关键词:知识图谱 知识三元组抽取 对抗训练 端到端网络 标注策略
摘要:知识图谱作为一种有效表示现实世界的系统受到学术界和工业界广泛关注,并由于其精准表示知识的能力被广泛应用于信息服务、智慧搜索、自动问答等上层应用.知识图谱的核心为三元组形式的实体和关系.现有知识图谱远不足以描述现实世界,因此,如何通过实体关系抽取方法来补全或者构建新的知识图谱显得至关重要.传统流水线式的实体关系抽取方法会导致误差传递,而已有的联合抽取没有充分考虑命名实体识别与关系抽取之间的联系,从而降低抽取效果.针对上述问题,对知识三元组抽取方法进行了深入研究,提出了一种融合对抗训练的端到端知识三元组联合抽取方法.首先,采用了一种实体关系联合标注策略,通过端到端的神经网络抽取文本语义特征,并对文本进行自动标注;其次,模型在神经网络中加入自注意力机制增强对文本信息的编码能力,并通过引入带偏置项的目标函数提高对相关联实体的辨识能力;最后,模型融合了对抗训练以提高鲁棒性,改进抽取效果.在实验部分,采用4种分析方法和3种评价指标对模型性能进行评价分析,实验结果证明了模型在知识抽取上的性能明显优于现有方法.
计算机研究与发展杂志要求:
{1}摘要200字左右,应具有独立性和自明性,阐明撰写该文的目的、方法、结论并体现出原创性,不加引注。
{2}来稿请恪守学术道德,严禁抄袭。
{3}来稿经审查后,编辑部有权对来稿作适当文字修改.来稿不退,请作者自留底稿。
{4}间接引文通常以“参见”或“详见”等引领词引导,反映出与正文行文的呼应,标注时应注出具体参考引证的起止页码或章节。标注项目、顺序与格式同直接引文。
{5}本期刊的文献引证方式均采用页下注(脚注),采用小五号宋体,每页单独编号,注释中卷次、出版时间、刊期、页码一律用阿拉伯数字表示。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社