期刊在线咨询服务,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

期刊咨询 杂志订阅 购物车(0)

gps技术模板(10篇)

时间:2023-03-10 15:06:22

gps技术

gps技术例1

Abstract: GPS (Global Positioning System, referred to as the GPS) satellite positioning technology with the deepening and development of the concept of Digital Earth, continuous improvement, improve the hardware and software, with its all-weather, high-precision, automation, high efficiency characteristics to win the trust of customers. In this paper, the basic structure and principle of the GPS on the application of GPS technology in the field of earthquake rescue, mapping, analyzing the advantages and disadvantages of GPS technology.Keywords: GPS technology; Surveying and Mapping; application

中图分类号:P228.4 文献标识码:A文章编号:2095-2104(2012)

GPS定位系统的组成及定位原理

GPS定位系统由卫星星座(空间部分)、地面监控系统(地面部分)、GPS接收机(用户设备部分)组成。

GPS卫星星座由21颗工作卫星和3颗在轨备用卫星组成。24颗卫星均匀分布在6个轨道平面内,这样就保证了每个轨道面有4颗卫星,卫星离地高度20200km,轨道倾角为55°,各个轨道平面之间相距60°,在每一轨道平面内,各卫星升交角距相差90°,任一轨道上的卫星比西边相邻轨道上的相应卫星超前30°。

地面监控系统是整个系统的中枢,由5个监测站、1个主控站、3个注入站组成。主要任务是:收集、处理本站和监测站收到的全部资料,完成对GFS卫星信号的实时监测,向每颗卫星提供其编写并播发的导航电文,包括卫星星历(即一系列描述卫星运动及其轨道参数的数据)、卫星钟差和大气修正参数等。

用户设备基本结构包括:主机、天线、电源组成,它的任务是捕获到按一定卫星高度截止角所选择的待测卫星的信号,并跟踪这些卫星的运行,对接收到的GPS信号进行处理,以便实时测量出测站的三维位置,甚至三维速度和时间。

GPS定位原理,类似于传统的后方交会。GPS卫星发射测距信号和导航电文,导航电文中含有卫星的位置信息,用户使用GPS接收机在某一时刻同时接收三颗以上的GPS卫星信号,测量出测站点至三颗以上GPS卫星的距离并解算出该时刻GPS卫星的空间坐标,据此利用距离交会法解算出测站的位置。

GPS技术在实际工作中的应用

2.1 GPS在测绘、资源勘探中的应用

这是国内开展GPS定位应用较早的领域,现已建成连续运行的GPS观测站30多个,其中7个纳入国际GPS服务站(IGS)网,全国GPS二级网站布测534点,平均边长约160km,从根本上解决了我国测量使用参考框架的问题,比传统测量方法提高效率三倍以上,费用降低50%。与此相关的还有中国地壳运动观测网,网中包括25个基准站、56个基本站、1000个分布在主要地震带上的区域站,其数据处理结果为全国大地震活动趋势分析提供了新的依据。除了较大范围的GPS网外,我国很多城市还建立了很多小型的GPS网,用于地方建设服务。例如由天津市测绘院主建的VRS基准网络,就是使用GPS实时动态的获取监测数据,通过数据的处理分析,为天津市地面沉降分析、气象预报等提供服务,此外,天津市为监测地面沉降量,特布控了GPS监测网,每年定期使用GPS进行监测,获得各个监测网点的数据,为分析天津市地面沉降提供了科学的数据。

2.2 GPS在地震救援中的应用

以往定位功能对客运企业、物流企业而言,其主要用途是它可以便于企业实时获取车辆运行位置、速度等运行指标,这些数据有助于其对车辆进行调度管理,配合良好的管理机制,可以很好的杜绝车辆超速、串线运营、违规运营等问题。但在四川汶川及青海玉树地震期间同样的定位功能却可以拯救人们的生命。

汶川地震发生后,通讯中断,道路阻塞,外界对震区的情况一无所知,在此情况下隶属四川武警总队的广大官兵冒着生命危险,携带我国自行研制的“北斗一号”导航卫星终端机到达震区,陆续发回了各种具有位置信息的灾情信息,从而使救援人员和决策者能及时掌握地震灾害的程度及其空间分布,决定开展有效的救援和灾后恢复。

例如,载有14名台湾同胞游客的一辆大巴车在地震后与工作人员失去了联系,接报后,成都网阔信息技术有限公司迅速启动GPS定位系统查询,仅用了不到30秒的时间,就锁定了客车的具置。随后,救援人员成功将这14名台湾游客全部救出。另外一辆车牌号为川IR-18901的旅游客车,承载着42名学生和一名教师,也被困在离震中不远的地方,借助所安装的GPS,最后成功获救。

随着GPS技术的更新,它将在地震应急搜救的信息快速获取、应急响应、救援决策、指挥、搜索与营救等救援行动的整个过程中,都有望发挥其强大的功能,从而为地震应急搜救提供坚实的技术支持。

2.3 建立工程控制网

工程控制网是工程建设、管理和维护的基础。建立的道路勘探、施工控制网和隧道工程控制网等的网型和精度要求与工程项目的性质、规模密切相关。应用GPS技术建立控制网,通常采用载波相位差分技术,以保证达到毫米级精度。道路勘探、施工控制网,具有横向很窄、纵向很长的特点。采用传统的三角锁、导线方案,多数需要分段实施,以避免误差积累过大。采用GPS技术, 由于点与点之间不需要通视,可以敷设很长的GPS点构成的三角锁,以保持长距离线路坐标控制的一致性。

2.4 在地形测量中的应用

传统的地形测量是在测区内首先建立图根控制点,然后再用大平板仪或经纬仪结合小平板法测图,现在发展到外业用全站仪野外采集数据,内业利用成图软件成图。这些方法都要求在测站上测地形、地物特征点,对通视要求很高,要求人员较多。若采用动态GPS测量,只要采用对中杆即可,则图根控制速度快,对通视要求也不高,可以边控制边碎部。

2.5 在施工放样中的应用

放样主要是把图上设计的坐标与高程在实地标定出来,它其实是测量坐标的一个反过程。以往主要采用全站仪放样,一般至少需要两人合作,且要求测站点与放样点要通视才行,若不通视,还要进行转站。若附近无控制点,则先引点。现在采用动态GPS进行放样,只要把放样的点坐标输入手簿中,测量员背着GPS接收器,根据其显示提示测量员走到放样点位上,放样像走路一样轻松完成,当然,其精度也较高,各放样点的误差影响也是独立的。

GPS技术在应用中的优缺点

3.1 GPS技术在应用中的优点

3.1.1测站之间无需通视。测站间相互通视一直是测量学的难题。GPS这一特点,使得选点更加灵活方便。

3.1.2 观测时间短,定位精度高。采用GPS静态测量时每个测站上的观测时间一般在30~40min左右;采用动态测量时,只需将对中杆置于待测点一、二秒便可得出误差为厘米级的三维坐标。

3.1.3自动化程度高,操作简便。目前GPS接收机已趋向小型化和操作傻瓜化,观测人员只需将天线对中、整平,量取天线高打开电源即可自动进行观测,求得测点三维坐标。

3.1.4 利用定位技术,能快速确定具置的相关信息。

3.1.5全天候作业。GPS观测可在任何地点,任何时间连续地进行,一般不受天气状况的影响。

3.2 GPS技术在应用中的缺点

3.2.1 在地下工程、隧道及高大建筑物区域或是距离基站太远等,GPS出现盲区,初始化时间长或失锁,影响测量速度或无法测量。

3.2.2 高程测量时应用GPS定位技术不能直接得到地面点的正常高,而只能得到大地高,确定地面点的正常高,必须要知道地面点的高程异常,这就限制了GPS技术在高程测量方面的作为。

gps技术例2

1 GPS 技术概述

GPS即全球卫星定位系统(Global Positioning System)。它是由美国国防部研发的,通过接收离地面约两万多公里高的轨道上运行的24颗人造卫星所发射出来的讯号,利用三角测量原理能够对收讯者在地球上的位置进行计算。GPS采用的是全球性地心坐标系统,地球质量中心是其坐标原点。GPS技术功能必须具备三个要素:GPS终端、传输网络和监控平台。

1.1 GPS 技术原理

利用 GPS进行卫星定位的基本原理是,利用卫星导航来实现距离和时间的测量,以此构成一个完整的定位系统,再根据高速运行的卫星瞬间位置作为已知的数据,利用空间距离后方交会的方法,将被测量地点的具置进行计算。具体的说,就是利用被测量位置与 GPS卫星的具置之间的方向和距离进行计算,以此来判断被测量地点的具置,实现定位。如果地面的用户使用的GPS接收机在同时受到四颗以上的卫星信号时,可以通过对距离的测量和载波为止的测量来实现对被测量位置的具体定位,然后再结合不同的卫星星历,实现其与地球距离的相互交接,才能够利用被测量地点所在的地区唯一的三维坐标对其进行准确的表示。

1.2 GPS技术的特点

GPS技术具有高精度、全天候的特点,能够持续不断的对需要测量的地区进行数据监控。同时,GPS技术操作简单,容易实现,任何人员在通过培训之后都能够对其进行使用。具体的说,GPS技术的特点可以进行如下的论述:

1.2.1 GPS技术具有较高的定位精度。其能够在使用范围50km窑内的相对定位精度达到610m,而在100-500km的范围内则能够达到7-10m。

1.2.2 观测时间较短。通过科学技术的不断改进,GPS技术也得到了不断的发展与更新,在高新科技不断发展的推动下,使得GPS所利用的观测时间越来越短,对于普通的观测定位只需要几秒钟就能完成。

1.2.3 GPS测站无需通视。利用GPS技术进行测量,不需要每个测量站之间互相通视,只要每个观测站具有相对开阔的视野就能够实现有效的测量,并且极大的减少了费用的支出。同时,由于不需要每个测量站之间实现通视,因此只需要根据测量需要来确定测量点的位置,便能够顺利的开展测量工作,不需要对测量选点的疏密情况进行考虑,这样便缩短了选点的时间,极大的提高了测量的效率。

1.3 GPS的定位功能GPS具有较强的定位功能,其能够通过遥感影像图和传统矢量图等数据和图形的加载,自动生成相应的数据和图形;通过对属性库的自定义合适设置实现对资源的与偶小管理。另外,利用 GPS技术能够进行高精度的测量,尤其是野外测量点的确定更为准确。测量结果可以通过各种数据格式进行转换,根据不同的使用者需要,而在各个坐标之间进行灵活的转换。

2 GPS应用于地质测绘的重要性

经济的快速发展促进了城市化进程的不断加快,地质测绘工作作为一项基础性的测量也受到了越来越多的重视。随着GPS技术广泛的运用,其在地质测绘中的重要性也逐渐的凸显出来,具体可以归纳为:

2.1 高新技术的运用使得测绘人员从繁重的体力劳动中解脱出来,减轻了地质人员的劳动强度。

2.2 GPS手持仪器的使用为地质填图数据的采集提供了更为简便的途径。

2.3 针对一些特殊的地质,如山区、高山区地区的遮挡地质填图也提供了更为方便的服务,与此同时,也减少了测量人员进入到野外测量的工作量。同时,在野外地质勘察中运用 GPS 技术,能够提高找矿的准确性,促进了工作效率的提高。

3 GPS在地质测绘工作中的具体应用

3.1 测定大地控制网点 在地质测绘中的勘测网络一般是由基线和勘探线所组成的,对于地质勘测区域来说,如果没有大比例尺寸的地区,则应当建立起一个勘探区域控制网络,以此作为勘探工程的基本空股指网络。在勘探区域内,利用分级布设的方式对GPS控制网络进行分布,这种分布方式能够有效的为勘测区域内的各个测量点的确定提供一定的参考基础,同时也能够在区域勘测网络内形成长短边结合的结构,以此来减少边缘误差的积累,也有利于利用GPS对数据处理结果进行分析和判断。

3.2 在水下地形测绘中的应用 地质测量时遇到需要绘制水下地形图时,要求其应当明确的标识水深和平面位置,然后再利用计算机进行水下绘制。以往的绘制过程中使用的是经纬仪、境外测距仪等,这些设备使用起来都较为复杂,而且在水下地形图的绘制方面也不够精确。而GPS技术的运用,使得水下测绘的问题得到了很好的解决。

3.3 野外观测的应用

3.3.1选点GPS技术的运用对测站之间并没有通视的要求,所以在设置图形结构时也具有更多的灵活性,因此,在进行选点时更为容易,特别是在山区的地质勘测工作中,这项优势体现的更为明显。但是,GPS的运用也是存在一定的特殊性,不仅要考虑到前期的测量布控,同时也要对其后续测量进行充分的考虑,具体的说,在进行选点时需要考虑以下问题:第一,点位要与大面积水面具有一定的距离,避免受到影响而产生多路径效应;第二在选点周围的高度角 15°以上,不能存在障碍物,以免对信号的接收产生影响;第三,点位的确定要与大功率无限电发射源以及高压线等设施保持一定的距离,避免电磁场对信号产生干扰;第四,选点的位置要保持通行方便,而且视野开阔,对于日后的观测和使用都具有一定的基础作用;第五,在选点完成后,要及时填写选点日记。

3.3.2 观测 在进行GPS静态测量时,整个测量过程中GPS接收机都处于一个静止的转台,而不同的接收机应该在不同的时间段内进行开启,在每个时间段进行接收机的开启之前要对测量现场的卫星好、天气状况以及实时经纬度等进行一次详细的记录,并且记录不同仪器的高度。在进行数据处理时,要将不同时间段的改变而发生变化数据的数值进行记录,然后通过具体的计算获得相应的测量结果,观测的时间一般要根据实际的测量情况进行确定,在半小时到十几个小时之间不等。

4 结束语

现代科学技术的发展促进了地质测绘工作的不断进步,GPS 技术以其强大的功能实现了对地质测绘的全面提升,其在地质测绘工作中的优越性使得其受到了广泛的应用和关注。而随着科学技术的不断发展,GPS 技术也将不断的发展和更新,其在地质测绘工作中的运用也将更为方便和快捷,同时也能够促进地质测绘技术的不断发展与完善,促进我国地质事业的持续发展。

参考文献

gps技术例3

关键词:GPS; 定位; 抗干扰

GPS接收机依靠GPS卫星射频信号工作,GPS卫星射频信号容易存在射频干扰。这种影响会使GPS接收机导航定位系统精度下降。射频干扰的存在形式分为宽带、窄带、无意及有意的。而且这种干扰很难预测,一旦干扰信号串入, GPS信号的追踪准确度都会收到影响。所以GPS抗干扰技术的研究意义重大。

首先,GPS的主要功能是为高动态用户提供实时的、连续的、精度高的数据信息。GPS主要存在的干扰形式有三种:压制式干扰、欺骗式干扰、分布式立体干扰 。压制式干扰:利用噪声信号遮挡有效信号,致使GPS接收机失常。有窄带、宽带两种形式,在干扰作用时间上有连续和脉冲两种形式。这种干扰技术含量较低,功率较大。欺骗式干扰:利用与GPS信号相近的信号进行干扰,致使GPS接收机失常。此类干扰容易判断,显而易见,干扰功率偏小,但技术难度较高。 分布式立体干扰 :应用不同类型干扰机对地对空进行全方位立体式干扰。

通过分析GPS技术的自身性质,可以采用以下技术来解决干扰问题。

运用操作策略 :这是一种非实质性抗干扰法。这种方法可以将GPS接收与干扰源隔绝。可利用卫星信号与地平面至少有10°, 可以抑制地面干扰。但这种方法不能用于机载干扰机。

从RFI源进行控制 :通过截断干扰源抑制干扰。针对无线频率干扰(RFI),严格的规章制度控制, 可以限制干扰源的发射波段。对远离GPS的相同地点的发射频带源,可以对发射源实施屏蔽与滤波。

技术上的改进和调整 :分局干扰信号的特征,考虑成本的前提下,可将抗干扰技术分为三种类型: 自适应阵类:零控制,光束控制; 多孔技术类:光束转换,多元对消法; 单孔技术类:窄前后滤波器,窄辅助跟踪环,时相滤波,GPS/惯性集成和辅助,极化抗干扰技术。

射频干扰检测技术 :通过检测射频干扰信号,并生成报警信号,同时还具备输出干扰信号的数值大小。

前端滤波技术 :是一种抗干扰滤波处理技术。依靠微电子技术及软件技术来完成,可以克服GPS接收机2个L频段GPS频带的强功率干扰。目前大部分GPS接收机利用陡截止频率特性的无源滤波器强带外功率来加以抑制。插入损耗较低,截止带宽具有良好的抗干特性,但体积偏大,价格颇贵。它与放大器均安装在天线中,除前置滤波外,还要对窄带下变频器及本振混频器进行滤波。改善了接收机的带外干扰特性,降低了中频A/D变换处理所需的奈奎斯特采样速率。

码环和载波环跟踪技术 :其抗干扰性能利用窄带码环压缩载波跟踪滤波器的带宽和接收机预检测带宽加以改善。因为宽带带宽导致动态范围变窄,利用增加环路滤波器阶次或者外部导航系统来加以弥补。如采用内部辅助增强技术、外部导航辅助增强技术有惯性导航系统(INS)、多普勒雷达和空气速度计,而最佳选择是GPS和INS的组合应用。之一是借INS提供的平台速度信息去辅助GPS接收机的载波环和码环,做到环路带宽很窄,有效提高GPS接收机的信号/干扰比(S/J);之二是在强干扰下只有GPS导航,当GPS接收机信噪比恢复到跟踪门限G/No以上时,再用INS辅助GPS接收机快速捕获GPS信号。GPS和INS的组合应用能够使GPS接收机的抗干扰性能提升10~15dB。

窄带干扰处理技术 :也称暂时滤波技术,是DFT技术用于数字中频信号处理即频域幅度处理的例子,在没射频干扰的情况下,在频域内热噪声功率谱十分均匀;在信号中有窄带干_的情况下,频域发生异常,DFT中可自适应滤除这种异常谱线。

天线增强技术 :自适应调零天线技术能够提高GPS接收机抗干扰性能。这种天线由多元天线阵组成,利用微波网络将天线阵连接处理器,处理器对信号进行处理,再反馈到微波网络加以调节,来改变各阵元的增益和相位,消除天线阵方向图的干扰源,提升抗干扰性能。性能较好的自适应天线可以将GPS接收机的抗干扰能力提升40~50dB。

针对目前国内外GPS系统的发展状况和技术特点进行分析,采用多个GPS系统兼容性与组合导航定位技术、广域增强技术、导航信号增强与调制技术、自主导航星座运行管理技术以及导航与通信一体化技术等成为目前发展的技术趋势和研究方向。

未来,以GPS、GLONASS和伽利略等为代表的GPS系统将完成星座组网,并进行现代化技术改造,GPS系统各项性能大大提升。GPS系统将从以往的独立建设发展为合作开发,实现空间信息资源共享。干扰较强的情况下,导航卫星可以利用点波束天线,对指定区域信号功率进行调整,该信号由专用接收机接收,能够保证导航定位准确度。同时,融入加密技术,提升抗电子欺骗能力。导航定位精度、完好性、可用性和连续性是设计和评价GPS系统的顶层性能指标,也是新一代卫星导航系统技术改造的目标要求。构建高速的星与地、星与星间宽带通信网络,,完成对星座的实时、连续和动态监视,确保导航信息的实时性和有效性,达到系统顶层性能指标要求。

伴随地面移动通信技术的日益进步,时间、地点和事件等信息要素变得异常重要。但是,对于大范围的信息进行实时获取,则需要卫星通信网络的技术支持。新一代卫星导航系统的星地、星间高速宽带通信网络,加速了导航与通信技术的一体化进程,实现全球实时信息获取。

现代GPS系统已成为及时获取高精度导航信息的空间基础设施,军用价值和民用价值很高。而在GPS干扰技术日趋成熟的现代社会,人民乃至国家的安全受到的前所未有的挑战,GPS抗干扰技术的迅速发展成为必然。而在实践运用中,成本,技术难度及可实现性处处制约着GPS抗干扰技术的发展,而各种抗干扰方案各有其优点与缺陷,有效地将各种抗干扰措施统一结合,充分利用各自的优越性,提高系统的可靠度,做到小型化、多功能,是今后努力和奋斗的方向。努力提高卫星导航接收机适应现代战争恶劣电磁环境的作战能力,以最大限度保障现代化信息战的需要,这对现代化武器性能的提高以及重点、局部区域作战支持有着非常重要的军事意义。

参考文献:

[1]王茂锋.GPS抗干扰技术与自适应天线探索.陕西:陕西东方航空仪表有限责任公司,2013.11

[2孙越强.GPS干扰及抗干扰技术.中国科学院空间科学与应用研究中心 空间环境探测研究室

[3]王忠.GPS抗干扰技术.全球定位系统.成都:成都气象学院电子系.2011 [5]陈于平.GPS抗干扰技术综述.数学技术与应用,2013.武汉:国防信息学院

[4]刘海波,吴德伟,董成喜,卢艳娥.GPS抗干扰技术发展趋势.西安:空军工程大学电讯工程学院,2011.1

gps技术例4

技术焦点转向融合

“目前,GPS产品在导航技术方面的差距已经日趋缩小,未来GPS产业的亮点将集中在新技术的融合与应用方面。”日前,北京纽曼理想数码科技有限公司副总裁刘朝贵在接受记者专访时表示,随着3C融合的加快,GPS和其他产品技术的融合也逐渐加快,未来的GPS技术将呈现两大趋势。“首先是移动测速系统与GPS产品的整合,以前的移动测速装置必须要独立安装在车头部位,现在通过技术的改进,可以做得更小巧,将其整合进车载GPS,这一新技术的发展将为GPS带来更多实用价值。” 刘朝贵指出。

GPS产品的另一技术亮点是与CMMB(中国移动多媒体广播)的进一步整合。“自2008年CMMB投入测试以来,取得了良好的反响,目前不少搭载CMMB功能的GPS产品已经投入市场。预计2009年五一前后,CMMB网络将覆盖全国140个城市,CMMB与GPS技术的结合将为GPS带来更多发展机会。未来,除了能够通过GPS内置的数字电视接收系统实时观看电视节目外, CMMB技术还将有可能与智能交通整合,通过实时的电视画面转播交通拥堵情况。”刘朝贵说。除此之外,GPS在对播放格式的支持方面也将得到很大提升,未来GPS将能够支持更多播放格式,在车载娱乐方面取得新的突破。

融合凸显本地优势

目前,在国内GPS市场,国外品牌在品牌认知度和工艺等方面具有一定的优势,但刘朝贵认为,相对来说,本土品牌在个性化功能融合及对产品价格的控制方面相比国外品牌反应速度更快,有着显著的优势。“例如在对CMMB的支持方面,本土GPS企业的反应速度显然更胜一筹。目前新科支持CMMB的GPS已经上市,纽曼4.3英寸、5英寸、7英寸GPS产品也已经陆续支持CMMB,而大多数国外品牌对此技术的支持至少要滞后半年到一年。”刘朝贵指出。

除此之外,为了更好地支持个性化服务和技术融合,解决使用不同地图厂商数据产生的数据接口等问题,目前国内GPS品牌也开始培养自己的本地化地图引擎队伍。目前纽曼和新科都有自己的地图引擎队伍,无论和哪家地图厂商合作,都能够对GPS产品地图进行良好的升级支持。同时,还可以通过车友反馈的数据对地图进行校准,并进行一些小批量简单的个定制。“例如,神龙富康曾经定制过一批内置神龙富康全国4S店地址的GPS产品,如果通过地图厂商进行数据修改成本会很高,由厂商自己的地图引擎队伍进行修改则大幅度节约了成本。” 刘朝贵说。

gps技术例5

2GPS定位测量技术的优势

GPS定位技术起源于美国,从研发到投入使用,经历了20年的改进,最终成功的为世界的发展做出了贡献。GPS定位技术在我国各个领域内都得到了应用,效果较好。GPS定位测量技术具有精度高且全天候等特点。工程测绘工作通常要求较高,具有专业化与技术性等特点,随着科技的进步,如今也逐渐向信息化与数字化等方向发展,需要运用先进的测量技术来提高工作效率。

2.1测量精度较高

在工程测绘中,运用GPS定位测量技术,就能够通过全球定位系统进行定位,如此便能够保证运动载体实现最佳的路线运行。对于工程测绘工作来说,定位非常重要,按照实际的测绘需求,假如基线没有超过50km,就应当采用载波相位观测量,以此保证静态相对定位。在工程测绘工作中运用GPS定位系统中的测技术,就能够实现1×10-6以及2×10-6的精度,假如基线达到了100km-500km,相对定位的精确标准就能够达到10-6以及10-7的范围内。随着GPS定位测量技术的不断革新,测量的精度也会不断的提升。

2.2操作简便且节省时间

在工程测绘工作中运用GPS定位测量技术,操作简便,且能够节省时间。例如在工程测量中运用经典的静态相对定位模式实现测量时,假如测量的基线在20km内,单频接受的观测时间大约为1小时,而双频接受的观测时间则为15-20分钟,假如采用实时动态定位,初始的观测时间则为1-5分钟,其他不同位置的观测时间为几秒,因此在工程测绘中运用GPS定位测量技术,就能够有效的缩短观测的时间,有效的提升工作效率。目前,GPS定位系统已经分为高度自动化与智能化的系统技术,在工程测绘中运用GPS定位测量技术,就能够通过智能型接收机进行观测,工作人员只需安装一些开关仪器,就能够通过仪器进行实时监控。由于GPS定位测量技术的自动化程度较高,工程的测量与卫星捕捉都能够通过GPS定位测量仪器来实现,操作较为简便。此外,GPS用户接收机体积较小,方便携带,在日常工作中能够节约人力和物力,能够有效的节约工作成本。

2.3应用范围广

GPS定位系统的应用范围一般可从两方面来看,首先是运用于与各个行业中,人们最为熟悉的是车载导航,目前GPS导航系统目前已经成了汽车的基本配置。此外,GPS技术还广泛的应用于地质与矿产等行业中。其次,GPS定位系统还能够运用于环境条件中,GPS定位是借用卫星系统实现定位,一般不会受到天气与温度的影响,在对于工程测绘来说属于一大优势,因为工程测绘通常都是在野外工作,运用GPS定位系统能够克服恶劣的环境条件造成的影响,保证定位的精度。

3GPS定位测量技术在工程测绘中的运用

3.1测量工程变形情况

通常工程建设涉及的范围较广,经常会遇到一些人为因素或是地质运动造成的建筑物变形以及位移,假如出现此种情况,会直接影响工程测绘工作,使经济效益与社会效益受到影响。经过研究发现,造成工程变形的主要类别有大坝变形与建筑物沉降等,假如能够及时的对工程变形进行测量,就能够有效的减少工程变形对于工程测绘工作的影响。目前GPS定位测量技术已经开始广泛的应用与工程变形的监测工作中,例如运用高精度的三维定位技术,就能够对工程建筑出现的微小变化进行分析,提早做好防范准备,减少损失。

3.2大地测量控制网点

在大地测量网点工作中,通常需要花费大量的资源,且精度较低,无法适应当代社会的需求。为了解决这一问题,我国在1991年开始建设大地控制网,目前这一工程已经结束,并且已经开始运用。大地控制网能够测量数千里或者数万里,而城市控制网测量的距离较近,一般在十公里左右,但城市控制网的使用频率更高,对于城市建设来说具有非常重要的作用,因此需要借助GPS定位测量技术进行大范围的测量,为城市的发展做贡献。

3.3测量水下工程

在水下作业一般难度较大,需要考虑到水下压强以及流体力学等方面的问题,但随着资源的开发,这些资源对于国民经济的影响逐渐增加,进行水下工程测绘目前已经是测绘领域中必不可少的环节。GPS定位测量技术包括了三维测量技术,能够从纵向或者横向两个角度进行水下测量,同时还能够将测量的结果通过计算机分析软件与制图软件等直接呈现出来。例如在进行水下作业时,进行横线测量时应当选择差分GPS技术,如此便可有效的减少对于环境的影响,简化操作流程。而进行纵向测量时则应当选用探测仪,运用超声测量的方式得出具体的深度。

3.4测量矿井工程

目前我国已经将GPS定位测量技术运用于矿井工程的测量中,并通过GPS技术进行了测量演练,及时的对测量中存在的问题进行了分析。常规形式的测绘工作通常是由工作人员自行操作,人为操作较容易出现误差影响测绘工作的精准度,此外,在地质条件复杂的地段进行测绘工作,较容易出现安全事故,因此需要在矿井工程中运用GPS定位测量技术。采用GPS定位测量技术就能够高效的实现工程测绘中交互定位,且能够显示出最精确的测绘结果,同时还能够了解工程测绘工作的流程。为了保证测量技术在工程测绘中达到最佳效果,可在测量前运用计算机技术对于需要测定的位置进行分析,及时发现测量中可能会出现的问题,并做好防治措施,以此保证测量人员的安全,提高测量的精确度。

gps技术例6

中图分类号:P412.23 文献标识码:A

文章编号:1004373X(2008)0317903

Study on the Technology of GPS Sonde

LIU Xiaoqin1,CAI Delin2,XU Changlei1

(1.Department of Electronic Science and Technology,Anhui University,Hefei,230039,China;

2.The 38th Research Institute,China Electronics and Technology Group Corporation,Hefei,230031,China)

Abstract:It is an important trend of international meterological sounding that using GPS technologycarry out meterological sounding.In China,the upper―air sounding system is relatively backward.It is imperative to develop the technology of GPS in our sounding system and make the sounding development of our country and the international simultaneously.Through the research of GPS meteorological sounding way,the working principle and the process flow of GPS sonde are expounded.System structure diagram of GPS sonde is presented.The research shows that using GPS technology to achieve meteorological sounding can improve the accuracy of meterological sounding.

Keywords:navigation;GPS;meteorology;sonde;anemography

1 引 言

近年来,卫星导航定位系统,特别是美国的全球定位系统(Global Position System,GPS)[1,2]发展极为迅速。GPS能够为地球表面和近地空间的广大用户提供全天候、实时、高精度的位置、速度和时间等导航服务信息。GPS是一种新兴的全球定位技术,他具有定位精度高、使用方便的特点。

GPS高空探测系统是新一代探空系统,他采用数字化测量电路测量大气温、压、湿,并运用GPS测量大气风向、风速。采用GPS技术实现气象探空,能够大大提高气象探空的准确性,降低地面接收系统的成本,提高气象探空系统的自动化程度。国际上一些先进国家已将该GPS技术应用到气象探空和高空测风当中,国内一些研究单位也相继开展了相关技术的研究。

探空仪主要为电子探空仪,国际先进的电子探空仪主要有芬兰Vaisala公司RS92探空仪。我国是惟一还在使用机械电码式探空仪的国家,应尽快发展我国GPS探空技术。

2 GPS气象探空的实现

GPS气象探空[3]主要有空中射频转发和空中数字转发两种方式:如图1和2所示。

图1 射频转发方案框图

由图1可见,射频转发方案是将球载设备接收到的GPS射频信号直接下变频到气象探空专用频率,放大后与温湿压传感器输出的数字信号合成后转发到地面接收机,也就是说球载部分只有射频接收部分没有定位解算部分的电路。地面接收机将接收到的射频信号分离成温湿压信号和GPS射频信号,在地面接收机内实现GPS的定位解算。主要技术难题是GPS射频信号与温湿压数字信号电平相差悬殊所带来的电磁兼容问题,以及抗干扰和地面解算的频率基准问题。而且射频转发方案的通信链路设计复杂,体积大,因此一般采用数据转发方案。

图2 数字转发方案框图

图2中数字转发是将GPSOEM板的定位数据直接与温湿压数据合成编码后转发。数字转发的优点是减少探空仪设备的复杂程度,把大量处理过程转移到地面,降低探空仪的成本。采用数字转发方式,发射功率利用率较高,避免发生自激,工作频点可调,可避开环境的干扰。

3 GPS探空仪的系统组成

GPS探空仪的系统结构如图3所示,他由两部分组成:球上设备和地面设备。

图3 GPS探空仪系统结构框图

球上设备由PTU数据处理单元、GPS单元、通信单元三部分构成。

PTU数据处理单元 由单片机和测量电路构成,完成数据采集、处理、传输。既可以测量电阻感应元件,又可以测量电容感应元件。

GPS单元 用于接收GPS卫星信息,提供气球的位置信息(经纬度、高度)和时间信息。

通信单元 接收PTU数据和GPS数据,进行编码、合成,将数字信息进行FSK调制,转变成射频信号,发送给地面接收系统。

地面设备由通信单元、基站GPS处理机、终端数据处理和指示单元等三部分构成。

通信单元 接收探空仪发射的射频信号,解调出数字信息,进行解码,输出为GPS通道数据以及PTU测量数据(温湿压);

基站GPS处理机 对接收的球上GPS通道数据进行处理,接收基站GPS位置数据;

终端数据处理单元 由计算机、打印机、调制解调器组成。计算机收集探空仪发来的数据和基站位置数据,对信息进行预处理,显示温、压、湿数据,对测风信息进行处理,解算出风向、风速数据。调制解调器用于通过电话线路与气象计算机网络通信,传送探空数据。

4 工作原理

4.1 温、湿、压测量

PTU设备测量原理如图4所示,通过温湿度、气压传感器探头探测的电阻、电容变化量转化为电压或频率变化量,这些变化量均为模拟量,经过运算放大器进行小信号放大,A/D变换为数字量,同时查表进行修正、数字编码,由外时钟采集同步输出传感器数据。

探空仪采集的空中的气压、温度和相对湿度数据(简称PTU数据)经探空仪的转发器电路转发到地面基站,经硬件解调设备和软件处理后得到所需的探测气象要素数据。由于遥测噪声、调制电路、下行链路、解调电路、辐射及外界不确定气候条件等因素影响,导致PTU原始数据出现物理上的不一致数据点和丢失的数据点。这就要求我们必须利用物理方程、数学算法及气象学理论模型对原始数据做编辑处理。

gps技术例7

1)地质工程放样。在地质勘查工作中经常需要进行钻探、槽探等工程,但是由于矿区地势陡峭,复杂,给测量带来严重的不便,因此,运用GPS-RTK技术不仅解决了因为地形原因带来的测量不便问题,还能够提高测量的工作效率,事半功倍的完成地质工程的放样。

2)图根控制测量。通常来讲,运用GPS-RTK技术所得到的坐标数据能够满足图根控制点的精度要求,因此经常运用于矿区的图根控制点布设。这种方法不仅快捷简便,而且具有较高的精确度。

3)地形测量。一般情况下,用传统方法进行地形测量时需要1:1000、1:2000、1:5000的比例,所以往往精度差距较大。而采用GPS-RTK技术不仅能够解决这个问题,数字化的测图还能从很大程度上提高测量地形的工作效率。

4)剖面测量。运用GPS-RTK技术对剖面进行测量时,集测、放、检、算于一体,并且还能够完成土石方的相关计算,简便有效。

5)其他相关应用。虽然全站仪在工程测量中仍发挥着重要的作用,但是由于其测量方法受到通视和距离等条件的限制,而造成产生设置测站多、劳动强度大、作业效率低下等问题,已经不能够适应较大范围内的地质勘查工作,因此,这种情况下就需要采用GPS-RTK技术,不仅具有智能化和多样化的特点,还能够进行记录、通讯、导航、计算等工作,为地质勘查工作提供了较大的便利性。

2GPS-RTK技术在地质勘查中的优缺点及相对应对措施

1)GPS-RTK技术在地质勘查中的优点。综上所述中,GPS-RTK技术在地质勘查中具有广泛的应用,主要是因为其具有诸多优点,如下:①GPS-RTK技术需要较少的控制点数量和仪器搬站数量,从而使作业速度快、劳动强度低,工作效率高。②GPS-RTK技术实现了厘米级的三维坐标,具有较高的精度,且得到的数据安全可靠。③与传统的地质勘查工作相比,GPS-RTK技术对于环境条件要求低,只要接收卫星信号和电讯数据传输正常,就能够实现快速的定位。④GPS-RTK技术具有强大的测量功能,其自动化和集成化程度高,无需人工干预便能够完成多种测量功能,这样就减少了人为误差,确保了工作精度。⑤GPS-RTK技术操作简单,具有极强的数据处理能力,在工作过程中,只要在设站时进行简单的仪器操作,便能够实现测量结果和工程放样。

2)GPS-RTK技术在地质勘查中的缺点和相对应对措施。虽然GPS-RTK技术具有许多优点,能够广泛应用于多种地质勘查工作中,但是毋庸置疑的是它也具有一些缺陷,其工作过程也会受到各种问题的限制。接下来,本文将根据GPS-RTK技术在地质勘查中的缺点相应的提出一些应对措施。①GPS-RTK技术受到卫星图形的限制。由于受到卫星图形的限制,所以在一段时间内被卫星覆盖时容易产生假植。解决这种问题的办法主要是通过重测比较法来进行弥补,即在作业前先对1到2个已测的地点进行检核,确定是否产生假值。②GPS-RTK技术在地质勘查中会受到天空环境的影响。一般在中午时,RTK技术容易受到电离层的折射干扰,因此出现初始化时间长等问题,甚至无法进行初始化而无法进行测量。因此,通常情况下放弃在上午11点到下午2点之间进行作业。③RTK技术的数据链在传输时容易受到高频信号的干扰,这种情况主要出现在地形起伏较高的山区或是城镇楼房密集的地方。解决这种问题主要是通过将基准站设置在有效半径控制范围内的中央最高点,使其远离磁场较强的地方。④在测量时GPS-RTK技术进行高程转化容易产生异常。我国有些山区的高程异常图存在较大的误差,因而使得GPS在进行高程转换时相当困难,精度也不准确,因此对于这种情况,应该在作业时尽量多地测量精度可靠地高程,并适当的缩小作业面积,确保高程测量本身的观测质量。

gps技术例8

Abstract: The GPS global positioning system is based on real-time dynamic positioning system based on carrier phase observations. Because the GPS global positioning system with high precision and fast determination of coordinates, GPS has been widely applied in the field of engineering surveying, especially the RTK appearance of new products, can be more rapid, more convenient, more simple, accurate determination of coordinate. This paper according to the years of work experience, introduces the principle of GPS positioning technology, measuring, discusses its application in survey engineering.

Key words: GPS; engineering measurement; application

中图分类号:P258 文献标识码:文章编号:

1 GPS的组成

GPS主要由空间卫星星座、地面监控站及用户设备三部分构成。(1)GPS空间卫星星座由2l颗工作卫星和3颗在轨备用卫星组成。卫星用L波段的两个无线电载波向广大用户连续不断地发送导航定位信号,导航定位信号中含有卫星的位置信息,使卫星成为一个动态的已知点。(2)GPS地面监控站主要由分布在全球的一个主控站、三个注入站和五个监测站组成。主控站根据各监测站对GPS卫星的观测数据,计算各卫星的轨道参数、钟差参数等,并将这些数据编制成导航电文,传送到注入站,再由注入站将主控站发来的导航电文注入到相应卫星的存储器中。(3)GPS用户设备由GPS接收机、数据处理软件及其终端设备(如计算机)等组成。

2 GPS定位原理

GPS定位的基本原理是根据高速运动的卫星瞬间位置作为已知的起算数据,采用空间距离后方交会的方法,确定待测点的位置。

3 GPS测量的技术特点

3.1测站之间无需通视

测站间相互通视一直是测量学的难题。GPS这一特点,使得选点更加灵活方便。但测站上空必须开阔,以使接收GPS卫星信号不受干扰。

3.2定位精度高

一般双频GPS接收机基线解精度为5mm+1ppm,而红外仪标称精度为5mm+5ppm,GPS测量精度与红外仪相当,但随着距离的增长,GPS测量优越性愈加突出。大量实验证明,在小于50公里的基线上,其相对定位精度可达12 × 10-6,而在100~500公里的基线上可达10-6~10-7。

3.3观测时间短

采用GPS布设控制网时每个测站上的观测时问一般在30-40min左右,采用快速静态定位方法,观测时间更短。例如使用Timble4800GPS接收机的RTK法可在5s以内求得测点坐标。

3.4提供三维坐标

GPS测量在精确测定观测站平面位置的同时,可以精确测定观测站的大地高程。

3.5操作简便

GPS测量的自动化程度很高。目前GPS接收机已趋小型化和操作傻瓜化,观测人员只需将天线对中、整平,量取天线高打开电源即可进行自动观测,利用数据处理软件对数据进行处理即求得测点三维坐标。而其它观测工作如卫星的捕获,跟踪观测等均由仪器自动完成。

3.6全天侯作业

GPS观测可在任何地点,任何时间连续地进行,一般不受天气状况的影响。

4 GPS在工程测量中的应用分析

GPS作业有着极高的精度。它的作业不受环境和距离限制。非常适合于地形条件困难地区、局部重点工程地区等。GPS测量可以大大提高工作及成果质量。它不受人为因素的影响。整个作业过程全由微电子技术、计算机技术控制,自动记录、自动数据预处理、自动平差计算。GPS测量可以极大地降低劳动作业强度,减少野外砍伐工作量,提高作业效率。一般GPS测量作业效率为常规测量方法的3倍以上。GPS高精度高程测量同高精度的平面测量一样,是GPS测量应用的重要领域。

另外,可进行实时动态监测,多适用于在缓慢变形中存在突变的变形以及工程结构物在外力作用下的振动变形。工程结构物的振动变形量及其振动频率是工程结构物健康监测的重要参数,而传统的加速度仪测量方法不能测量出工程物在外力作用下的整体惯性位移,为工程结构物的健康诊断和设计检验带来了很大的困难。国际上将GPS技术用于大型工程结构物动态变形监测出现在20世纪90年代中期,随后国内外一些学者对此已进行了一系列的试验性研究工作,并取得了一些成功案例。在工程测量中,GPS的应用可分为以下几方面:

4.1静态GPS在工程测量中的应用

常规控制测量如三角测量、导线测量,通常是先布设控制网点,在国家高等级控制网点的基础上加密次级控制网点,以往是利用全站仪及棱镜等实施,而在这一过程中要求点间必须通视,而且外业中不能及时知道测量成果的精度,耗力费时。GPS静态相对定位系统测量时,无需点间通视,就能高精度地进行测定,还可以高精度快速地测定各等级控制点的坐标。

4.2动态GPS在工程测量中的应用

a.动态GPS在城市基本控制中的运用

RTK初始化时间只有十几秒,测量时间只有2-3S,运用其动态定位的特点进行城市基本控制,每站独立观心房管大楼顶作为基站,以首级控制中的两套坐标作为RTK测量控制点的起算数据,流动站实时测量其北京54坐标,重复测量3次,若无粗差,取其平均值作为基本控制点的坐标。其成果符合城市基本控制的精度要求。

b.动态GPS在施工放样中的运用

放样主要是把图上设计的坐标与高程在实地标定出来,它其实是测量坐标的一个反过程。以往主要采用全站仪放样,一般至少需要两人合作,且要求测站点与放样点要通视才行,若不通视,还要进行转站。若附近无控制点,则先引点。现在采用动态GPS进行放样,只要把放样的点坐标输入手簿中,测量员背着GPS接收器,根据其显示提示测量员走到放样点位上,放样像走路一样轻松完成。但RTK技术精度较高,各放样点的误差影响也是独立的,因此已经被很多测绘单位所应用,因此准确评价RTK的放样精度,指导在工程中的应用以及质量控制至关重要。

c.动态GPS在地形测图中的应用

由于RTK技术可进行实时定位以达到厘米级的精度,因此,RTK技术可用于控制测量、地形测图、地籍等测量中。地形测图一般是用全站仪采集地形、地物碎部点,利用测图软件电脑成图。其要求是不仅测站点与被测的地物、地貌碎部点之间通视,而且还需要2-3人同时进行操作。采用RTK技术进行测图时,一人在基准站架好仪器,另一人背着仪器到每个碎部点立杆并通过电子手簿输入特征编码记录数据,一般取3s作为一个记录单元,在记录数据时,要求测量人员立点要准确,尽量稳住对中杆,同时画出草图,以便内业整图时提供参考。点位精度在符合要求的情况下,在测定一个区域内的地形、地物点位,测定完成回到室内,再用传输线将数据导人微机,由专业绘图软件编制地形图。

d.动态GPS在地籍测量中的应用

地籍测量中应用RTK技术测定每一宗土地的权属界址点以及测绘地籍图,同上述测绘地形图一样,能实时测定有关界址点及一些地物点的位置并能达到要求的厘米级精度。将GPS获得的数据处理后直接录入GPS系统,可及时、精确地获得地籍图。在建设用地勘测定界测量中,RTK技术可以实时地测定界桩位置,确定土地使用界限范围、计算用地面积。在土地利用动态检测中,也可利用RTK技术。传统的动态野外检测采用是简易补测法或平板仪补测法。如利用钢尺用距离交会、直角坐标法等进行实测丈量,对于交通范围广的地区采用平板仪补测法,这种方法速度慢、效率低。而应用RTK新技术进行动态监测则可提高检测的速度和精度,省时省工,真正实现实时动态监测,保证了土地利用状况调查的现实性。

5 结束语

综上所述,GPS技术的迅速发展和应用,给测量手段带来了日新月异的变化,也给工程建设带来许多方便,节约大量人力、物力、时间及成本。GPS作为一种全新的测量手段,必将在土木工程测量施工领域中将有广阔的前景。

参考文献:

gps技术例9

1、GPS测量技术应用

GPS的出现给测绘领域带来了根本性的变革,具体现:在大地测量方面, GPS定位技术以其精度高、速度快费用省、操作简便等优良特性被广泛应用于大地控制测中。时至今日,可以说GPS定位技术已完全取代了用常测角、测距手段建立的大地控制网。一般将应用GPS卫定位技术建立的控制网叫GPS网。归纳起来大致可以GPS网分为两大类:一类是全球或全国性的高精度GPS网这类GPS网中相邻点的距离在数百公里至上万公里,其要任务是作为全球高精度坐标框架或全国高精度坐标框架为全球性地球动力学和空间科学方面的科学研究工作服务或用以研究地区性的板块运动或地壳形变规律等问题。一类是区域性的GPS网,包括GPS城市网、矿区网和工网等,这类网中的相邻点间的距离为几公里至几十公里其主要任务是直接为国民经济建设服务。

在工程测量领域, GPS定位技术正在日益发挥其巨大作用。如,利用GPS可进行各级工程控制网的测量、GPS用于精密工程测量和工程变形监测、利用GPS进行机载航空摄影测量、利用RTK技术进行点位的测设等。在灾害监测领域, GPS可用于地震活跃区的地震监测、大坝监测、油田下沉、地表移动和沉降监测等,此外还可用来测定极移和地球板块的运动。

2、GPS相对于其他卫星定位系统的特点

GPS系统是目前在导航定位领域应用最为广泛的系统,它以高精度、全天候、高效率、多功能、易操作等特点著称,比其它导航定位系统具有更强的优势。GPS与GLONASS和NAVSAT主要特征比较见表1所示。

表1 GPS与GLONASS和NAVSAT主要特征比较

4、GPS测量的特点

GPS可为各类用户连续提供动态目标的三维位置、三维速度及时间信息。GPS测量主要特点如下:

4.1、功能多、用途广GPS

系统不仅可以用于测量、导航,还可以用于测速、测时。测速的精度可达0・1 m /s,测时的速度可达几十毫微妙。其应用领域不断扩大。

4.2、定位精度高

大量的实验和工程应用表明,用载波相位观测量进行静态相对定位,在小于50 km的基线上,相对定位精度可达1×10-6~2×10-6,而在100 km~500 km的基线上可达10-6~10-7。随着观测技术与数据处理方法的改善,可望在大于1 000 km的距离上,相对定位精度达到或优于10-8。在实时动态定位(RTK)和实时差分定位(RTD)方面,定位精度可达到厘米级和分米级,能满足各种工程测量的要求。其精度如表2所示。随着GPS定位技术及数据处理技术的发展,其精度还将进一步提高。

表2 GPS实时定位、测速与测时精度

4.3、实时定位

利用全球定位系统进行导航,即可实时确定运动目标的三维位置和速度,可实时保障运动载体沿预定航线运行,亦可选择最佳路线。特别是对军事上动态目标的导航,具有十分重要的意义。

4.4、观测时间短

目前,利用经典的静态相对定位模式,观测20 Km以内的基线所需观测时间,对于单频接收机在1 h左右,对于双频接收机仅需15 min~20 min。采用实时动态定位模式,流动站初始化观测1 min~5 min后,并可随时定位,每站观测仅需几秒钟。利用GPS技术建立控制网,可缩短观测时间,提高作业效益。

4.5、观测站之间无需通视

经典测量技术需要保持良好的通视条件,又要保障测量控制网的良好图形结构。而GPS测量只要求测站15°以上的空间视野开阔,与卫星保持通视即可,并不需要观测站之间相互通视,因而不再需要建造觇标。这一优点即可大大减少测量工作的经费和时间(一般造标费用约占总经费的30% ~50% )。同时,也使选点工作变得非常灵活,完全可以根据工作的需要来确定点位,可通视也使电位的选择变得更灵活,可省去经典测量中的传算点、过渡点的测量工作。不过也应指出, GPS测量虽然不要求观测站之间相互通视,但为了方便用常规方法联测的需要,在布设GPS点时,应该保证至少一个方向通视。

4.6、操作简便GPS测量的自动化程度很高

对于“智能型”接收机,在观测中测量员的主要任务只是安装并开关仪器、量取天线高、采集环境的气象数据、监视仪器的工作状态,而其他工作,如卫星的捕获、跟踪观测和记录等均由仪器自动完成。结束观测时,仅需关闭电源,收好接机,便完成野外数据采集任务。如果在一个测站上需要作较长时间的连续观测,还可实行无人值守的数据采集,通过网络或其他通讯方式,将所采集的观测数据传送到数据处理中心,实现全自动化的数据采集与处理。GPS用户接收机一般重量较轻、体积较小。例如, Ashtech单频接收机―――LOCUS最大重量1・4 kg,是天线、主机、电源组合在一起的一体机,自化程度较高,野外测量时仅“一键”开关,携带和搬运都很方便。

4.7、可提供全球统一的三维地心坐标

经典大地测量将平面和高程采用不同方法分别施测。GPS测量中,在精确测定观测站平面位置的同时,可以精确测量观测站的大地高程。GPS测量的这一特点,不仅为研究大地水准面的形状和确定地面点的高程开辟了新途径,同时也为其在航空物探、航空摄影测量及精密导航中的应用,提供了重要的高程数据。GPS定位是在全球统一的WGS-84坐标系统中计算的,因此全球不同点的测量成果是相互关联的。

4.8、全球全天候作业

GPS卫星较多,且分布均匀,保证了全球地面被连续覆盖,使得在地球上任何地点、任何时候进行项观测工作,通常情况下,除雷雨天气不宜观测,一般不受天气状况的影响。因此,GPS定位技术的发展是对经典测量技术的一次重大突破。一方面,它使经典的测量理论与方法产生了深刻的变革;另一方面,也进一步加强了测量学与其他学科之间的相互渗透,从而促进了测绘科学技术的现代化发展。

5、GPS测量及四等光电测距三角高程测量

5.1、 GPS测量

E级GPS控制网以边连接方式布设,平均距离为500 m~1 000 m。GPS数据采集采用6台灵锐S-82型双频接收机。为确保观测质量,预先根据星历预报编制观测计划。GPS观测时的PDOP值均小于5,保证了卫星的几何结合和数据采集质量。观测中作业模式采用静态观测,采样间隔为5″,卫星截止高度角为15°,有效卫星数均大于7,同步观测时间为40 min~50 min。天线斜高分别在测前测后用钢卷尺各量取3次取平均值使用。

5.2、 四等光电测距三角高程测量

光电测距三角高程测量,采用拓普康GTP-3005LN型全站仪进行施测。距离及高差均采用正倒镜各测4次并进行往返测,取往返测平均值使用。各项指标均满足《光电测距高程导线测量规范》的要求。

6、 GPS高差与三角高差的差值分析

对比数据由GPS网中随机抽取,共抽取8条基线,并对其进行三角高差测量。表1中往返高差限差均按《光电测距高程导线测量规范》要求的四等高程导线往返高差限差Δh=±45S计算。我们可以看到每一段的GPS高差与三角高差的差值都优于规范要求,而且每公里高差误差最大值为±3.29 cm,可见在小面积范围内GPS高差精度已经达到了四等高程导线的精度。

7、结束语

检测结果表明, 10 km2范围内GPS高差完全可以取代四等三角高差及等外水准高差而应用于施工当中。由此可见,在小面积的测区内如果采用单点作为测区起算点而建立的独立坐标系统下, GPS高程也同样能满足像地质矿产勘查与物化探工程测绘的精度要求。

参考文献:

gps技术例10

一、GPS测量原理

(一)GPS概念

全球定位系统(Global Positioning System,简称GPS),又称全球卫星定位系统,是一个中距离圆形轨道卫星导航系统。它可以为地球表面绝大部分地区(98%)提供准确的定位、测速和高精度的时间标准。系统由美国国防部研制和维护,可满足位于全球任何地方或近地空间的军事用户连续精确的确定三维位置、三维运动和计时的需要。

(二)GPS系统的特点及构成

GPS系统拥有如下多种特点:全天候,不受任何天气的影响;全球覆盖(高达98%);三维定速定时高精度;快速、省时、高效率;应用广泛、多功能;可移动定位;不同于双星定位系统,使用过程中接收机不需要发出任何信号增加了隐蔽性,提高了其军事应用效能。GPS系统主要由空间星座部分、地面监控部分和用户设备部分组成。

(三)观测量的误差来源

在GPS定位中,观测量的误差来源主要有:第一,与卫星有关的误差;第二,与接收设备有关的误差;第三,与信号传播有关的误差;第四,其它误差来源。

(四)绝对定位原理

以GPS卫星和用户接收机天线之间的距离观测量为基础,确定用户接收机的点位可通过已知的卫星瞬时坐标进行,这就是利用GPS进行了绝对定位的基本原理。GPS绝对定位可以实现动态和静态的绝对定位。

(五)相对定位原理

利用GPS进行相对定位,可分为静态和动态相对定位两种。相对定位可以消除由于各种不同的因素导致系统性误差。

二、RTK简介

一种新的常用的GPS测量方法――RTK(Real - time kinematic)实时动态差分法。RTK能够实现在野外实时得到厘米级定位精度的测量。基于载波相位观测值的实时动态定位技术就是RTK定位技术,在制定坐标系中,测站点三维定位结果能够实时地被RTK定位技术提供。基准站将其观测值和测站坐标信息在RTK作业模式下一起通过数据链传送给流动站。采集GPS观测数据都是由流动站产生的,并对在系统内组成差分观测值进行实时处理,同时厘米级定位结果将被给出,一共只需一秒钟的时间。无论是静止状态,还是运动状态,流动站都可处于任何一种中;也就是说,可以直接进入动态条件开机,也可先在固定点上进行初始化后再进入动态作业,并周模糊度的搜索求解需在动态环境下完成。

三、GPS RTK测量仪器在各种测量中的应用

(一)地籍测量的应用

在地籍测量应用中,要想测定每一宗土地的全界址点和测绘地籍图可采用RTK技术来实现,RTK技术使得有关界址点的位置能够实时的测绘,最终达到厘米级的精度,地籍图和房产图在测得数据处理后可以被及时的得到。常规仪器可用在卫星信号不好的地方,进行细部测量采用解析法或者图解法。界桩位置可以通过RTK技术实时地被测定,然后土地使用界范围被确定,计算用地面积,从而较轻松的进行地籍测量工作。

(二)公路测量建设中的应用

在控制测量领域中GPS测量得到了广泛的应用,它具有以下的优点:高精度和高效率。在公路工程中实时GPS测量可完成以下工作。

(1)绘制大比例尺地形图

一般情况下,在大比例尺带状地形图上进行高等级公路选线。传统的测图方法,首先要进行控制网的建立,其次,进行碎部测量,从而进行大比例尺寸地形图的绘制。其工作量较大,花费时间较长,速度也比较慢。如果测量时采用GPS RTK动态测量,获得每点坐标只需花费几分钟就行,碎部点的数据是由输入的点特征编码及属性信息构成的,在室内可由绘图软件完成。从而使得测图的难度大大降低了,节省了时间又节省了精力。

(2)工程控制测量

GPS建立控制网的最精密的方法是静态测量。对于大型的建筑物静态测量比较适合。实时GPS动态测量则被用于一般的公路工程的控制测量。这种方法可停止观测,使得作业效率大大提高。而通视对于点与点之间是被做要求的,这使得测量更加快捷了。

(3)公路中线测设

在大比例尺带状地形图上设计人员进行定线后,在地面需将公路中线标定出来。如果实时GPS测量被使用,那么只需在GPS接收机中输入中线桩点的坐标,放样的点位就会有系统定出。在这里,累积误差是不会产生的,因为每个点的测量的完成都是相对独立完成的,各点放样精度一致。

(4)公路纵、横断面测量

确定公路中线后,通过绘图软件,利用中线桩点坐标,即路线断面和各桩点的横断面就可以绘出了。测绘地形图时采集的数据都是被用在测量中,所以到现场进行纵。横断面测量是没有必要的,这使得外业工作大大的减少了。也可采用实时GPS测量进行现场断面测量。

(三)地质工程测量的应用

测量钻孔、探槽、剖面端点、地质点是地质工程测量中常见的工作。不停地搬站是常规测量很麻烦的一点,而且如果通视条件不好,则测站点就需要补测。而RTK测量仪器则不需要通视每个点,只需要有两台仪器,有一台仪器在基准站,而另一台仪器架在测点上,只需几分钟进行测量。用常规测量时,有时由于一个点就要浪费很多时间和精力。

参考文献: