关键词:说话人确认 短语音 高斯混合模型 身份向量 模型自适应
摘要:针对现有i-vector说话人确认系统在测试语音为短语音时性能下降的问题,对短语音i-vector估计的不确定性进行分析,改进了i-vector提取中Baum-Welch统计量的计算.该方法利用赋予权重的历史测试信息以及通用背景模型中的参数信息来增加用于短语音Baum-Welch统计量计算的说话人个性信息.将改进统计量用于i-vector提取,针对不同时长短语音的实验表明,新系统的性能优于当前i-vector系统,等错误率(EER)和检测代价函数最小值(min DCF)分别下降了13~19%和8~23%.
小型微型计算机系统杂志要求:
{1}正文内容应简洁明了,层级不宜过多,层级序号为一、(一)、1、(1)、①。
{2}投稿者若抄袭、模仿他人作品等侵犯他人知识产权的;或者稿件内容侵犯他人名誉权、隐私权、人格权的,由投稿者承担相应法律责任,自负文责。
{3}稿件中文主题名不超过20个汉字,副题名前须有破折号并且不超过25个汉字。题名要简明、确切,能够表达文章的中心思想、概括文章的主要内容。
{4}参考文献按正文中出现的顺序排列编号,置于文后。参照国标《信息与文献参考文献著录规则》(GB7714-2015)著录。
{5}务必提供第一作者的情况简介。作者简介一般包括工作单位、专业职称、邮政编码和联系方式(电子信箱和电话)等。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社