿企业的功率因数。异步电动机同步运行就是将异步电动机三相转子绕组适当连接并通入直流励磁电流,使其呈同步电动机运行,这就是“异步电动机同步化”。因而只要调节电机的直流励磁电流,使其呈过激状态,即能向电网输出无功,从而达到提高低压网功率因数的目的。

3.4 合理选择配变容量,改善配变的运行方式

对负载率比较低的配变,一般采取“撤、换、并、停”等方法,使其负载率提高到最佳值,从而改善电网的自然功率因数。

通过以上一些提高加权平均功率因数和自然功率因数的叙述,或许我们已经对“功率因数”这个简单的电力术语有了更深的了解和认识。

功率因数例10

中图分类号: TE08 文献标识码: A

前言

在电力系统中,由于许多设备大多都是感性负载,在运行中不仅要消耗有功功率,设备本身也消耗无功功率,从而使功率因数降低。功率因数的提高直接影响电网供电质量的好坏。如果功率因数过低,将使有功功率输出减少,无功功率增加,导致电能损耗加大、利用率降低。关系到节约电能和供电质量。

功率因数是电力系统的一个重要的技术数据。功率因数是衡量电气设备效率高低的一个系数。功率因数低,说明电路用于交变磁场转换的无功功率大, 增加了线路供电损失,因此供电部门对用电单位的功率因数有一定的标准要求。 在交流电路中,电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cosΦ=P/S

1、影响功率因数的主要因素

首先我们先了解一下功率因数是怎么产生的,在正弦的交流电路中,用电设备在正常的工作中,消耗功率分为两部分:一是有功功率;二是无功功率。当有功消耗为一定时,无功功率消耗的减少,就提高功率因数。当无功功率消耗为0时,那么功率因数就为1,使得电能利用率达到100%。影响功率因数的主要因数分为以下几种:

1.1异步电动机和电力变压器是消耗无功的主要设备

异步电动机的定子与转子之间的气隙是决定异步电动机需要较多无功的主要因数。而异步电动机所耗用的无功功率是其空载时的无功功率和一定负载下无功功率两部分组成。所以要改善异步电动机的功率因数就要防止空载运行。变压器消耗的无功主要成份是它的空载运行,因此提高电力系统和企业的功率因数,就需要变压器不能空载运行或者低负荷运行。

同时工厂中由于有大量的电焊机、电弧炉及气体放电灯等感性负荷,同样也消耗大量的无功功率,从而使功率因数降低。

1.2供电电压超出规定范围也会对功率因数造成很大影响

当供电电压高于额定值的10%是,由于磁路饱和的影响,无功功率将增长的很快。当供电电压低于额定值时,无功功率也相应减少而使他们的功率因数有所提高。供电电压降低会影响电器设备的正常工作。所以,应当采取措施使电力系统的供电电压尽可能保守稳定。

2、无功补偿及补偿方法

在上述中,我们知道要想提高功率因数,就必须寻找一些行之有效的方法。无功补偿是同时提高功率传输容量和电压稳定性的最有效办法。输电系统的无功补偿主要是为了控制电压、提高输电网络的最大功率传输能力和提高电力系统运行的稳定性。配电系统的无功补偿大多属于负荷的补偿,主要是控制无功功率、改善负荷的功率因数、改善电能质量。在选用无功补偿设备室应该注意:

①并联电容器和并联电抗器是电网无功补偿的重要设备,应优先选用此种设备。

②当发电厂经过长距离的线路送电给一个较强的受端系统时,为缩短线路的电气距离,宜选用串联电容器,其补偿一般不宜大于50%,并应防止次同步谐振。

③带用冲击负荷或负荷波动、不平衡严重的工业企业,应采用静止无功补偿器。

2.1并联无功补偿装置

并联无功补偿装置主要包括并联与电力电网中的同步调相机、电力电容器、并联电抗器和静止式无功补偿装置等。不同类型的无功补偿设备对电网稳定性有不同的影响。

①同步调相机。可以连续无极地调节向电网提供容性或感性无功功率,提高电网运行的稳定性。

②并联电容器。只能分级地调节向电网提供的容性无功功率,以补偿感性无功功率,减少电网的有功损耗,提高电网的电压水平。

③并联电抗器。可以向电网提供分级可调的感性无功,一补偿局部多余的容性无功功率,保证电网电压的稳定性。

④静止式无功补偿装置(Static Var Compensater,简称SVC)。静止是与传统的同步调相机的旋转相对应的。SVC是一种快速调节无功功率的装置,他可使所需无功功率作随机调整,从而保持在冲击性负荷节点的系统电压水平恒定,他可有效的抑制冲击性负荷所引起的电压波动和闪变、高次谐波,提高功率因数,还可以按各相的无功功率快速补偿调节实现三相无功功率的平衡,使系统的负荷处于稳定、安全、可靠的运行状态。

2.2串联电容补偿

串联电容补偿是指将电力电容器串联于需要补偿的输电线路中。国外现在运行中或计划中的输电线路补偿度高达75%~80%,由于电压分布或继电保护的原因,补偿度要受限制。我国串补线路设计的补偿度一般不大于50%。

不同电压等级的输电线路采用串联补偿的作用不一样。

①在220kV及以上的输电线路中,采用串补是为了增强电网的稳定性,提高输电能力。

②在110kV及以下的输电线路中,采用串补主要为了减小线路电压降,降低线路受端电压的波动,提高供电电压质量。

2.3采取适当措施,提高功率因数

提高自然功率因数是在不添置任何补偿设备,采用降低各用电设备所需的无功功率减少负载取用无功来提高企业功率因数的方法,他不需要增加投资,是最经济的提高功率因数的方法。下面介绍几种提高自然功率因素的措施

①合理使用电动机。在选择电动机时,在规格和容量上,根据用户需要,要使其电动机接近满载运行。这样不仅能使点击利用率提高还能提高经济效益。

②合理选择配变容量,改善运行方式。根据负荷的变化,及时的更换、并联、停运等方法,让用电设备负载率达到最佳值。

③提高一步电动机的检修质量。对电动机检修时合理的改变定子绕组的匝数和转子间的气隙,都能有效的改变无功功率的消耗。

④采用同步电动机或异步电动机同步运行提高功率因数。由电机原理知道,同步电动机消耗的有功功率取决于电动机上所带机械负荷的大小,而无功取决于转子中的励磁电流大小,在欠激状态时,定子绕组向电网 “吸取”无功,在过激状态时,定子绕组向电网“送出”无功。因此,只要调节电机的励磁电流,使其处于过激状态,就可以使同步电机向电网 “送出”无功功率,减少电网输送给工矿企业的无功功率,从而提高了工矿企业的功率因数。异步电动机同步运行就是将异步电动机三相转子绕组适当连接并通入直流励磁电流,使其呈同步电动机运行,这就是 “异步电动机同步化”。因而只要调节电机的直流励磁电流,使其呈过激状态,即能向电网输出无功,从而达到提高低压网功率因数的目的。

3、无功补偿的效益

在《供电营业规则》中规定:“用户在当地供电企业规定的电网高峰负荷时的功率因数应达到下列规定:100kVA及以上高压供电的用户功率因数为0.90以上,其他电力用户和大、中型电力排灌站、趸购转售电企业,功率因数为0.85以上。”我国供电企业每月向工厂收取电费,就规定电费要按每月平均功率因数高低进行调整,例如平均功率因数高于规定值,可减收电费,不仅降低经济成本,还充分提高电能利用率。而低于规定值,则要加收电费,以鼓励用户积极设法提高功率因数。

4、结束语

综合上述讨论,在供电系统中合理适当的增加无功补偿,提高功率因数不仅能充分地发挥电力设备的生产能力和电能的利用率,改善电压质量,提高设备的工作效率,还能为用户减少生产成本,从而达到更加经济运行、节能环保、低碳生产,为社会创造良好的经济效益。