期刊在线咨询服务,发表咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

期刊咨询 杂志订阅 购物车(0)

探测技术论文模板(10篇)

时间:2023-03-06 16:08:12

探测技术论文

探测技术论文例1

海底地温梯度是一个向量,表示地球等温面法线方向上温度变化程度及变化方向,因此只要知道深度间距dZ和它们之间的温差dT即可。

热导率κ是一个表征沉积物导热能力快慢的物理量,沉积物的组成类别及水含量不同热导率κ也不同。热导率测量的理论基础是从瞬间热脉冲由无限长圆拄形金属探针进入无限大介质的传导理论上发展起来的(Blackwell等,1954;Hyndman等,1979),该理论认为[2,3]当探针温度、沉积物温度与环境温度达到平衡时,热脉冲使探针温度升高,高于环境温度,在热脉冲过后的一定时间内,地热探针内的热敏电阻的温度T(t)由下式给出:

2海底热流原位探测技术

2.1海底温度梯度原位测量

海底沉积物的温度梯度测量自20世纪50年代至今一直沿用两大方法,即Bullard(布拉德)型探针和Ewing(艾文)型探针。

温度梯度测量开始于1948年,首先由美学者Bullard(布拉德)设计了海底热流计,如图1所示。它用来测量海底沉积物的地温梯度,并利用取样器将沉积物样品取回,在实验室测量它的热导率。经过十多年的完善,Bullard型热流计也由灵敏度较差的热电偶改为灵敏度较高的热敏电阻,同时确立了海底温度梯度原位测量的基本模式。

Bullard型海底热流计探针的基本结构尺寸:,长3~6m,外经Φ27mm,内经Φ11.2mm的钢管。探针的上、下两端各安装一个热敏元件,上部有一密封仓,内置记录系统,下部装一针尖,以便插入海底沉积物时减小阻力,设备*自重插入沉积物。上世纪70年代后期,加拿大实用微系统公司(AML)研制的TR-12S型Bullard式探针得到了进一步改进,结构尺寸长3m,直径Φ16mm,探管内有8个YSI-44032热敏电阻,从测量精度到外观设计都有了极大提高。

随着制造技术的不断进步,热流计的发展趋势是探针逐渐变细、变薄、热敏电阻的数量也在增加,目的在于探针变细可进一步减少插入沉积物时带来得扰动,变薄可提高热敏电阻对沉积物温度变化的灵敏度,热敏电阻数量的增加可以在梯度计算时相互验证,并确保测量的准确性。

上世纪60年代初期,Ewing(艾文)完成了自己设计的海底温度梯度测量计[4],即人们通常说的Ewing型热流计,也称为拉蒙特型热流计,是从拉蒙特地质观察所普及开的。它的结构特点,图2所示。在柱状取样器周围,相隔一定距离不同方位安装3~8个很细的探针,探针直径3mm,长20~24mm,避免了Bullard型热流计在设备插入沉积物时带来的搅动和测量时间过长等问题,提高了海上测量的工作效率;但仍没有解决海底测量热导率的问题。

以上两大类热流计在早期的沉积物温度梯度测量中,发挥了积极的作用。随着社会的进步,设备制造技术的发展,人们不仅对沉积物热流原位测量中的温度梯度感兴趣,而且更加关注沉积物热导率的原位测量问题。

2.2海底沉积物热导率测量

热导率与物质的组成、结构、密度、温度及压强有关。海底沉积物热导率测量技术的发展,历经几十年的探索,由原始的水分法、细针探测法,逐渐发展到了原位测量法。水分法是依据Ratcliffe(1960)关于海洋沉积物热导率与水分的关系,通过测定沉积物的水分,不需要特殊的仪器,即可估算热导率值。细针探测法(VonHerzenandMaxwell,1959)是通过均匀的电阻丝,给圆柱小探针连续加热,温升随时间增加,逼近一条对数渐进线,渐进线的斜率正比于探针周围材料的热阻率。其研究证明,该方法需从海底取回沉积物样品在实验室内测量,同时把温度和压力修正到沉积物在海底的条件,势必造成热导率和温度梯度不在同一站位测定的问题。所以要寻找一种能在同一站位获得热导率和温度梯度两种参数的测量方法,而不必取样,这正是我们研究的海底原位热导率测量方法。

2.2.1连续加热线源法

连续加热线源法,由Sclater等人于1969年用于海底沉积物的热导率测量[5],它把探针理想化为无限长的完全导热圆柱,通过恒定电流对其加热,探针内加热电阻丝的温度升高快慢程度与沉积物的热导率有关,沉积物的导热性能差,温度升高快;沉积物的导热性能好,温度升高慢。沉积物的热导率k与探针内加热电阻丝表面的温升关系,可以通过求解无限长圆柱体的导热微分方程来得到[6],当时间t=0时,探针的温度为T0;时间t时的温度T为:

其中T1是探针周围沉积物的平衡温度。沿圆柱长度加上一恒定的热量Q,就可以测定热导率κ,假设开始时温度为零,则有(Jaeger,1956[7)]:

(8)式中T1和T0是可求的,所以热导率κ就可以用最小二乘法对测量温度进行拟合。

上世纪80年代初期,上述方法在美国伍兹霍尔海洋研究所(WHOI)得到了进一步的发展和应用,但其致命弱点是,海底沉积物含水量很大,持续供热导致探针温度不断升高,很容易导致探针周围的孔隙水发生对流,而使根据热传导方程推导的公式带来很大的误差;其次海上作业时间长,船的漂移难以控制,机械扰动严重以及持续供热需要大量的电能等问题,故这种技术没有得到广泛的应用。

2.2.2脉冲加热法

1979年,Liste(r李斯特)在Bullard型热流计的基础上,进行了大胆、彻底的革新,首先将Bullard型热流计点热敏元件保留在两端不动,在中间插入热敏元件组。点热敏元件仍然完成地温梯度的测量,热敏元件组测量热脉冲后的平均温度,用于计算沉积物的热导率。随着科学技术的发展和进步,Liste(r李斯特)在记录方式上采用了数字化格式,使其测量精度得到提升。这样Liste(r李斯特)在Bullard型热流计的基础上利用“热线源法”的理论,完成了海底沉积物地温梯度和沉积物热导率原位测量的技术革新,即海底沉积物热导率原位测量技术[8]。

探针插入海底沉积物,加上热脉冲后,可以把探针看作是处于沉积物温度之上的、恒定的初始温度T0的条件下,假设没有接触电阻(对于海洋沉积物,这假设大多正确),那么在时间t,探针的温度Tτ为:

式中:k是沉积物的扩散系数;a是探针的半径;c是沉积物的比热;ρ是沉积物的密度;S是探针单位长度的热容;τ定义为探针的热时间常数;α是沉积物热容与探针材料热容之比的两倍,J(nX)和Y(nX)分别为是n阶贝塞尔函数的第一项和第二项。

当探针的热时间常数τ>1时,Bullard函数为:

脉冲加热法是在探针内不仅装有一组热敏元件,同时还包括一根加热电阻丝,当仪器仓控制电路给电阻丝瞬间加热后,电阻丝会使探针温度突然升高,然后随时间缓慢衰减,热敏元件组记录温度随时间的变化,最终依据计算出热导率。

通过对连续加热线源法与脉冲加热法两种技术进行比较,脉冲加热法应用较为广泛。

3海底热流原位测量技术需要解决的几个问题

3.1提高探针自行插入的能力

一般热流原位测量设备在海上使用的成本较高,由于波浪、海流及风的作用,海洋的工作环境相当复杂,要求测量设备必须插得住,同时需要在沉积物中保持10~20min才能达到温度平衡,此时船舶可漂移400~500m。表1是三个航次探针插入沉积物的实际情况[9,10]。

通过对三个航次的测量结果分析,地热探针的结构设计必须在保证刚度的前提下,对探针水中的运动特性和插入沉积物瞬间的力学特性进行反复计算和演算,用于确定最佳配重和外形设计的依据,这样就会减少由于测量设备带来的拖倒、拉断及丢失。

3.2提高海上测量的准确度

目前对同一调查站位,采用在冬季和夏季进行重复测量,根据观测资料来确定海水温度变化对地壳热流的影响程度,判定水温变化随海底地壳深度衰减的情况。研究发现,直到海底之下6~7m二者方趋于一致,这说明6~7m之下,水温变化的影响已大幅度减弱。而目前地热探针长度一般为3.0~4.5m,这样增加了海上重复探测的工作量,为了减少重复,加长地热探针,使下插深度增大,以尽可能采用下部热敏元件的记录来进行资料处理。

3.3常年观测系统

研究业已证明海洋底层水温变化大,大气温度的日变化可影响到海底以下5m左右,气温的年变化可影响到海底以下50m。而对于水体则影响更深,再加上海流、波浪、潮汐的混合作用,气温变化的影响可波及到1500~2000m深的水体。而水温的变化又直接作用于海底沉积物。通过大量的实测温度分析可以看出,温度随深度呈非线性变化,特别是海底之下0~5m范围内,温度变化更加复杂,由此可见,地表因素的影响非常大。但如何从地热资料中消除这些浅层影响,而得出真正来自地下深处的热信息也是一个未解的难题。如果在海上作业中,首先在预定站位投放一长期温度监测设备,自动记录沉积物和底层海水的温度变化。可以通过声通讯设备定时发送到岸站,可获得常年的温度变化记录,从而设计计算程序,消除浅层因素的影响;同时,也为防灾减灾提供原始的连续资料。

4结束语

本文分析了海底沉积物热流探测技术的发展与理论的建立,鉴于我国目前在该技术领域的工作开展还比较薄弱,极大的限制了我国海洋热流探测和应用。因此,在充分认识和了解海洋热流探测技术的发展和现状的情况下,开发我国具有自主知识产权的海洋热流原位探测技术刻不容缓。

参考文献:

[1]DLTurcotte,GSchubert,Geodynamics.Applicationsofcontinuumphysicstogeologicalproblems[M].JohnWiley&Son(slstedition),1982,134-137.

[2]BullardEC.TheflowofheatthroughtheflooroftheAtlanticocean[J].ProcRSocLondonSerA,1954,222:408-429.

[3]BullardEC,DayA.TheflowofheatthroughtheflooroftheAtlanticocean[J].GeophysJRastronSoc,1961,4:282-292.

[4]GerardR,LangsethMG,EwingM.ThermalgradientmeasurementsinthewaterandbottomsedimentofwesternAtlantic[J].JGeophysRes,1962,67:785-803.

[5]SclaterJG,CorryCE.In-situmeasurementofthethermalconductivityofocean-floorsediments[J].JGeophysRes,1969,74:1070-1081.

[6]荣.海洋地热研究中沉积物热导率原位测定[J].海洋技术,1988,7(1):24-33.

[7]JaegerJC.Conductionofheatinaninfiniteregionboundedinternallybyacircularcylinderofaperfectconductor[J].AustralianJPhysics,1956,9:167-179.

[8]ListerCRB.Measurementofin-situconductivitybymeansofaBullard-typeprobe[J].GeophysJ,1970,19:521-533.

[9]李乃胜.冲绳海槽地热[M].青岛:青岛出版社,1995,7-67.

探测技术论文例2

随着各项技术的进步与发展,石油地质勘探过程中,各种勘探技术不断创新,地震勘探技术在设备制造、数据处理、数据解释及数据采集等方面取得了很大的进步与发展,为了在提升勘探效率的同时,有效降低勘探成本,三维可视化技术、经验技术、地震油藏描述等先进技术不断涌现,未来的发展过程中,更多的先进技术将应用于石油地质勘探工作中,如:永久性地震传感器排列系统的应用,有利于对石油勘探实施电子化的管理,同时可以对地震油藏开展实时的生产监测;随着地震成像技术的广泛应用,有利于对整个钻井过程实施可视化的监控,以便于为石油地质勘探的评估者提供更加准确、全面的决策依据,对于决策精准度的提升具有非常重要的作用。

(2)测井技术的创新

近年来,随钻技术、套管技术、快速平台技术、核磁共振技术等测井技术的创新,对于测井工作效率及质量的提升具有非常重要的作用,在这几种创新性的技术中,最为常用的就是核磁共振测井技术,在实际的石油测井过程中,应用该技术具有非常高的测井速度与测量精度,正因为其具有这些优点,使得其在实际的石油地质勘探工作中具有非常广泛的应用;另一种常用技术是快速平台测井技术,其最显著的优点是:在缩短测井时间的同时,有效降低测井工作中的故障率,能够为实际的测井工作节省大量的时间;而随钻测井技术的最主要的优点是可靠性强、成本小、尺寸小,并且能够对其进行随意组合,并且其逐渐朝着阵列化的方向发展,这对于测量数据可靠性的提升具有非常重要的作用。

(3)钻井技术的创新

钻井技术的创新对于石油开采工作具有非常重要的意义,不仅会直接影响到石油开采效率,对于石油开采成本也具有直接的影响,目前创新型的石油钻井技术也比较多,如:特殊工艺钻井技术、三维钻井技术、可视化钻井技术、超深井钻井技术、深井钻井技术、多分支井钻井技术等,其中应用最为广泛的是多分支钻井技术,其最突出的优点主要表现在油气藏的建设及开发过程中,这些新技术的应用,不仅能够有效的提升钻井效率,对于钻井成本的减少也具有非常重要的作用,对于我国石油产业的健康发展具有非常重要的作用。

探测技术论文例3

作者:许文彬 单位:福建省水产研究所

信标机主要采用扩展伪距差分技术,即在基准站上的接收机要算出它至可见卫星的距离,并将此计算出的距离与含有误差的测量值进行对比同时求出其偏差。然后将所有卫星的测距误差传输给用户,用户利用此测距误差改正测量的伪距。最后,用户利用改正后的伪距解出自身的位置,就可消除公共误差,提高定位精度。其基本原理如下[2-4]:在信标基准站上观测所有卫星,根据基准站的已知精密坐标(X0,Y0,Z0)和由星历数据计算得到的某一时刻各卫星的地心坐标(Xj,Yj,Zj),按下式(1)求出每颗卫星在该时刻到基准站的真正距离Rj:(式略)只要同时观测4颗卫星,利用改正后的伪距ρju(t)(j=1,2,3,4)就可按以下伪距观测方程计算用户站的坐标为:(式略)伪距差分有以下优点:1)由于计算的伪距改正数是直接在WGS-84坐标上进行的,即得到的是直接改正数,不变换为当地坐标,所以能达到很高的精度。这种改正数能提供GPS定位精度,所以在未得到改正数的空隙内能继续精密定位。基准站能提供所有卫星的改正数,而用户站只需接收4颗卫星即可进行改正,无需与基准站接收相同的卫星数。因此,用户站采用具有差分功能的简易接收机即可。伪距差分能将两站间的公共误差抵消,但随着基准站与用户站之间距离的增加,系统误差将会明显增加,且这种误差采用任何差分方法都不能予以消除。因此,基准站与用户站之间的距离对伪距差分的精度有决定性影响。为了在一个广阔的地区内提供高精度的差分GPS服务,将若干个基准站和主站组成差分GPS网。主差分接收来自各个监测站的差分GPS信号,然后将其组合并形成在扩展区域内的有效差分GPS改正电文,通过卫星通信线路或无线电数据链把扩展GPS改正信号传送给用户站,这就形成了扩展的差分GPS。扩展差分GPS的基本思想是对GPS观测量的误差源加以区分,并单独对每一种误差分别加以“模型化”,然后将计算出的每一误差源的数值,通过数据链传输给用户站,改正用户站的GPS定位误差。广域差分不仅扩大了差分GPS的有效工作范围,而且保证了该区域的定位精度[2,5-6]。

系统调试整个系统由4个部分组成,共有7根电缆线进行连接,按照图1进行系统连接,同时还要将测深杆进行有效的固定,GPS天线应尽可能地放在测深杆的正上方,否则还需进行偏心改正。系统调试时主要测试外业采集软件HypackMax(美国CoastalOceanographics公司生产)的显示及运行状况,用测深杆的实测水深与测深仪所测得的水深进行比较,并通过吃水和声速进行调整,以达到两种数据的一致。区域坐标转换参数的确定为了将GPS测得的WGS-84坐标转至西安80坐标系,具体外业实测之前,应在至少3个四等以上的西安80坐标系统下的起算点上安置GPS接收机,各自观测1h,以便准确地求得系统转换参数。3.3水尺制作及水位的读取水位测量是水深测量不可缺少的数据,因此在海底管道工程勘测前、后,都要从现有水文站上(或设临时水尺)获取观测期间的水位数据,以便对测得的水深进行一定的改正[6-7]。纵断面测量对于海底管道的勘测可分两步进行。第一步,沿平行管道路由中心线,以管道路由中心线为轴线向两侧各推进150m的区域纵断面;第二步,沿垂直管道路由中心线,以管道路由中心线为轴线向两侧各推进150m的区域进行横断面测量(图略),并对周边障碍物进行较为详细的勘测。纵断面测量比较方便,只需将测量船沿管道中心线行驶(测量时的航速控制在8km/h左右),DGPS测量系统便能按一定距离自动准确记录点位坐标和水深数据。当沿管道路由行驶段无障碍物(如无海上养殖等)时,测量船正常行驶即可;当航道行驶段有障碍物(具体表现为养殖区和渔网区等)时,首先用数码相机拍摄障碍物的数码相片,然后在GPS天线到达其位置时,用手动记录下其点位,并在航迹图上用指定的符号进行表示,用其名称进行中文注记。当海底管道纵断面测量完成后,可将其数据记录文件导入相应的成图处理文件。根据各个仪器(测深仪换能器等)不同的位置偏移量,剔除误差较大的测点,并经过适当的编辑处理之后(如将因避让导致的曲线拉直等),即可计算整条海底管道路由的里程、各路由段的曲率半径和偏角、水深、主要碍航物等勘测参数,生成相应的航迹图。横断面测量纵断面测量过程中,根据水深变化实时调整仪器增益,测深仪对水深值进行吃水、水位实时改正,而HypackMax软件则将瞬时水深数据和定位数据进行记录,测深仪同步进行水深模拟打印,这样便形成纵断面图。此时可清楚观察到每一海底管道路由段的水深情况,因而可确定横断面的测定区域。在横断面测量之前,可在计算机上设定好3~5条横断面测量设计线,测线间隔为25m。具体测量时可用DGPS水深测量系统进行,测深点间隔为2m。当测量船无法靠岸时可辅之以测绳加测杆的传统方法进行。当测量船行驶段有障碍物时,首先用数码相机拍摄障碍物,然后将测量船设有GPS天线的一侧小心靠近障碍物的位置,并手动标定其点位,用建筑物的名称进行中文注记,测定障碍物的详细参数如用手持测距仪测定养殖设施的主要尺寸等。对于障碍物较少的路由区域,可将纵、横断面的两次测定过程简化为一次测定,以提高作业效率。对于水面较窄的海底管道路由区域,由于测量船较难转弯,也可采用定位精度较底(10m)的手持式GPS接收机测定航迹线和障碍物的位置,并结合用测绳加测深仪或测杆的传统方法测定海底管道路由的水深。外业数据的处理使用HypackMax软件对水深数据进行处理,先将水深值与模拟记录纸进行对照检查,排序,去掉错误、多余和重复的数值后,通过潮位数据、声速数据改正,输出为Auto-CADDXF文件。在AutoCAD平台上对图形文件进行文字注记、勾绘等深线(等深线间隔为1m。当海底坡度变化很大时,等深线适当压缩)、设计图幅和进行必要的编绘,获得最终水深[8]。3.7外业勘测注意事项外业勘测过程中应注意:1)由于GPS信标台的差分信号来源于我国交通部在沿海建立的GPS公用信标台站,对内陆的作用范围仅在300km以内,故受地域局限,该系统仅适用于我国沿海地区。2)数字测深仪的稳定工作至关重要,每天工作前都应通过调整换能器的吃水改正和声速改正使测量值尽量接近测深杆的实测值。同时对海床较浅的海底管道路由区域,测深仪的灵敏度应放在“2”较为适宜。3)信标机在工作过程中应设置成自动寻找信标台站。若精度要求不高(<10m)时,信标机还可设置成“无差分记录”功能。4)电源的有效供电对提高系统的作业效率十分重要,因此在工作过程中不仅要为系统配备一个高性能的蓄电池,而且还应配备一个备用电池,以确保系统正常工作。5)因各测区水深变化较大,测量人员在操作仪器时应根据所处海域环境及时调整工作参数,使DGPS测深技术中的水深测量系统所采集的数据达到最佳效果。

福建LNG站线湄洲湾海底管道工程路由勘测应用了先进的差分全球定位系统(DGPS)。实践表明,DGPS测深技术的引入和应用,摒弃了传统的测绳加测深杆的方法,具有很强的优越性。该技术极大地提高了海底管道工程的勘测水深精度,同时为海底管道工程的后期路由防护提供了良好的勘测技术基础。然而,虽然DGPS测深技术逐步为海底管道工程所采用,但其是一个不断探索、不断完善的过程。新的工程技术要求我们不断完善和改进测量仪器,如多波束测深系统已较大规模投入水深测量,机械激光测深、遥感水深测量也将实用化。同时外业采集软件及内业处理软件也在不断的发展完善,使其更加人性化和智能化。因此,只有不断适应新的科学发展形势,经常注入新技术、扩充新功能,才能不断提高海洋工程成果质量。

探测技术论文例4

关键词:地质测绘;地质勘探;问题;应用 

引言 

随着社会的不断发展,人们的生活水平不断提升,各种工程项目也越来越多。在工程项目建设过程中,必须要加强对地质条件的了解。例如有的地区地质比较松软,以软土地基居多,对工程施工安全和质量带来了影响。再比如在采矿过程中,首先要对地质环境进行了解,才能采取合适的采矿技术,提高采矿过程中的安全性。由此可见,测绘测量在地质勘探过程中有十分重要的意义,能够加强对地质情况的了解,提高各种工程建设的安全性和稳定性。随着我国经济水平的提升,各种工程项目越来越多,我国的测绘技术研究也越来越深入。在测绘工程中,准确性是一个重要的因素。為了提高测绘准确率,必须要强化测绘工程质量管理和控制,对测绘测量技术进行控制,提高测绘人员的综合能力水平,减少测绘测量过程中的误差。 

1 地质测绘技术现状 

地质勘探是对地质、地层情况进行了解的重要过程。在地质测绘过程中,测绘人员必须要具备专业的知识技能,一方面是对地质学有一定的了解,另一方面要对测绘技术有研究。在地质勘探过程中,测绘过程应该要完成对地质勘探项目中的各种地面、地表、地层等地质情况的勘测,并且将测绘得到的数据反映出来,为工程项目提供相应的施工方案和信息。地质勘探项目的测绘的技术含量较高,而且测绘过程具有一定的难度。当前,我国经济建设水平不断提高,工程项目越来越多,工程项目质量受到外界地质因素的影响较大,尤其是在一些地质条件不太好的地区。如一些软弱地层,对工程项目施工带来的阻碍较大。在工程项目建设过程中,必须要加强对地质测绘的重视,减少很多不必要的损失。另外,地质勘探不仅是工程建设的基础,也是我国经济社会发展过程中的一个重要环节。加强地质勘探,有助于地理国情普查。对我国的地理情况进行掌握,有助于对各种资源进行充分开发和利用,提高我国经济发展水平。 

2 测绘测量技术在地质勘探中的应用 

常见的测绘测量技术有GPS技术、RTK技术、RS技术等。在地质勘探施工过程中,必须要积极加强对各种测绘测量技术的研究和分析,对测绘测量技术进行更新,从而不断提高测绘数据的准确性。 

2.1 GPS技术在地质勘探中的应用 

随着测绘测量技术的不断发展,传统的测绘测量技术的缺点也暴露得越来越明显。例如传统测绘过程中受到仪器设备以及测绘技术水平的影响,一般都采用常规测绘。测绘效率较低,而且测绘的数据不准。有的地区地势环境险峻,不利于测绘人员亲自前往测量。随着测绘技术的不断发展,GPS技术在地质测绘中的作用越来越明显。GPS技术主要进行定位和导航,可以通过定位设备对工程项目进行定位,对测绘工程的完成起到辅助作用。在地质勘探测绘过程中,主要通过GPS接收机以及相关的软件对地质勘探项目的位置信息数据进行收集和分析。GPS测绘测量技术的应用可以减少测绘过程中的人工投入,实现自动化采集和分析。尤其是对于一些地理位置比较偏僻的地区,人工测绘十分不便,必须要采用机械设备进行测绘,GPS技术正好可以解决这一问题。随着测绘技术的不断发展,GPS技术还与其他技术进行结合。比如GPS-RTK技术,是GPS技术与RTK技术结合产生的一种新技术,能够实现定位和实时传输,将测绘得到的数据及时传回信息控制中心,对数据进行分析和整理。 

2.2 RS测绘测量技术在地质勘探中的应用 

RS测绘技术又称为遥感技术,其主要功能是实现远距离监测。原理是基于电磁波理论,使用传感设备,对各种地质信息数据进行传输,并且由相应的设备对数据信息进行接收,再进行整理分析,用于各类工程施工。遥感仪器能够探测到的范围比较广泛,与传统的测绘手段相比较而言,其时效性也更高,能够获得同一时段的遥感数据,这些数据能够从各个不同的角度揭示地面上的各种物体之间的关系。当数据收集完成之后,还可以借助相应的软件对遥感影像进行分析,并且对探测区域内的地形、地质等情况进行基于影像的地物识别。对遥感图像进行处理之后,可以准确地提供出地面上的物体信息,也可以提供准确的几何位置。根据测绘得到的数据,在工程项目施工过程中,设计人员可以根据地质数据信息对施工方案进行设计。施工人员再按照准确的施工方案进行施工,减少盲目施工带来的影响。同时,RS技术的应用还可以完成对施工场地的动态检测,对施工状态进行把握。随着工程施工进程的不断推进,可能会出现各种新的地质问题,通过RS技术可以实现对施工场地的实时监控,及时得到最新的地质信息。 

2.3 GIS技术在地质勘探中的应用 

地质勘探过程中加强对GIS技术的应用,可以有效地提高测绘水平,可以将地理环境的具体位置、空间信息等详细信息结合在一起,为工程施工的相关部门提供可视化信息,使得施工人员能够做到心中有图有信息,有助于工程项目的顺利开展。另外,在未来的发展过程中,还可以加强对互动操作地理信息系统的应用,该系统是GIS系统的集成化平台。相对于GIS系统而言,其功能性得到了相应的拓展,能够实现在多个地理信息系统以及其他相关系统在异构环境下的互相通信、合作。对相关的任务进行完成,提高地质勘探水平。 

3 结束语 

综上所述,测绘是工程项目施工过程中的重要环节,可以为工程项目提供准确的数据支持。当前,地质勘探已经成为我国经济社会发展过程中的一个重要项目。为了提高地质勘探效果,必须要积极加强对地质测绘的重视。要结合地质勘探项目的实际情况,对各种测绘技术进行综合利用。根据不同测绘技术的特点,得到相应的数据。并且要借助计算机软件,及时对各种数据进行分析,对相关数据进行汇总,得到清晰、准确的地质勘探图表,为工程项目施工提供准确的信息数据。 

参考文献 

[1]石伟卿.GPS-RTK测绘技术在地质勘察测绘中的应用[J].建筑工程技术与设计,2014(28). 

探测技术论文例5

中图分类号O59 文献标识码A 文章编号 1674-6708(2013)96-0098-02

地球物理勘探是根据地壳石存在的物理性的差异来对比地质构造进行研究,以及对地下的矿产进行探测的一门技术科学。主要用到的测试仪器就是物探仪器,它的作用就是对于地壳中岩石的物理参数进行测试,它结合了计算机技术、系统科学、材料科学、电子学、物理学等多种学科的技术、方法及相应理论来对地球的各种物理信息进行探测的工具和主要手段。物理探测的仪器应用是非常广泛的,主要适用于建筑工程、水电、交通、煤炭、石油、地质等许多领域,在资源与能源的发掘和探测、预测地质灾害、监测地球的环境污染等的很多方面都发挥了非常重要的作用。

物理勘探的技术在们,满足我国的工程、资源以及环境保护等领域上的需求发挥了其重要的作用,随着经济的不断发展,它的影响力度也是越来越大的,尤其是最近几年来,它的工作围绕着工程、环境、资源三个方面不断展开,所以其在技术方法、仪器装备等很多方面都取得了重要的发展和进步,为社会经济发展做出巨大贡献。下面就在这项技术应用的各项技术指标以及取得的成果进行简单介绍。

1物理探测方法软件和硬件以及探测方法的介绍

1)硬件和软件部分

最近几年来,物理探测方法所用到的设备和仪器主要有如表1所示。用于进行处理解释的软件如表2所示,主要是对于一些电、磁、重处理软件。

2)探测方法的介绍

对于地球进行物理探测主要分为超浅层、浅层、中深层、深层四种类型,这四种类型分别用到的探测方法主要是:一,在超浅层上的主要分为,地质雷达技术和浅层地震技术两个方面。在浅层上的,主要分为,高密度的电阻率和高频的电磁成像两种方法。在中深层上的,主要分为,可控源的电磁测探和高精度的重力测量两种方法。在深层上的,主要分为高精度的磁力测量和天然大地电磁测探以及深层的地震三种方法。

2在地球物理勘探中一些新算法、新理论的应用

1)进行几何分形的理论,分形理论是对自然界中现象和物体之间存在的不同尺度的相似性进行揭示,也揭示出了整体和局部的相似性,所以在面上和空间上的信息可以通过点上的信息进行预测。这种方法主要是针对于自然界中不规则的、不稳定的、比较常见的现象所进行的研究。分形维数又可以被称作分数维,主要是描述复杂程度;

2)小波的理论体系,小波理论的分析主要根据傅立叶理论分析,从而逐渐发展起来的一个新的理论分支,这种理论分支主要适和处理信号中差分方程数值解、数据压缩、成像、子波算法,以及一些把分辨率和信噪比提高的数据处理方法;

3)神经网络计算理论,这种计算方式是对人脑思维的模拟,可以通过样本资料的分析研究和学习,判断未经处理的资料,根据样本资料来处理和计算,从而得出重要参量;

4)混沌的理论体系,这种理论的应用主要是在非线性系统的描述上,它与分形的理论联系很密切,他们之间也存在着分层次的基干尺度,在不同尺度之间也存在着标度律和相似性,同时,非均匀性以及差异性假设也存在;

5)地理的信息系统理论这是一种计算机系统,主要的应用方式就是通过计算机硬件和软件的支持,对空间的数据进行输出、查询、管理、存储和采集,在地球物理勘探技术中应用地理信息系统的原理,能够将数据快速地输出、查询、分析,也是未来重要的发展方向。

3地球物理勘探技术的具体应用

1)对能源进行物理勘探

主要是对于困难的地区的天然气和石油的勘探,对于整块盆地进行综合的勘探,对于能源进行替补地震勘探以及前期的普查。在对上述的石油勘探工作的具体实施时,运用到了大地电磁和高精度重力等一些测探技术,对各个油气区进行区块评价和构造详查,将油气的储藏地点直接找出来,从而使石油的疑难问题得到解决。

2)对金属矿物进行物理探测

在对金属矿物进行探测的时候,主要运用到的方法就是电法和磁法。

图1就是对某一金属矿产用电法进行勘探的剖面图,这种勘探方法主要是根据土体和岩的导电性差异来进行研究的,研究的内容就是人工稳定的电流场的作用以及在此基础下的电流传导的分布规律。

2)对工程进行物理探测

这类方法在现代经济飞速发展以及工程建设逐渐兴盛中,需求量也是越来越大的,所用到的领域也越宽。主要运用到的工程项目就是水利工程、管道、铁路等一些建筑的检测。主要运用的探测方法一般有浅层地震、电法、探地雷达等。

举个例子,对公路进行探地雷达检测,见图2,图中显示的就是多通道的雷达检测系统对某一个高速公路路面进行勘测的雷达图。

主要使用的是600MHz/1600MHz的异频天线阵。从图上可以清晰地看出,这个公路段的地基毁坏程度是比较严重的,有强烈的起伏、破碎区、含水区,需要紧急处理。

4地球物理勘探技术的发展趋势

随着计算机技术以及电子技术的不断发展,物理探测技术也日趋成熟,其发展趋势主要表现在以下几个方面。

首先,由于计算机的技术不断发展,物理的探测技术也在逐步向多功能化的、轻便化的和自动化的以及数字化的方向发展,当前的数模的变换技术,数据的采集技术。

当前,很多的发达国家也面临着能源枯竭的现状,浅层的资源已经勘探殆尽。一些地址勘探人员现在已经向海洋,沼泽以及沙漠的方向前进。

而且,在一些重大的工程建设上,例如矿山,核、水电站等,需要进一步地查明危害比较大的,规模比较小的裂隙、洞穴分布以及其他一些比较关键的地质构造的分布。

这些任务的完成就需要运用到新的仪器、新的方法和新的技术,让一些沙漠和沼泽地区勘探的工作也可以顺利进行。

第二,总线的技术得到进一步地发展,逐步成为了一些插卡式的、模块化的物探仪器关键技术,这些技术在运用上可以使多参数、多功能自动测量工作得以顺利实现,使模块式的物理探测仪器系统的组成结构更加紧凑。指出了新一代的物理探测技术的发展方向。

第三,一些功能比较强的应用型软件以及计算机的辅助测试集成化技术的运用,使测试技术以及测量仪器都得到更高层次的发展。这种测量系统可以使用户的各种需要都能方便实现,而且功能也很强,这就反映出了软件和硬件发展同步的趋势。

第四,将误差修复、信号处理、数据处理的功能增强,高速度单片数字的信号处理器可以使信号处理能力得到进一步增强,让一些高档仪器功能的扩展以及更新换代不单依靠增强硬件的功能和制造工艺的精细。

第五,运用新技术显著增强了物理探测仪器的功能,例如,超导重力仪,超导磁力仪等都是运用了超导新技术,这样就使设备的稳定性、精确度、灵敏度都得到提高。

另外,3s技术的应用就使数据处理和人工测量定位变得更加简便;层析成像技术的运用,就使地震勘探的解释精度和分辨率得到了进一步提高;运用探地雷达,就使机场和公路的跑道质量,隧道的衬砌质量以及混凝土构件质量,桥墩、桥基的质量以及钢筋的分布的检测手段更加可靠。

5结论

现在,物理勘探技术的发展更加的模块化、智能化、数字化,同时探测的精度也是越来越高,地球物理的探测技术的未来的发展趋势就是与计算机技术、自动化技术等相结合。

地球物理探测技术也逐渐发展成为地学的一门主要学科,其对地球进行空间数据采集技术也逐渐运用到各个行业。

参考文献

[1]宋文杰,刘玉华,肖贵学.地球物理勘探技术的发展和应用[J].工程建设与设计,2010(1).

[2]张春贺,乔德武,李世臻,张颖,杨辉,胡来东,尚应军,徐雷良,柴继堂,谭捍东,刘劲松.复杂地区油气地理物理勘探技术集成[J].地球物理学报,2011(2).

[3]王炳章,,陈伟.油气地震勘探技术发展趋势和发展水平[J].中外能源,2011(5).

[4]罗福龙.地震数据采集系统综述和展望[J].中国石油勘探,2010(4).

[5]姚逢昌,徐基祥.引导地球物理科技创新服务油气勘探开发工程-2005年《石油地球物理勘探》评述[J].石油地球物理勘探,2009(5).

[6]胡水根,张平松,严家平.综合地球物理勘探技术保障煤矿深部资源的科学开采[J].煤矿开采,2011(6).

[7]魏银同.地球物理勘探技术在油气勘探开发中的应用[J].产业与科技论坛,2011(10).

探测技术论文例6

我国的重点扶持项目就是水利工程,所以承受此工程的责任对于国家来说很是重要,无论是在技术上还是在管理上都要与时俱进,与现代化的发展趋势相连接,所以在现阶段水利工程的勘探技术与方法更需要高端与适中,只有用对的方法才可以成就好工程。

一.水利工程地质勘探所面临的问题

水利工程地质勘探对于我国来说是一项重大的工程问题,所以针对此工程国家投入大量资金与人才的培养,但是在成就方面取得功绩还是达不到理想化,其中主要问题有如下几点:

(一)工程周围的环境问题

水利工程建在一定区域内都会造成该区域水分变化,地表上空气变得更加潮湿,进而会形成单一的一种气候现象,这一现象与当地的主要气候相违背,所以对环境会产生一定的影响;

(二)水文问题的忽视

水利工程勘探最重要的就是对水文地质的检测,所以在这个问题上绝不能有半点懈怠,而现如今很多人恰恰忽视此关键性问题,由于水库不能及时地蓄水与放水造成周围地下水位位下降影响周围生态,另外近几年来河流的流量不断减少,导致自身净化能力不足,最终出现水质恶化问题;

(三)工程质量问题

在树立工程勘探过程中,由于对工程实施中监管不严造成的质量问题也是当前工程首要解决难题,其主要体现在工程地质分析中所运用的计算公式,方法等与实际存在较大差异,在看测得地质报告中数据模糊不清,论证不足,对地质的勘探不做缜密性探究盲目下定结论,这些问题都是导致水利勘探工程延期的因素。

二.水利勘探

(一)水利工程地质勘探一般步骤

首先第一步是接到水利工程勘探的任务书,第二步是合理的确定该项目的负责人,第三步是负责人编写勘探计划纲要,第四步是将勘探技术进行上交定论。

(二)水利工程地质勘探方法

1.工程的地质测绘

在水利工程勘探中工程测绘方法是最为常用的一种方法,也是最基本的一种方法,在工程的勘探技术中能够结合数据说明此工程所存在的隐晦性问题,在工程测绘方法中需要大量的地质调查数据,而且还要以地质学,工程地质以及相关的地质经验为基础进行勘测的,在勘测过程中可以明确地确定该勘测地的地质状况以及对此地址进行可能情况发生的预测性,之后再通过问题的分析来解决此类地质问题。

在我国的水利工程中所运用的测绘比例是不同的,正是因为比例的不同,才能明确地质构造的稳定程度,了解所调查区域的底层结构以及周围环境构成等,随着科技的不断进步,在水利工程堪测中,还需要以一定工程测绘为基础性技术,在通过高端技术的辅助来实现探测成果的准确性。

2.山地勘测方法

对于在工程勘测中出现的一般性浅层地质来说,采用的方法就是山地勘测法,该方法的主要流程是通过人为性或者是机械性的对勘测地表面浮土的去除,然后在直接对该土质进行取样观察,在进行实验性研究得出勘测结论;在整个勘测过程中只是简单的需要竖井和平两种类型的勘测技术即可,在方法上运作简便,实际操作中不过于复杂,另外在对山地进行勘测时的工作量与在对钻孔时所用的工作量来说比值约为0.1,这个比值从简单意义上来说没有什么,但是实质上它却体现着一个国家的发展水平,伴随着近几年我国在此行业的专研与发展,已经初步的靠近发达国家在钻孔工作量上的0.2。

3.工程钻探方法

随着我国科技的飞速发展,在工程钻探方面也不断地融入新兴技术,显而易见随着高端科技的融入为水利工程地质勘测带来了前所未有的帮助,不但在工程效果上取得显著成就而且在工程质量上也有所提升,在勘探周期上也减少了时间的耗用,种种成效都说明钻探方法无论是在工艺水平上还是在现场施工技能上都大幅度提升速度;

在工程钻探中其主要表现体现两方面,一方面是在钻探设备上有所改善,通过更改钻头的使用材料来提高钻井速度和岩心采取效率,过去我国在钻头上普遍采用缸里或者是硬质合金材料,而现阶段将钻头材料更改为金刚石,金刚石的特点就是硬度大,所以此材料的运用在一定程度上促进了钻探技术的发展。另一方面是对钻探某些特殊地质层技术上的改进,一般用传统的钻探技术是无法将砂卵石层以及破碎带等地质层进行钻破的,而该项技术的改进大大提高了在这些特殊地质层钻探工作效率。

4.工程物探方法

它的工作内容是通过运用观测仪器来实现对指定勘探区域进行物理性观测,再结合相关的数据分析进行合理化的原理总结推断,一般是针对该区域的地质构造以及勘探范围和深度进行准确性定论。在工程物探中一般包括地震勘测方法、重力场以及磁场勘测法、电磁勘测法、地球物理测井发、电法勘测方法等。

(三)水利工程勘测技术

1.GPS技术应用

GPS的全称是全球定位系统,现阶段我国通过在水利工程勘测方面运用GPS技术,使得勘测效果显著,该技术主要通过高程控制来实现对跨河、跨沟时人工难以解决的问题,另外在偏僻山区或是林区一些环境相对较差的地方运用此项技术可以加快工程勘测进度,提升测量的准确性。

2.遥感技术的应用

遥感技术一般情况按照平台高度可以分为航天遥感、航空遥感、地面遥感等三大方面,遥感技术通过自身的信息资源可以勘测山区的地质特性以及水流分布特点,进一步加快研究效率,他还可以通过自身的卫星影像功能实现对水库区域塌方以及发生山体滑坡、泥石流等可能性灾害的发生,另外还可以监测岩溶地质变化,发觉该勘测区域的优势所在。

3.GIS技术的应用

所谓的GIS技术就是利用成型图像法进行信息的图像显示,再利用空间数据上的管理分析,对所观测结果进行初步确定,在通过在工程勘测中对地质信息的管理与传送功能为水利工程地质勘探做出准确性判断。该软件的运用开拓了我国工程勘测技术的发展之路。

总结:通过本文对水利工程地质勘探的探讨,希望能在我国水利建设上做出一些贡献,另外在水利工程中还需要继续开发多种新兴技术应用,进而提高国家发展水平。

参考文献:

探测技术论文例7

中图分类号:P631 文献标识码:A 文章编号:1009-914X(2015)24-0355-01

对我国限定的煤层气资源评价结果的了解,我国目前的煤层气总量高达36.81万亿m3,是仅次于俄罗斯及加拿大,世界排名第三的煤层气发达国家。对煤层气勘探开发的力度要不断提升,这样可以使煤矿安全生产得到有效的发展,降低煤矿灾害,有效的使节能减排,更好的保护了环境资源。同时还可以改善我国的能源结构,为国民经济的长久发展打好基础。对煤层气进行勘探的方式有很多,普遍使用的有:地质法、地球物理法、地球化学法以及钻井法等。文章中重点对地震勘探、地球物理测井以及非地震勘探方式进行了分析讨论。

1 煤层气地震勘探

AVO 技术

当前 AVO 技术在煤层气勘探中应用广泛:

(1)建立煤层模型,进行 AVO 正演,得到含气煤层的 AVO 响应特征。

(2)在煤层气二维地震勘探中,提供各种图件。

(3)在三维三分量地震勘探中,进行方位 AVO 分析及裂隙探测。

AVO 技术的优点与发展趋势与常规天然气勘探中的 AVO 技术比较,煤层气勘探使用的 AVO 技术更有效率。主要有以下几个优点:

(1)煤层的构造结构简单、稳定。

(2)煤层反射振幅强,信噪比高。

(3)煤层的 AVO 异常特征简单而且多解性较少。

方位 AVO 分析、广角 AVO 分析、多波多分量 AVO 分析等技术的发展代表了当前 AVO 技术的发展趋势,其中方位 AVO 技术对于研究裂隙的发育情况、介质的物性参数等有很大作用。

2. 地震反演技术

地震反演是由地震资料获取地下地质信息的过程,它综合运用了地震、测井、钻井、地质等资料来探明地下煤层的分布状态。在煤层气勘探中,常用的方法包括叠前 AVO 反演和波阻抗反演。叠前 AVO 反演的理论基础是地震波的反射与透射理论。使用未叠加的地震资料,根据反射振幅随偏移距的变化规律,进行岩性参数的反演,通常可以获取纵横波速度、波阻抗、介质密度、泊松比等岩性参数。波阻抗反演可以用于计算含气煤层的厚度。此外,地震资料联合测井资料进行反演,还可以得到煤层顶界面的精细构造,为预测煤层气富集区提供依据。

3. 三维三分量地震探测技术

三维三分量地震探测技术不同于传统意义的三维地震,它在原来的纵波技术基础上,充分开发利用了横波技术。这种方法的理论基础是各向异性介质理论,地层的层状构造能在垂向上的各向异性反映出来,地层的横向上的微观构造则对应于水平方向上的各向异性。地震波横波可以分为快波、慢波,快慢波在煤层气储层中传播过程中遇到裂缝及煤层气时,能够产生旅行时差,并且旅行时差随煤层气含量增加而增大,所以,三维三分量地震探测可以有效预测煤层气储层的裂隙发育情况和煤层气富集区。三维三分量地震探测技术还可以用于确定煤层顶界面岩性、识别局部精细构造、估算煤层气储量、预测孔隙度等。

4. 煤层气地球物理测井

二十世纪三十年代末,翁文波院士将测井技术引入我国,历经几十年的发展,已经成为技术完备的高技术服务产业。测井技术在煤层气勘探中也有了相当的应用。煤层气测井中,有双重孔隙结构理论和各向异性理论,这是煤层气测井技术中的重点与难点。煤层气储层的测井解释根据煤层气储层地质理论,结合煤层气储层的测井响应特征,对于煤层气储层的解释,已有比较可靠的测井技术。

(1)储层识别与划分

煤层具备特有的电性特征,这对于储层识别具有重要意义。一般情况下,煤层的声波、中子、密度孔隙度基本相当,而煤层气的存在,使得中子孔隙度降低,声波、密度孔隙度升高,因而煤层气储层的中子孔隙度会低于声波、密度孔隙度。

(2)确定煤层厚度及埋深

目前,用于确定煤层厚度的测井技术已经十分成熟,分辨率已经达到厘米级,我国可以控制在十五厘米左右。

确定深度的具体方法一般有两种:一种以声波、密度、中子三条曲出现界面变化的半幅点为准,以其他曲线参考,人工划定;另一种是根据测井响应值自动划分。

(3)分析煤岩组分

煤岩组分一般包括固定碳、水分、灰分以及挥发分等,这几种组分之间具有良好的关系,尤其是固定碳、挥发分与灰分具有较好的相关性。一般情况下,灰分增加,固定碳迅速减少,挥发分慢慢增加,水分则近似于直线。目前分析煤岩组分常用两种方法:一种是统计相关分析法,根据灰分与固定碳、挥发分以及密度之间的相关关系,结合密度测井资料,可以求出煤岩的各组分含量。另一种是交绘图法,绘制煤岩组分与声波、密度响应值的交绘图版,也可以用于计算固定碳、水分、灰分等含量。

5. 其他地球物理勘探方法

与地震勘探方法相比较,非地震勘探方法,即普通物探方法,具备很多优点。例如,成本低,大概是地震勘探的几分之一甚至几十分之一;方法多种多样,重力、电法、磁法、电磁法等,这些方法还可以有效组合,获取全面信息,便于解释和预测。电磁法勘探举例目前,应用到煤层气勘探的电法、磁法勘探方法还比较少,有些还是在试验阶段。前人曾经在煤层气勘探中对高精度电磁频谱探测法进行了实际应用,获得了一定成果:

(1)相对电阻率曲线图,煤层与围岩有明显差异,煤层一般是高阻值,如果围岩是砂岩或泥岩,呈低阻值,如果围岩是灰岩或碳质页岩,会呈稍高阻值。(2)绝大多数大于一米的煤层会在高精度电磁频谱法曲线上清晰显示出来,有些煤层没有准确显示估计是由于观测次数有限。高精度电磁频谱法能够反映地下几米到数十米半径内的地质信息。(3)目前,相关技术还不够成熟,但是很有发展潜力,需要的人力物力少,成本很好控制;获取的地质信息清晰、准确,对于划分煤层厚度有重要意义。

参考文献

[1]Alex Chakhmakhchev. Worldwide Coalbed Methane Overview.SPE106850,2007:1-7.

探测技术论文例8

1 地球物理探测技术的主要方法

传统的地球物理探测技术的主要方法有:

(1)电法勘探:较为普遍运用的方法。是通过对地层电磁场、电学性质变化规律的研究,根据不同的电性差异,研究测量电场分布规律,以了解地质的状况。(2)磁法勘探:利用磁力仪监测不同地质体的磁性差异,研究地下磁异常及分布规律,从而解决各类地质问题。(3)重力勘探:依据各地质体存在一定密度差异,运用重力测量仪器观测出重力异常,了解地下地层的岩性和起伏变化情况。(4)地震勘探:地震勘探是发展最快的方法之一,它利用人工激发地震波,根据不同地层、岩石的地震波传播规律勘探地质的性质,达到预测地震、减少灾害及勘探和透析地球内部构造的目的。

随着科技技术的不断发展,地球物理探测仪器设备引进了现代电子技术,从而进一步压制干扰,提高分辨能力。

从探测深度上分别,物探主要分为四种类型:超浅层、浅层、中深层、深层[1],其分别应用的探测方法为:(1)对于超浅层,主要用于地质雷达技术与浅层地震技术两个探测方法;(2)在浅层上,有高密度电阻率和高频电磁成像两种方法;(3)对于中深层,主要应用可控源电磁测深和高精度重力测量两种方法;(4)对于深层,主要应用天然大地电磁测探、高精度磁力测量、深层地震,三种探测方法。

2 地球物理勘探中应用的新算法、新理论

(1)小波理论:是根据傅立叶理论分析逐渐发展起来的一个新的理论分支,适用于信号中差分方程数值解、数据压缩、子波算法、成像的处理,以提高数据的分辨率和信噪比。(2)神经网络理论:仿人脑思维的模拟计算。是通过样本资料的分析研究、学习,从而获得重要的参考数据,对未经处理的资料进行判断的理论。(3)几何分形:主要是对自然界中不规则、不稳定和较常见现象的进行研究,揭示自然界中不同尺度的物体和现象之间存在的相似性,以及整体和局部的相似性。由此,可以通过局部信息对整体信息进行预测[2]。(4)混沌理论:主要应用于描述非线性系统,它与几何分形理论联系很密切,他们都是分层次的基干尺度,揭示不同尺度之间存在的相似性、标度律、差异性等。(5)地理信息系统:一种计算机系统,利用计算机硬件和软件的支持,对时空的数据进行采集、存储、管理、查询、输出,通过地球物理勘探数据处理技术方法,能够快速地分析、输出和查询数据。

3 地球物理勘探技术的基本应用

(1)能源物理勘探。主要是对石油、天然气地区进行综合能源勘探。前期普查依赖于地震勘探。详查过程中,要运用大地电磁、高精度磁力、高精度重力等一些测探技术,对油气地区进行区块评价和构造研究,找出油气储藏构造,从而解决油气勘探中的疑难问题。(2)固体矿产物理勘探。尤其是金属矿产勘探,主要使用电法和磁法。电法主要是根据矿体与围岩的电性差异为基础,研究人工稳定的电流场在地下传导的分布规律。磁法勘探主要是根据矿体或其赋存构造与围岩的磁性差异,在地表或一定高空中测量磁场强度变化的规律。(3)工程物理勘探。工程建设迅速发展,工程物理勘探需求也日益增长,主要应用在建筑、公路、铁路、管道、水利等工程的检测,运用浅层地震、探地雷达、电法等探测方法对工程进行物理勘探。(4)对环境保护、灾害防治的物理勘探。地球物理勘探可以从电、热、光等物理变化进行监测,从而认识环境变化的过程,为环境保护提供背景资料。自然灾害的突然发生严重危害人们的生命安全和经济损失,地球物理监测技术的应用对自然灾害起到了有效的预测、防治的作用。

4 地球物理勘探技术发展的趋势

综合物理、数学、计算机等科学的应用,探测技术越来越成熟,地球物理勘探技术发展的趋势主要表现可以分为以下几个方面。

探测技术论文例9

引言

伴随着改革开放的到来,我国的经济获得了前所未有的长足发展,所以我国的经济呈现出飞速发展的状态,然而,工程地质勘查在我国当前的经济建设过程中发挥了十分重要且不可忽略的作用,工程地质勘查也对我国的能源资源的发展建设有着不言而喻的作用,特别是在当前比较关注的城市地下工程的建设领域中,工程地质勘查起到了不可替代的关键性作用。然而在当前的工程地质勘查中,由于科学技术的不断发展,我国的地质勘查技术以及相关的的地质勘查理论和与之配套的地质勘查设备都获得了不同程度的进步更新,并且还在不断的进行创新当中,新的地质勘查技术、理论与方法将会层出不穷。物探方法作为当前地质勘查工作中应用最为广泛的技术和手段,伴随着物探方法在地质勘查中的不断实践,我国的工程勘查的水平也得到了进一步的提升。本文将会通过分析工程地质勘查中的物探方法的实际应用,分析物探方法的具体技术和相关理论,来探讨我国物探方法的发展事宜。

一、工程地质勘查中物探方法的含义

(一)物探方法的概念

工程地质勘查工作能够有效地为现代化工程建设提供有力的保障,是工程建设高效完成的有力保障,因此,工程地质勘查中物探方法是当前的建设中是适用最为广泛的一种地质探测方法。物理地质探测手段指的是运用地球底层以及周边存在的物理场展开一系列的探测工作,其中,物理常识是在物理作用的物质空间下形成的。地球物理探测技术是物探技术的全称,在具体的工程地质勘查工作中,物探技术是运用专业的技术以及与之相配套的专业设备对地球的无立场的变化进行勘察,然后收集数据,进而整理数据、分析数据,为后续的工程建设提供有效地数据支持。

(二)物探方法的原理

物探技术是一项运用专业的探测设备对地球表层地质分布情况进行探测分析的光谱电磁技术。地球物理是物探方法的主要针对对象。具体方法是事先安放测线L,之后运用探地雷达发射高频宽带电磁波,然后由专门的接收装置进行接受,后续对收集到的信息进行分析和整合,以此来了解地质具体状况。

(三)物探方法的特征

目前的物探方法具有十分稳定的特点,能够为实际的工程地质勘查带来十分可观的经济效益,此外物探方法还具有收集到的信息可靠、探测的范围广泛、适用范围广等优良特点。在物探方法中有地震法和磁场法两种探测技术,这两种技术能够十分轻松的避开相关电场、磁场等物理干扰,应用的环境十分广泛,即便是在比较不理想的探测环境下也能够获得比较可靠精准的数据,为后续的工程地质勘查工作提供有力的保障。在实际应用中,物探方法能够探测的地质浅层范围十分广泛,并且它还具有探测速度快、探测信息精准可靠等优良特点。

二、在工程地质勘查中物探方法的应用方法

(一)大地电磁探测

所谓的大地电磁探测四肢运用天然的交变电磁场作为场源,进行地质探测的一种新兴技术。它的主要特点是能够对分布较深的地质进行探测,并且效果十分良好。此外,大地电磁探测技术还能够摆脱高阻层的屏蔽作用,具有相对较高的良导介质分辨能力,其设备轻便,故应用的场所十分广泛,经济效益十分理想。所以,这种探测技术被广泛的应用到地震预测、地热田的勘查以及石油的勘查工作中,应用十分广泛。

(二)连续电导率剖面测量系统

连续电导率剖面测量系统指的是应对探测信号不足、必须进行人工后期补充的一种勘查技术系统。它的主要特点是能够连续的补充电导率,能够有效地提升电阻的分辨率,确保勘查结果的精准度和可靠度。

(三)航空地面甚低频电磁技术

航空地面甚低频电磁技术是上世纪末期有国外发明并引进的一项比较高端的勘查技术,它的工作原理是根据良导层的断裂、破碎以及腐蚀带圈定方向,运用低电阻率在岩脉和矿脉之间进行追踪补偿寻找。这种地质探测技术能够有效地探测出矿物质结构,还能够有效的圈定地质矿化范围。航空地面甚低频电磁技术的主要优点是其探测设备十分轻盈,能够适用于大部分环境,其收集到资料的速度十分迅速,观测的方法也相对简便,但是航空地面甚低频电磁技术在接受相对较弱的异常信息变化时的效果不是很好。因此,这种探测方法主要适用于浅覆盖区以及剖面的地质勘查工作当中。

(四)瞬间变化电磁场探测技术

瞬间变化探测技术主要依靠的是电磁场的感应原理,通过运用专业的仪器设备对电磁场的变化进行感应,然后对一起显示的涡流场进行分析,以便分析目标地质的地质特点和相关结构,分析相应的空间形态。

以上不同的探测方法根据其自身的特点以及具体的探测要求,都有着不同的适用范围,十分灵活多变。因此,在具体的物探工作中,根据每项工作的具体要求,采用不同的物探方法,以便提升工程勘查工作的效率和经济效益。

结语

根据以上介绍,不难看出,在工程地质勘查中物探方法的发展,是与相关的科学技术的发展、设备的更新有着密不可分的关系,此外,还需要物探方面的技术人员的不断资料收集与分析作为保障。在当今快速发展的社会形态下,物探技术在不断的实际应用中将会获得更加飞速的发展。

参考文献

[1]高云升. 物探方法在工程地质勘查中的应用[J]. 黑龙江科技信息,2013,14:56.

[2]蒋永生. 物探方法在工程地质勘查中的应用[J]. 黑龙江科技信息,2013,13:71.

[3]吴广宇,张旭. 工程地质勘查中物探方法的应用[J]. 河南科技,2014,09:55.

探测技术论文例10

一、引言

随着我国水利水电工程的快速建设,地质勘测技术也得到相应的发展。同时,工程建设项目也对工程地质勘测提出了更高的要求。主要包括勘探深度的加大、勘探分辨率(精度)要求的提高,因此,许多传统的地球物理方法及技术已无法满足工程需要。为此,选择合适的勘测方法并分析总结各种工程地质勘测方法及其最新的发展,这对工程地质勘测及水利水电工程建设具有重要意义。近年来,地学等基础理论学科的发展,极大地推动了我国水利水电工程勘测技术的迅速发展。本文结合水利水电工程分析了工程地质勘探的3S技术新方法,重点研究了全球卫星定位系统(GPS)、遥感(RS)技术以及地理信息系统(GIS)新技术方法及其应用,并分别从各个技术方向角度对水利水电工程的未来发展趋势进行了展望。

二、工程地质勘探技术

工程地质勘探主要包括山地勘探、钻探、物探等三种方法,以工程地质测绘为基础,进一步查明地表以下工程问题和取得深部地质资料。

1.山地勘探。山地勘探是指采用人工或机械进行剥土,或开挖探坑、探槽、探井或平硐等揭示地表浅层地质情况的勘探手段,可直接进行试验、取样和观察地质现象。平硐和竖井(或大径钻井)勘探,是山地勘探工作中的重要组成部分。由于使用的工具和技术要求相对简单,故在进行地表浅层地质勘察时运用较多,正因如此,山地勘探的缺点是勘探深度有限。

2.钻探。多年来,钻探在工程勘察中发挥了重大作用,得到了广泛应用,为提高劳动生产率、缩短勘察周期、保证勘察成果质量做出了很大的贡献,并处于不断开发与研究新技术、新方法的过程中。

20世纪70年代的金刚石钻进技术在我国工程勘探中的应用,钻探效率成倍增长,岩心采取率普遍达到90%以上。这彻底改变了钢粒钻进和硬质合金钻进的技术落后状况。因此,金刚石钻头基本取代了钢粒或硬质合金钻头。砂卵石层、软弱夹层、破碎带等特殊层位的钻进取样技术的发展。砂卵石钻进和取样一直是水利水电工程钻探的一大技术难题,在“六五”科技攻关中,加强对深厚砂卵石层钻进和取样技术的研究,近年来,研究成功的SM植物胶和MY-1A植物胶冲洗液金刚石钻进砂卵石层取样新的技术,较好地解决了砂卵石层中钻进和取样的难题,推广较好,已产生了明显的社会经济效益。金刚石绳索取芯钻进技术。在不提钻的情况下通过用绳索将装有岩芯的内管直接从专用钻杆内提到地面采取岩芯,是一种先进的钻探工艺。实践证明,该工艺大大减少了取芯过程中来回提钻的工作量,较好地解决了在软弱层等特殊地层钻进过程中经常出现的如塌孔、取芯质量低等难题。其它一些钻进工艺的发展。如软弱夹层的钻进技术、套钻技术、大口径钻探技术等,这些技术经多年应用而取得的显著社会经济效益,并逐步已纳入有关的现行规范中。

3.工程物探。地球物理勘探(Geophysical Prospecting)简称物探,它是应用观测仪器测量被勘探区的地球物理场,通过对测量场数据的处理和地质解释来推断和发现地下可能存在的局部地质体、地质构造的位置、埋深、大小及其属性的科学。工程物探方法主要有以位场理论为基础的重力场勘探、磁场勘探、直流电场勘探等,以及以波动理论为基础的地震波勘探、电滋波勘探等。(1)重、磁位场勘探。相对于地震勘探而言,重、磁位场勘探是最古老的一种物探,其精度和可靠度较差。目前,一些高精度的重力仪、磁力仪的研制和应用,重、磁位场勘探的精度也随着有了很大程度的提高。同时,神经网络技术和磁性矢量层析成像理论的研究和应用,使重、磁位场勘探在上个世纪获得了广泛的发展应用。微伽级重力仪将微重力测量用来勘探洞室和边坡地质体的变动形态并监测其稳定性。(2)地震勘探。目前,地震勘探在水利水电工程领域发展较快。例如:利用弹性波纵波对三峡等大型水利水电工程的岩体质量做定性评价,取得了显著的工程和经济效益;由中铁西南科学研究院开发研制的负视速度法和水平地震剖面法、由瑞士Amberg测量技术公司开发的TSP长距离超前预报法、由美国NSA工程公司开发研制的真正反射层析成像(TRT)超前预报技术等,较好地解决了利用反射波地震勘探进行隧道超前预报的难题。近年来,地震CT可利用钻孔、隧道、边坡、山体等多种观测条件进行二维、三维地质成像,促进了地质勘测由定性向定量化的方向发展。(3)岩体弹性波测试技术。目前该项技术除一般的地震勘探测试以外主要还有以下几种测试:声波测井技术、坝基岩体质量快速检测系统、瞬态面波探测技术。(4)电磁勘探。主要包括人工场源的连续的电磁波勘探(EM法)和天然场源的电磁测探(MT法)。例如:可控源音频大地电磁法、人工与天然两种场源、多场源、二维和三维电阻率成像等技术,在水利水电工程中用来推测深埋长隧洞围岩介质的结构特征、隐伏断层、破碎带及异常区等可能影响工程的各种因素,取得了显著的经济效益。(5)电法勘探。包括电阻率法、充电法和自然电场法、激发极化法、电磁感应法等多种方法。又可分为稳定电流场理论、交变流法理论两大分支。近年来发展起来的高密度电法勘探,引进了地震勘探的数据采集办法,可实现数据的快速、自动采集,其测量结果可实时处理并显示地电断面或剖面图,从传统的一维勘探发展到二维勘探,此方法属于电阻率法的范畴,在水利水电工程地质勘察中应用较多。目前发展趋势是单源与单点测量,向多源、多点、多线测量发展,从而发展了三维观测技术。

三、地质勘测新方法及其在水利水电工程中的应用与展望

在水利水电工程建设当中,会遇到和一般工程建设不同的问题,以此也就要求引用更为先进的地质勘探新方法来弥补其中的不足。本文分别介绍了3S技术中全球定位系统(GPS)、遥感(RS)与地理信息系统(GIS)等4种新方法,并简单分析了它们的应用及未来发展趋势。3S技术是指全球定位系统(GPS)、遥感(RS)、地理信息系统(GIS)等三大技术系统的集成与总称。遥感技术是3S技术的基础,它提供主要的遥感信息源。GPS技术用于遥感信息的精确定位,GIS技术则为遥感信息的获取提供辅助信息和专家思维,并对所提取的各种信息进行管理和分析且具有制图功能。近年来,国内开始在一些特大型、大型水利水电工程地质勘察中采用3 S技术。例如,许多大型水利水电工程采用了3S技术并取得了丰硕成果。

1.GPS技术在水利工程地质勘测中的应用及展望。GPS在水利水电工程地质勘察测量及定位控制的应用越来月广泛,它能较好地解决跨河、跨沟水准在高程控制方面难以传递的问题,以及通视条件较差、观测条件受限、勘察区控制点较少或在山区、林区等区域大大减少作业时间,提高测量精度,进行工程地质勘察。工程地质勘察通过GPS确定观测点位的三维坐标。和普通测量手段不同,具有定位精度高、观测时间短、操作简便、可全天候观测等优点,它不要求观测站之间通视,并且可将其采集和储存的观测数据导入计算机进行分析与处理。

2.遥感(RS)在水利工程地质勘测中的应用及展望。遥感技术一般分为航天遥感、航空遥感和地面遥感共3大类。遥感可以通过卫星直接提供一定比例尺缩小的自然景观综合立体影像图、航片以及陆地摄影照片,能真实、集中地反映大范围的地貌形态、地层岩性、地质构造和滑坡、崩塌、泥石流、岩溶等外动力地质现象。遥感技术是研究区域构造稳定性必用的手段。因为遥感图像能提供大量宏观的线性构造信息,较好地反映区域地质特征、水系分布特征和地貌形态。也可以对水库区崩塌、滑坡、泥石流进行调查。岩溶调查。利用遥感影像,特别是彩红外影像在进行岩溶及岩溶水文地质调查方面有其特殊的优势。实践证明,清江招来河、高坝洲,黄河万家寨等工程曾利用彩红外航片解译来研究岩溶及岩溶渗漏问题,都取到了良好的效果。岩土工程开挖面地质编录。由长江勘测技术研究所开发和完善的“高边坡快速地质编录系统”,成功地应用于长江三峡永久船闸、澜沧江小湾、清江水布垭等工程的岩质高边坡开挖中的地质编录。

近年来,工程地质勘测遥感技术的应用的新动向就是与GIS、GPS技术的综合集成应用。

3.地理信息系统(GIS)在水利工程地质勘测中的应用及展望。GIS技术能处理图形、图像、空间数据及相应的属性数据的数据库管理、空间分析等问题,还能自动制作平面图、柱状图、剖面图和等值线图等工程地质图件。近几年工程地质勘察行业的热点和发展趋势就是将GIS技术应用于工程地质信息管理和制图输出。目前,由中国地质大学开发研制的MAP2GIS是国内应用较多且比较成熟的专业软件,是一种专业的地理信息系统软件。

目前,我国水利水电行业工程地质勘测方法正处于一个飞速发展的阶段。我国水能资源的蕴藏量居世界第一位,国家的电力建设方针也把重点放在水利水电上。随着西北、西南大江大河的规划开发,无论在地形地质条件或工程建筑的规模上都与过去有很大的不同。因此,对于工程地质勘测的要求愈来愈高;对于某些常见的工程地质问题的评价,需要有更多的资料予以论证,并要求我们使水利水电工程地质勘察工作由“定性分析”向“定量计算”方向发展,从定性、半定量的工程地质评价逐步发展到定量评价。需要我们重新认识和审视目前我国水利水电工程的各种勘测手段及其应用水平,大力推进各种勘测方法的发展及其综合应用。一方面,一些传统的勘测手段仍然起着不可替代的作用;另一方面,合理选择水利水电工程地质勘测方法显得重要。

四、总结

随着科学技术的不断发展与进步,工程地质勘测新方法将源源不断的涌现出来,但目前国内水利水电工程建设的工程地质勘测还处于相对“落后”的阶段,怎样加强各种新技术方法的应用成为当前我国水利水电工程建设人员所需要重点研究的问题。

参考文献

[1]封云亚,沈春勇.喀斯特地区水利水电工程勘测与处理新技术[J].水利水电技术.2005,36(9):70~73

[2]底青云,伍法权,王光杰等.地球物理综合勘探技术在南水北调西线工程深埋长隧洞勘察中的应用[J].岩石力学与工程学报.2005,24(20):3631~3638

[3]魏岩峻,黄小军,高建华等.高精度电磁成像技术及其工程应用[J].人民长江.2005,36(3):54~55.